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ABSTRACT
In this paper, we propose preconditioned Krylov-subspace itera-

tive methods to perform efficient DC and transient simulations

for large-scale linear circuits with an emphasis on power delivery

circuits. We also prove that a circuit with inductors can be sim-

plified from MNA to NA format, and the matrix becomes an s.p.d

matrix. This property makes it suitable for the conjugate gradi-

ent with incomplete Cholesky decomposition as the preconditioner,

which is faster than other direct and iterative methods. Extensive

experimental results on large-scale industrial power grid circuits

show that our method is over 200 times faster for DC analysis

and around 10 times faster for transient simulation compared to

SPICE3. Furthermore, our algorithm reduces over 75% of memory

usage than SPICE3 while the accuracy is not compromised.

1. INTRODUCTION
Due to the increasing complexity and power consumption

of VLSI chips, power grid analysis has become an important
issue. A robust power network design has to guarantee the
correctness of circuit functionalities without slowing down
operations. An improper design of power grid will result
in excessive drops and fluctuations in the voltages supplied
to the devices. If the voltage drop becomes too large, it
will not only increase the gate delays, but even worse, cause
logical errors. Numerous researchers studied the impact and
proposed solutions to the problem [1, 2, 3, 4].
There are many sources of power fluctuation such as IR-

drop, Ldi/dt-drop, and resonance issues. Traditionally power
grid analysis is often emphasized on IR-drop. Recently, due
to the rapidly increasing operation frequency, the dynamic
power fluctuation caused by LdI/dt also becomes significant
[5]. To further reduce the power fluctuation, large amount of
on-chip decoupling capacitors are added to act as temporary
on-chip local power supplies. Thus, to accurately model and
verify the quality of power delivery, both capacitance and
inductance should be considered in the power grid analysis
problem. Because of the tremendous amount of the power
delivery elements, general-purpose circuit simulators such as
SPICE are not adequate for power grid analysis because of
CPU speed and memory limitation. Although there are sev-
eral methods [6, 7] proposed to alleviate this problem by
sparsfication, the accuracy is compromised.
In this paper, we propose preconditioned Krylov-subspace

iterative methods to perform fast DC and transient simu-
lations for large-scale linear circuits with an emphasis on
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power delivery circuits. This method has been shown to be
significantly faster than traditional iterative methods with-
out preconditioning. In order to take advantage of the fast
convergence of these methods, we derive and prove that the
Nodal Analysis is feasible for general RLC circuits and the
system matrix for transient simulation is indeed symmetric
positive definite (s.p.d), which is long believed not feasible.
Furthermore, we develop an effective preconditioning scheme
based on the incomplete Cholesky decomposition method to
significantly reduce the run time and memory requirements.

2. REVIEW OF MNA EQUATIONS
First, we briefly review theModified Nodal Analysis (MNA)

equations of RLC circuits. Given a linear circuit, the adja-
cency matrix, A, can be determined from the directed graph
by the following rule.

Aij =




+1 if node j is the source of branch i
−1 if node j is the sink of branch i
0 otherwise

Obviously each row of the adjacency matrix only contains
two non-zero elements (only one if the branch connects to
the ground). This matrix represents the connectivity of a
circuit, and the Kirchhoff’s law in terms of it is

KCL : AT ib = 0 and KVL : Avn = vb, (1)

where ib and vb are the vectors of branch currents and volt-
ages respectively, and vn is the vector of the node voltages.
For the power grid analysis, we are only interested in pas-

sive elements, RLC, and also assume that the circuit only
contains independent current sources. (We will explain volt-
age sources later.) Therefore, the adjacency matrix, the
branch voltages and the branch currents can be partitioned
into these forms.

A =




Ai

Ag

Ac

Al


 , vb =




vi

vg

vc

vl


 , ib =




ii
ig
ic
il




The subscripts i, g, c, and l stand for branches which con-
tain independent current sources, resistors, capacitors, and
inductors, respectively.
The relationships between branch currents and voltages

are as follows

ii = −Is(t), ig = Gvg, ic = C d
dt
vc, vl = L d

dt
il (2)

In Equation(2), Is(t) is the vector of current source values. G
and C are diagonal matrices whose diagonal elements are pos-
itive for any physical circuit. The diagonal elements of ma-
trix L are the values of self inductances, and the off-diagonal
terms are mutual inductances. Although L is not a diagonal
matrix, it still satisfies the s.p.d property.
By the method of MNA, we combine Equation (1) and (2),

and eliminate unnecessary branch currents. In RLC circuits,
only the branch currents running through inductors have to
be kept in the equations, and then we obtain the following:

G̃x+ C̃ẋ = Bii , (3)



in which
G̃ =

[
G AT

l−Al 0

]
, C̃ =

[
C 0
0 L

]
,

x =

[
vn

il

]
, B =

[ −AT
i

0

] (4)

and G = AT
g GAg , C = AT

c CAc. Notice that the matrices G̃

and C̃ in (4) still remain symmetric.

3. NA FOR LINEAR CIRCUITS
Although MNA provides a good solution for general cir-

cuits, the introduction of extra current variables makes the
system matrix non-positive definite, which is crucially neces-
sary for the efficiency and fast convergence of both iterative
and direct methods since the Cholesky decomposition takes
only half of multiplications and memory references than the
LU decomposition. However, it was believed that it is infea-
sible to use the Nodal Analysis (NA) for general RLC cir-
cuits due to the need of additional current variables. In the
following theorem, we show that by eliminating the current
variables, we can obtain an NA formulation for RLC circuits,
which is s.p.d. Hence the Cholesky decomposition and the
conjugate gradient method can be used in this problem.

Theorem 1. The system matrices of the transient sim-
ulation for Forward Euler, Backward Euler, or Trapezoidal
integration approximations can be formulated as the follow-
ing NA scheme, Ãvn = b, where vn is the nodal voltages,
and Ã equals to

[
G + 2

∆tC + ∆t
2 L

]
.

Proof. To make the discussion brief, we only show the
proof of the Trapezoidal case and some details are omitted.
By the Trapezoidal differential approximation, we can re-
place C̃ẋ with its finite difference formula and get

C̃x(t + ∆t) = C̃x(t) +
∆t

2
C̃ẋ(t + ∆t) +

∆t

2
C̃ẋ(t)

Substituting the above equation into Equation(3), and col-
lecting the variables, we can get the following equation.

(
G̃ + 2

∆t C̃
)

x(t + ∆t) =

−
(
G̃ − 2

∆t C̃
)

x(t) + Bii(t + ∆t) + Bii(t) (5)

Substituting (2) and (4) to (5) and performing block matrix
operations, we can obtain two equations:
(
G +

2

∆t
C

)
vn(t + ∆t) + AT

l il(t + ∆t) =

(
−G +

2

∆t
C

)
vn(t) + A

T
l il(t) + A

T
i (Is(t + ∆t) + Is(t)) (6)

−Alvn(t + ∆t) +
2

∆t
Lil(t + ∆t) = Alvn(t) +

2

∆t
Lil(t) (7)

Since L is positive definite, it is also nonsingular. This en-
sures the existence of L−1 which is also positive definite.
Thus, we can multiply ∆t

2
L−1 to both sides of Equation (7)

and obtain

il(t +∆t) =
∆t

2
L−1Al (vn(t +∆t) + vn(t)) + il(t)

Substituting into (6), we derive
(
G +

2

∆t
C +

∆t

2
AT

l L−1Al

)
vn(t + ∆t) =

(
−G +

2

∆t
C − ∆t

2
AT

l L−1Al

)
vn(t) + AT

i (Is(t + ∆t) + Is(t)) (8)

which can be written as

Ãvn = b (9)

where Ã = G +
2

∆t
C +

∆t

2
L (10)

Similar to G and C, we define L = AT
l L−1Al.

Theorem 2. A matrix Ã is stamped from a RLC circuit
in NA format, then Ã is symmetric positive-definite.

Proof. The inverse of an s.p.d matrix is also an s.p.d
matrix, and xT

(
AT

l L−1Al

)
x = (Alx)T L−1 (Alx) > 0. Since

G, C and L are all s.p.d matrices, the s.p.d of Ã can be
proved by linearity readily.

Theorem 3. In the case when there is no mutual induc-
tance in the circuit, the matrix Ã is diagonally dominant,
that is ãjj ≥ ∑i=n

i=1,i�=j |ãij |, j = 1, ..., n.

Proof. Since the mutual inductance is absent, the induc-
tance matrix L and its inverse L−1 become diagonal matri-
ces, which is also the case for G and C. G, C and L are
all diagonally dominant matrices, then we have Ã is also a
diagonally dominant matrix.

4. POWER GRID MODEL AND STAMPING
Our power grid model is shown as Figure 1. There are two

layers in the model. The top and the bottom layers represent
the high and low voltage supplies respectively. Between these
two layers are decoupling and other parasitic capacitances,
and independent current sources. The current sources are
pulse currents generated when the gates are switching. We
use SPICE to simulate the behavior when gates are switch-
ing, and transfer the waveforms of currents draining from
the power supply into piecewise linear current sources. These
currents can represent the currents drained from either gates
or functional unit blocks.

V+

V-

V+

V-

V+

V+

V-

Figure 1: Power Grid Model

Note that we include inductors in our model, which has
not been concerned in previous studies. The effect of induc-
tance is not obvious in low frequency operation. When the
frequency is high, we cannot ignore the impact. As men-
tioned before, because of inductors, we have to insert addi-
tional variables of branch currents in MNA. That makes the
problem more difficult to solve.
From Equation(10), if the circuit to be simulated does

not include mutual inductance, L is only a diagonal matrix.
Then L−1 is nothing but a diagonal matrix whose diagonal
values equal to the reciprocal of each corresponding diagonal
element, li, of the matrix L. Hence, all the elements can
be directly stamped into the matrix by Norton equivalent
circuits, which is depicted in Figure 2.

t
2C

eqG    = eqG    = t
2L eqG    =

R
1

R
V

eqi(t)+G    v(t+   t) eqi(t)+G    v(t+   t)

i(t+   t)

v(t+   t)

i(t+   t) i(t+   t)

i(t+   t)

v(t+   t)
C L

R

V

(a) (b) (c)

Figure 2: Norton Equivalent for Stamping (a) Ca-
pacitor (b) Inductor (c) Independent Voltage Source



Since every element converts into a Norton equivalent cir-
cuit, the resistor part (Geq) can be directly stamped into the

matrix, Ã, and the independent current part can be stamped
into the right hand side, b, of the Equation(9). This process
is exactly the same as Equation(8). Figure 2(c) stands for
the independent voltage sources. By using Norton equivalent
circuits, we eliminate one node that connects to the voltage
source. This allows no extra current variables introduced
into the problem, and keeps the matrix s.p.d.

5. PRECONDITIONED METHODS
5.1 PCG Algorithm
The conjugate gradient (CG) algorithm is one of the best

known iterative techniques for solving sparse s.p.d linear sys-
tems [9, 10]. This method is a realization of an orthogonal

projection technique on to the Krylov subspace Km(r0, Ã).
In other words, the search direction of each iteration is A-
orthogonal. This guarantees that CG can finish in n itera-
tions. The finite termination property makes CG more excel-
lent than other iterative methods in converging rate. Since
the s.p.d is proven in Theorem 2, we can take advantage of
this property and minimize the residual by the CG.
Another attractive feature of CG is that it does not re-

quire all previous residuals and search directions to generate
an orthogonal vector. The new search direction can be gen-
erated only from the previous residual. This makes memory
utilization more efficient. In our work, we also implemented
the preconditioned generalized minimum residual (GMRES)
method. Unlike CG, GMRES has to save all the previous
vectors. The experimental result shows that GMRES indeed
costs more memory space and run time than CG. However,
GMRES can handle non-symmetric matrix, which makes it
possible to solve problems containing elements other than
RLC.
Compared to direct solvers, lack of robustness is a widely

recognized weakness of iterative solvers. Although CG guar-
antees finite termination, n is still too huge to count on. It
can be improved by precondition technology. The precondi-
tioned conjugate gradient (PCG) method pre-multiplies (or
multiplies, which is not introduced in this paper) an s.p.d
matrix M−1. M is the preconditioner. The solution space
becomes M−1Ãvn = M−1b, and a good preconditioner can
make the condition number of (M−1Ã) close to 1. This
means (M−1Ã) ≈ I.

5.2 Incomplete Cholesky Factorization
To find a ”good” preconditioner is important for precon-

ditioned iterative methods. The best preconditioner of a
matrix is the inverse of the matrix, which makes the precon-
ditioned matrix an identity matrix and the condition num-
ber equal to 1. However, the cost of full matrix inversion is
very expensive. The idea is to find a relatively inexpensive
way to obtain an approximate inversion while minimizing
the overall computation cost. One way is to factorize the
matrix incompletely and use the inverse of this new matrix
as its preconditioner. For example, given an s.p.d matrix
A, instead of performing a full Cholesky decomposition of A
(= GGT ), we perform an incomplete Cholesky decomposi-

tion of A and get A = G̃G̃T +E, where E is the error of this
approximation. If the norm of E is sufficiently small, we can
anticipate Ã = (G̃T G̃)−1A ≈ I or the condition number of

Ã is significantly smaller than that of A.
There are several variants of incomplete decomposition

methods [10]. After implementing most of them, we found
the ILUT (Incomplete LU Decomposition with Threshold)

is one of the most effective methods for power grid simu-
lation. It is similar the full LU decomposition except that
ILUT throws out the small fill-ins (less than the threshold
value) during factorization. This becomes a tradeoff between
thresholds and the iteration count. Allowing more fillins will
reduce the iteration count with the cost of more memory and
longer run time for each iteration.
One thing to notice is that although the complete Cholesky

decomposition exists for an s.p.d matrix, the incomplete one
may not exist because of the fact that it throws out some
elements. However, if a matrix is an M-Matrix then its ILUT-
type incomplete Cholesky decomposition is guaranteed to
exist [10]. An M-Matrix is a matrix such that the elements
of its inversion are all positive. It turns out that a diagonally
dominant matrix is an M-Matrix and hence we can apply
simple ILUT to the RLC (without mutual inductance) circuit
without resort to further modification. In the case when
mutual inductances are present, a simple modification to the
ILUT algorithm is able to guarantee the existence of the
incomplete factorization [10].

ICD with Threshold Control
Since Ã is an s.p.d matrix (Theorem 2), the Cholesky

decomposition would be the most suitable method due to
several reasons. First, the Cholesky decomposition saves
half of the multiplications and storage space than LU de-
composition. Second, it is stable regardless of the ordering
and hence no pivoting is necessary for numerical stability.
In order to reduce the number of fillins, we use the RCM
(Reverse-Cathill-Mckee) ordering method before decompos-
ing the matrix. After reordering, the new matrix and its
Cholesky factor G are both banded, which means we don’t
need to calculate those elements outside the band. Assume
the width of the band is w, the run time is reduced to nw2

2
.

In our simulations, w can be less than n
100

.
About the threshold value, there are several different drop-

tolerance policies presented in previous works [12]. ILU(0)
is a no-fill strategy, which is equivalent to setting threshold
to 0. Choosing a fixed threshold value or drop-tolerance
level is also used. A simple and well known policy is to
set tolerance for element aij to be c

√
aiiajj , where c is a

constant. The drawback of this policy is that it costs too
much to calculate

√
aiiajj for each non-zero aij . Thus, in

order to reduce the run time of generating preconditioner,
the mean of each diagonal value times a constant is used as
the threshold value in our work. That is T = c

n

∑ n
i=1 aii , and

it implies that the number of fillins can be limited under a
certain percentage of that with the full factorization.

6. SIMULATION RESULT
The PCG power grid simulator was implemented in C lan-

guage, and simulated on an AlphaPC DP264 666Mhz system.
For the test sets, we use the power grid model discussed in
Section 4. Every iterative result reaches the precision that
the L2 norm of residuals (||r||2 =

√∑ n
i=1 r2i ) is less than 10−10.

Figure 3 shows the efficiency and robustness of PCG. (a)
shows the reduction of nonzeros between complete and in-
complete factorizations, and (b) shows the improvement of
iteration counts. The result shows that ICDT eliminates
more than 90% of nonzeros in full Cholesky decomposition,
and reduces more than 95% iterations. As the circuit size
goes up, this algorithm has even better improvement. Al-
though the precondition process makes each iteration slower,
the total run time of PCG is still much better than CG.
The DC run time and memory usage are shown in Ta-

ble 1 and Figure 4. Direct methods (SPICE3 and complete
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Figure 3: Compare numbers of (a) nonzeros of full
and incomplete Cholesky decompositions (b) itera-
tions of preconditioned and non-preconditioned CG

Cholesky) are much slower than iterative methods, and the
precondition technology makes iterative methods even bet-
ter. As mentioned before, the PGMRES is a little bit slower
and requires more memory space than PCG. Compared to
the performance of SPICE3 and our large-scale linear cir-
cuit simulator, our simulator is over 200 times faster than
SPICE3 and only requires less than 1

5
memory space for DC

analysis. The circuit with more than 1-million nodes and 5-
million elements takes less than 20 minutes to finish the DC
analysis.

elements nodes SPICE3 CD CG PGMRES PCG

3405 1326 1.59 0.08 0.10 0.05 0.05
13205 5046 36.31 1.17 0.80 0.31 0.29
39905 15126 390.50 10.29 4.66 1.78 1.63
52005 19686 779.83 18.96 14.88 2.78 2.75
81005 30606 2102.10 48.55 15.83 6.26 4.71
181505 68406 - 168.08 54.76 18.52 13.73
322105 121206 - - 140.24 59.53 30.57
723005 271806 - - - 105.30 87.19
2886002 734446 - - - - 674.19
5128005 1014846 - - - - 1181.60

Table 1: DC analysis run time (sec)
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Figure 4: Compare the (a) run time (sec.) (b) mem-
ory usage (Mb) of several different methods in DC
analysis.

Table 2 and Figure 5 show the results of transient analysis.
The model presented in Figure 1 is used in this simulation.
Figure 5(a) and (b) compare the waveforms at one of the
nodes in the power grid. Since we execute the PCG until
the norm of its residuals is below 1 × 10−10, the accuracy
of iterative methods is compatible with the direct solvers.
Figure 5(c) shows PCG simulators is about 10 times faster
than SPICE3 and much better for larger circuits. We also
test some circuits obtained from Hewlett-Packard Company,
and the result is equally good.

7. CONCLUSION AND FUTURE WORK
We introduced the preconditioned iterative methods to

solve sparse matrices. We also prove that the matrix stamped
from RLC circuit can be s.p.d. Therefore the ICDT and the
PCG are applicable for solving the matrix. We also compare
several different simulation methods. The preformance of
PCG is impressive, and shows that it’s much more suitable
for simulating large-scale linear circuits, such as power grids,
than general-purpose circuit simulators.

# of elements # of nodes SPICE3 PCG speedup

1146 690 3.51 0.34 10.32
4251 2570 26.26 5.69 4.62
16506 9930 313.57 55.82 5.62
64986 39050 5702.08 359.43 15.86
101226 60810 13953.48 783.10 17.82
260826 136210 - 2150.36 -

Table 2: Transient simulation run time (sec)
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Figure 5: Compare (a) result waveform of SCPIE3
(b) of PCG (c) run time in transient simulation

We didn’t discuss the circuits with mutual inductances in
this paper, since it involves an inversion of matrix L and can’t
be stamped directly from the circuit. Due to the rapidly in-
creasing operation frequency, inductances act a more impor-
tant role in the power grid analysis. In the future, we plan
to include mutual inductances in our simulation engine.
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