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ABSTRACT

In this paper we develop a new predictive flow control scheme
and analyze its performance. This scheme controls the non-
real-time traffic based on predicting the real-time traffic.
The goal of the work is to operate the network in a low
congestion, high throughput regime. We provide a rigorous
analysis of the performance of our flow control method and
show that the algorithm has attractive and useful proper-
ties. From our analysis we obtain an explicit condition that
gives us design guidelines on how to choose a predictor. We
learn that it is especially important to take the queueing
effect into account in developing the predictor. We also pro-
vide numerical results comparing different predictors that
use varying degrees of information from the network.

1. INTRODUCTION

In an efficiently utilized network, even if the dimensioning of
network resources has been done correctly and the admission
control mechanism is good, the network may go into periods
of congestion due to the transient oscillations in the network
traffic. It is thus necessary to develop a mechanism to reduce
quickly the congestion or pre-empt it, so as to cause the least
possible degradation of quality of service (QoS) to the un-
derlying applications. This is especially important for delay
sensitive traffic such as video or voice traffic, which we will
refer to as real-time (RT) traffic. For these types of traffic,
if a packet arrives after a certain deadline it is assumed to
be lost. There are other elastic types of traffic, such as data
traffic (e-mail, file transfers, web browsing, etc.), that are
more delay insensitive and we will call them non-real-time
(NRT) traffic. Our goal will be to develop a predictive flow
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control algorithm that facilitates high network throughput
and low probability of overflow.

A seemingly appealing (but naive) solution to prevent the
NRT traffic from affecting the RT traffic is to simply give
the RT traffic priority over the NRT traffic. While this en-
sures that the RT traffic is not delayed by the NRT traffic
in the network, it also means that the NRT may have to be
retransmitted many times (due to buffer overflows within
the network), to be successfully transmitted, thus, reducing
the overall throughput in the network. Hence, the prob-
lem of controlling the NRT traffic must be more carefully
considered.

There have been different research efforts on how to con-
trol the NRT traffic arrival rate, from simple single-bit feed-
back control [5][9] to explicit-rate control [1][2][3][10][17].
Some rate-based control schemes are fairly simple and do
not consider the impact of high-priority RT traffic, nor do
they consider the round trip propagation delay. In these
schemes, low-frequency high-magnitude oscillations may ex-
ist in the queueing of packets that occurs within the net-
work. By considering the high-priority traffic and round-trip
delays, an explicit-rate control scheme based on the result
of frequency domain analysis of multimedia traffic [12] was
proposed in [17]. The basic idea of [17] is to apply a low-
pass filter on the high-priority traffic, then predict the low
frequency part of the high-priority traffic, and finally con-
trol the NRT traffic rate. Because of the low-pass filter,
the high-frequency oscillations in the queueing process are
eliminated, thus improving the stability. In [17], the con-
trol objective was to minimize the unused link capacity by
minimizing the mean squared prediction error of the high-
priority traffic rate. But, the authors in [17], use a simple
step function, rather than a stochastic process, to model
the smoothed RT traffic, In some cases, this approach could
lead to poor performance, as will be illustrated in Section 6
of this paper. Further, modeling the RT traffic with a step
function does not shed any light on the queueing behavior
(congestion characteristics) at the network node being con-
trolled.

For an explicit-rate control scheme to be practical when
high-priority RT traffic (or other uncontrollable traffic) is
present, there are two main problems that need to be ad-
dressed.



1. Individual Link-Level Problem: Predicting the link ca-
pacity available for the NRT traffic at an individual
link in the network. One approach to controlling the
NRT traffic is to be able to predict the RT traffic (at
the link of interest) at some time in the future. Then,
based on this prediction, control the NRT traffic. Pre-
diction is required due to the relatively large propaga-
tion delay component (large delay bandwidth product)
in high-speed networks. Because of the stochastic vari-
ations in the aggregate high-priority RT traffic at each
link, the available link capacity for the NRT traffic
will be time-varying. Our objective is to find a way to
predict the available link capacity for the NRT traffic
such that the output link is efficiently utilized and the
overflow probability is kept low.

2. Network-Level Problem: Distributing the available link
capacity for the NRT flows in the network to maximize
throughput (or more generally some utility function),
based on appropriate fairness requirements. This prob-
lem has been studied when all the traffic is controllable
[4][13][11][16]. We will briefly discuss issues related to
this problem in the context of having both NRT (con-
trolled) and RT (uncontrolled) traffic over the network
in Section 5. However, this problem is not the focus of
the paper.

One of the main difficulties of the first problem is the non-
linearity in the system. The queueing system that deter-
mines the congestion on the link is itself a non-linear sys-
tem. Additionally, the control system to be implemented is
also non-linear, because the controlled NRT traffic rate can
never be less than zero. Due to this non-linear property,
it is difficult to analyze the performance of the system and
analyze the stability of the explicit-rate controlled system.
Hence, in some works [2][17], a linear system is used as an
approximation to analyze the stability of the controlled sys-
tem. In contrast, in our work, we will explicitly take into
account the non-linearity in both the queueing and the con-
trol systems. What we present here is a general prediction
and control framework. For example, depending on the in-
formation that is available from the network, our predictive
flow control scheme can vary from one that uses a simple
low pass filter with linear control algorithm to a more com-
plex scheme that takes advantage of per-flow information,
potentially improving the performance. In Section 6, we
will describe three different approaches that take advantage
of different levels of information available to us from the
network and have differing levels of complexity and perfor-
mance.

2. PREDICTIVEFLOW CONTROL MODEL

As mentioned in the introduction, in this paper we mainly
focus on the individual link-level problem. Hence, we focus
on a single multiplexing point in the network which con-
sists of a link and an associated buffer that serve both RT
and NRT traffic. This multiplexing point in the network
could be an output port of a router/switch or a multiplexer.
This multiplexing point is modeled by a work-conserving,
discrete-time fluid queue with an infinite buffer. Note that
we only require that the service discipline be work conserv-
ing and not necessarily FIFO. In fact, to prevent the NRT
traffic from affecting the RT traffic, it may be better to
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Figure 1: System diagram of predictive flow control

use some kind of priority queue rather than a simple FIFO
queue. For analytical tractability, we assume an infinite
buffer system. This allows us to obtain valuable insights on
how to design a predictive flow control system. We believe
that these insights will carry over to finite buffer systems,
because of the close relationship of various congestion met-
rics in finite and infinite buffer systems. For example, it is
well known that when the queue level of an infinite buffer
system is small, it also implies that the queue level of the
corresponding finite buffer system is small. So, if our in-
tention was to develop a control algorithm to maximize the
goodput in a finite buffer system with buffer size x, one ap-
proach would be to develop a control algorithm to minimize
the probability that the corresponding infinite buffer queue
would exceed a level z, given a utilization constraint.

Our system diagram is shown in Fig 1. Let V(n) be the
aggregate amount of RT traffic that arrives at the queue of
interest at time n. We assume that Vinas = sup,,»o {V(n)}

is finite and that V'(n) is stationary in the mean, i.e., V :=

E{V (n)}.

Our goal is to control the NRT traffic based on predicting
the aggregate RT traffic at the queue. We define a;(n) to be
the available link capacity for ith NRT traffic computed at
time n based on the predicted value of the RT traffic rate.
This explicit rate information is sent back to the ith NRT
traffic source. Since, in this paper, our main focus is on the
individual link-level problem, we assume that the calculated
available link capacity for the NRT traffic can be fully uti-
lized, i.e., the NRT traffic sources always have enough data
to transmit. Let N be the number of NRT traffic sources
and let n;,i =1,..., N be the round trip delay between the
ith NRT source and the destination. (Note that we need the
notation n; for our theoretical analysis. But in practice, the
actual value of n; may or may not be needed. See Section 5
and 6). Then a(n) = Efv:l a;(n —n;) is the aggregate NRT
traffic arrival to the queue at time n. (We assume that a
control message is propagated from the queue of interest to
the destination and back to the source). We further define
Vi(n) as the predicted value of V(n) based on the history
of V' before time n — n;. We assume that the predictor is
linear. *

'Using a linear predictor has been found to give very good
results for video traffic [12, 17], and we find that it gives



Let V(2) be the Z-transform of V(n) — V and Vi(z) be the
Z-transform of V;(n) — V. Then

Vi(z) = 2 “Hi(2)V (2), (1)

where H;(z) is a causal, stable linear time invariant system
[15]. This form of predictor is quite general and includes all
time-series types of predictors (e.g. ARMA). From Eq. (1),
we can easily show that E{V;(n)} = V, i.e., the predictor is
unbiased.

The workload or queue-length, g(n), at time n at the queue
of interest will be determined by a(n), V(n), and the service
rate (link rate) of the queue u. We assume that the queue
process begins at time n = 0 and ¢(0) = 0. For stability, we
also require that V < u.

The feedback control scheme is as follows. We predict the
aggregate RT traffic rate, and use the predicted value to
compute a;(n),1 <n < N. Here, we ignore the time needed
for prediction and computing (however, we can just as easily
add it to the delay m;). In this paper, we will present a
predictive flow control algorithm and analyze the queueing
behavior of the system. For simplicity of exposition, we
will first consider only one NRT traffic source and develop
a result for the queueing behavior at the queue of interest.
We extend this result to the multiple NRT traffic sources
case in Section 4.

3. SINGLE NRT TRAFFIC MODEL
3.1 Predictive Flow Control Algorithm

In this section, we assume that there is only one NRT traffic
source a1(n) (or a group of NRT traffic loops with the same
round trip delay n1). Note that by definition, a(n) = a1(n—
n1). Ideally, what we want to achieve is a(n) + V(n) = p at
all time n. However, there are two difficulties in achieving
this. Firstly, since we do not know V' (n) in advance, we need
to estimate its value through prediction which will always
have a certain possibility of error. Secondly, V' (n) could be
greater than p but since a(n) cannot be negative, the sum
a(n) + V(n) cannot be made equal to .

Taking into consideration the possibility of prediction error
and the possibility that V(n) > p, it seems plausible to
control the NRT traffic a1(n) such that

ai(n) = [pu — V1 (n+ n1)]+, (2)

where p is the percentage of output link capacity that we
would like to utilize (p > %) and [z]* = z, if £ > 0, and
[#]t = 0, otherwise. (Note that in [17], the non-linearity
was not considered and a simplified version of Eq. 2, a1(n) =
pp— Vi(n+n1), was used). Although this method of control
is easy to implement, it has a major drawback. The draw-
back is that this type of control does not take into account
the queueing behavior, but simply the difference between
the service rate and the RT traffic. To elaborate, consider
even the situation of perfect prediction, and that V(n) has
exceeded p for some time. During the period that V(n)
has exceeded p, the above equation correctly sets ai(n) to

good results for other types of traffic as well. Unlike other
works in the literature, we allow both the control algorithm
and the queueing operation to be non-linear.

be zero. But, even after V(n) is no longer larger than pu,
there could still be a substantial backlog in the queue, dur-
ing which a1(n) should be set to zero. However, according
to Eq. (2), the moment V(n) is less than p, the NRT source
is allowed to transmit, thus potentially causing unnecessary
congestion at the queue. This will also be shown in our
simulation results. Hence, we need a better flow control al-
gorithm. What we will attempt to do is to keep the queue
length at the node of interest small, while maintaining a
certain level of throughput given by

I (a) + V() ) ®

n—00 n

Note again, that at time 0 the queue will be empty.

Proposed Control Algorithm (N =1 case)
1. Define a virtual queueing process g1 (n) and set ¢1(0) =
2. q1(n) = [ (n — 1) + Vi(n) — pu]t. For n <0, we let

3. a1(n) = [pp—Vi(n+n1) —q(n+n; —1)]*. Forn <0,
we let a1(n) = 0.

In the above algorithm, we maintain a virtual queueing sys-
tem g1 with the predicted RT traffic Vi(n) as input and pu
as the service rate. Here we can see the difference between
our algorithm and the one given by Eq. (2). In Eq. (2),
a(n) = [pp — Vi(n)]*. The NRT traffic rate depends only
on the predicted RT traffic rate at time n. But in our algo-
rithm, a(n) = [pu — Vi(n) — q1(n — 1)]T. When computing
the NRT traffic rate, we consider both the predicted RT
traffic rate at time n and the predicted queue length at time
n — 1. This results in much lower network congestion, as
will be illustrated in the paper. Note that although we have
used n; in Step 3 of the algorithm, this does not mean that
we need to explicitly know the actual value of ni, or even
an approximation of it. All we need to know is the value
of Vi(n + mn1) (q1(n 4+ n1 — 1) can be calculated from V4).
To calculate Vi(n + n1), n1 may or may not be needed,
depending on the type of predictor being used. For exam-
ple, if we choose a simple predictor Hi(z) = 0.5 4+ 0.5z .
Vi(n +n1) = 0.5V (n) + 0.5V (n — 1). Here, we can see that
the value of n1 is not needed to calculate Vi(n + n1). In
Section 6, we will provide numerical results comparing dif-
ferent predictors (some that explicitly use values of n; and
some that do not).

Also note that when Vi(n) < pp for all n, g1(n) will always
be zero. In this case our control algorithm will reduce to
the linear version of Eq. (2), i.e., a1(n) = pu — Vi(n + n1).
But since the high priority RT traffic does not always satisfy
this condition, although the linear version is simple, it is not
be appropriate, especially for very bursty RT traffic (we will
discuss this further in Section 6).

We now focus exclusively on our control algorithm. Hence
we consider two queueing systems with Vi (n) as the RT traf-
fic input. Note that ¢1(n) and g2(n) described below are not



the queue lengths of an actual queue at a link, but merely
useful descriptors for developing our theoretical analysis.

LEMMA 1. Let q1(n) be the workload at time n in a queue-
ing system with input Vi (n) and service rate pp and let ga(n)
be the workload at time m in a queueing system with input
a(n) + Vi(n) and service rate pp. Then q2(n) = q1(n) for
any n > 0.

Proof: See Appendix A |

From Lemma 1, we observe that the queue length of a system
that uses our control mechanism having both a(n) and Vi (n)
as input is the same as the queue length of a system which
only has Vi(n) as input. This is a very desirable property.
It means that we can send more data and at the same time
not increase the queue length. Of course, in real network,
the RT traffic rate will be V(n) rather than Vi(n), hence we
will take this into account as well. Next, we will focus on
the actual queue that we wish to control. This queue will
have input from both the aggregate RT source V(n) and
the controlled NRT source a(n). As mentioned before the
service rate of this queue is u. We will show that using our
control algorithm, the output link utilization of the queue
of interest is fixed at p (this is what we want from (3)).

PROPOSITION 1. For our predictive flow control algorithm
defined in steps 1-8 earlier, under the condition V < pu, we
have

2?21 a(j) _ =
— =P

lim pw—V.

n—o0 n

Proof: See Appendix B |

Since the input to the queue in consideration is a(n)+V (n),
and since E{V (n)} = V, what Proposition 1 tells us is that
the average aggregate input rate to the queue is given by pu.
As mentioned earlier, this is exactly the desired utilization
we want. This also tells us that when we fix p in our control
algorithm, the output link utilization is also fixed and does
not depend on other predictor parameters.

Next, we will fix p, and observe how the queue length of
the queue of interest will be affected by different predictor
parameters.

3.2 Properties of the Flow Controlled Queue
The queue in consideration has service rate p (output link
rate) and the total input to it is a(n) + V(n) at time n >
0, where V(n) is the aggregate RT input and a(n) is the
resultant NRT input as determined through our predictive
flow control algorithm. As mentioned before, q(n) denotes
the workload or queue length of this queue.

Since the queue is empty at time n = 0, g(n), the queue
length at time n, can be expressed as [8] [14]:

g(n) = sup { 3y (a(j)+V(j)—u)} (4)

0=m0<n j=no+1

In this section, we will analyze the relationship between g(n)
and the queue length go(n) of a queueing system with only
RT traffic input V(n). The next theorem shows that our
predictive flow control algorithm can achieve a queue length
g(n) that is only an additive constant (2C:) larger than
go(n), for any n. Here, go(n) is defined as the queue length
at time n of a queueing system qo with arrival rate V(n) and
service rate p. Note that go has the same RT arrival rate
V(n) as in our controlled system, but has no NRT input!

THEOREM 1. Under the definitions and predictive flow
control algorithm defined above, if Vinae < 00 and ”::‘}/ <
Hi(1) < 1, we have qg(n) < qo(n) + 2C1, where C1 is a

constant that does not depend on n.

Proof: See Appendix C |

‘What Proposition 1 tells us is that we can completely achieve
the the utilization constraint that we set to achieve in Eq. (3).
Now_what Theorem 1 tells us is that under the condition
E:f‘-,‘i < Hi(1) < 1, the queue length at any time in our
controlled queue will at most exceed the queue length in a
queueing system go by a constant. This is quite remarkable
since qo is a queueing system that has no NRT traffic input at
all and hence one would expect that its queue length would
be a very loose lower bound on the queue length generated
by a control scheme that attempts to achieve a utilization
of pp > V. However, even when the g(n) of our scheme is
compared to go(n) the queue length without NRT traffic, we
can show that g(n) is only an additive constant (hence not
dependent on the time n) larger than go(n).

We are now ready to extend this result to the case when
multiple NRT traffic sources with different round trip delays
are multiplexed at the node of interest.

4. MULTIPLE NRT TRAFFIC MODEL

We now consider a system with N NRT traffic sources. Re-
member that V;(n) is the predicted value of the aggregate
RT traffic V(n) based on the history of V before time n—n;.
Again, note that ¢(0) = 0, our predictive flow control algo-
rithm is given as follows:

Proposed Control Algorithm

1. Set ¢;(0) =0,1<i< N.

2. gi(n) = [gi(n — 1) + Vi(n) — pp]T. For n < 0, we let
V(n) =0.

3. ai(n) = %[pu—l;;(n+ni)—qi(n+ni—1)]+. Forn <0,
we let a;(n) = 0.

From the proof of Propﬂosition 1 and the above algorithm, it
follows that lim,,— M = +(pp—V) for the multiple
NRT traffic case. Note that how to assign the available link
capacity is in fact a network-level problem. Since we only
consider a single link here, for fairness, in Step 3, we assign
the available link capacity in such a way that each NRT

traffic has the same average arrival rate. This is by no means



a necessary condition, and can be relaxed by modifying step
3 above in favor of a more unfair system if the situation or
the solution of the network-level problem requires it. We
will discuss this further in Section 5.

We now have a version of Theorem 1 with multiple NRT

sources having different round-trip delays. Once again let

go(n) correspond to the queue length at time n of a queueing

system with service rate p and input V' (n), while g(n) is the

queue length at time n of the system with input V(n)+a(n),
N

where a(n) = >;_; ai(n — n;).

THEOREM 2. With the definitions and predictive flow con-
trol algorithm defined above, If Vipae < 00 and p:__—‘;/ <
H;(1) <1 for all1 < i< N, there exists a constant C such
that g(n) < go(n) + 2C for any n > 0.

Proof: See Appendix D |

As before, go(n) is the queue length without the NRT traffic.
Therefore, Theorem 2 tells us that with our predictive flow
control algorithm, the queue length of the system will be less
than the queue length with only RT traffic plus a constant
finite value that does not depend on n.

5. DISCUSSION

Consider the condition EE‘;K < H;(1) €1 that is obtained
from our main results. We can see that when H;(1) = 1, this
condition is satisfied for any p < 1. Hence, from now on the
first requirement for our predictor will be that H;(1) = 1.
Next, we provide more justification why designing a predic-
tor under this condition is desirable.

5.1 Tail of Queue Length Distribution (Tail
Probability)

From Theorem 2, we know that the only requirement for the
RT traffic is Vinaz < 00. So, the result can be applied to
both short range dependent and long range dependent RT
traffic.

Now, consider the probability P{q(n) > z}, when z is large.
Since q(n) < go(n) + 2C, we have,

P{q(n) > 2} < P{qo(n) > z — 2C}. (5)

Let P{Qo > =} = lim, o0 P{qo(n) > z} be the steady state
tail of the queue length distribution (also usually called the
tail probability) of go and let P{Q > z} = limp 00 P{g(n) >
z} be the tail probability of g. When the aggregate RT
traffic V(n) is short range dependent, for a large class of
short range dependent traffic [8], we have P{Qo > z} ~
Ae B when « is large, where A, B are constants. So, we
have,
. P{Q > x} . AG_B(w_2C) __ 2BC
S Qs ey S T A = - O

When the aggregate RT traffic V(n) is long range dependent,
for a large class of traffic models [6], the tail probability

P{Qo > z} = AefB””d, for x large and where A, B, d are

constants. Further, 0 < d < 1, hence,

. P{Q >z} .
— =<
51 510> 2y <

Ae—B(m—QC)d
Ae—Bad

Since the right hand side of Egs. (6) and (7) is a constant
(1 for Eq. (7)), this tells us that the tail probability for the
flow controlled queue does not diverge from the queue length
distribution of the system with only RT traffic. Since the tail
probability in infinite buffer systems is intimately connected
to the overflow probability in finite buffer systems, this again
makes a rigorous statement on the effectiveness of our flow
control scheme.

=1 (7

We have show that when 2::_‘;/ < Hj(l) <1lforall<
i < N, the queue length of the predictive flow control sys-
tem will not exceed the original queue length with only RT
traffic plus a constant value. Now, the question is what hap-
pens when H;(1) does not satisfy this condition? It turns
out that one can easily construct many cases when, if this
condition is not satisfied, limg;_, oo %
Due to space limitations, we will not explicitly provide such
examples here, however, in our numerical section, this will
be illustrated through the help of Figure 5.

will go to oco.

5.2 Stability

Another important issue in explicit rate feedback flow con-
trol is the stability of the controlled queueing system. From
our main result, it follows that if H;(z) are stable and H;(1) =
1 for all 4, then the queue length will not exceed that of a
queue with only RT traffic plus a constant value. This means
that if the queue with only RT traffic is stable, our queue-
ing system will also be stable. Further, this stability does
not depend on the predictor parameters, once H;(1) =1 is
known. In a real system, the round trip delays of NRT traf-
fic are not always easily determined and in most feedback
flow control schemes, this is an important factor that may
cause the system to become unstable. However, in our sys-
tem, if we keep H;(1) = 1, the stability will be maintained
regardless of errors in estimating the round-trip delay.

5.3 Per-Flow Information

As discussed in Section 3, in our predictive flow control
scheme we may or may not choose to use the round-trip
delay information in computing the parameters of the pre-
dictor. This is important because the round trip delay is
the only per-flow information in our predictive flow control
scheme. Our main result, H;(1) = 1, tells us that a class of
predictors satisfying this condition, will perform well. How-
ever, how to choose a predictor from this class is still an
open problem. It depends very much on how much informa-
tion we can infer from the network. For this reason, in the
numerical examples (Section 6), we will numerically study
predictors that require per-flow information and those that
do not.

5.4 Minimizing which error?

An important idea that motivates the development of our
predictive control method is that minimizing the error at
each point in the prediction is less important than mini-
mizing the accumulated error. For example, the minimum
mean squared error (MMSE) predictor is a widely used pre-
dictor that can be used to predict the RT traffic. In this



way, we have a minimum mean squared error at each pre-
diction point. However, we know that a large queue length
is mainly caused by the accumulated traffic in a time inter-
val. Hence, a minimum error at each point in time may be
less important than a minimum accumulated error over the
time period in which the queue builds up. This is where the
condition H;(1) = 1 is important. Because it tells us that if,
in our predictor, we choose H;(1) = 1, we are ensuring that
the accumulated error is bounded (e.g. Theorem 2). This
is also demonstrated by our numerical results which show
that the MMSE predictor results in poor performance com-
pared to predictors that maintain H;(1) = 1. In fact, what
we will show is that although the MMSE predictor requires
per-flow information, it does not perform as well as pre-
dictors that explicitly consider the queueing behavior (i.e.,
using H;(1) = 1) but do not require per-flow information.

5.5 Network-Level Problem and Applicability
As mentioned in the introduction, there are two main prob-
lems to be considered for performing explicit-rate flow con-
trol. The first problem is at the level of an individual link
and the second problem is at the level of the entire network.
In this paper, we have focused on the individual link-level
problem and predicted the amount of available link capac-
ity for the NRT traffic in the presence of the high-priority
RT traffic. The question to be answered now is how to dis-
tribute this available capacity in a fair and optimal manner
from the point of view of the entire network? This remains
an open problem.

However, when the available link capacity is fixed (i.e., there
is no uncontrollable or RT traffic in the network), there are
very elegant solutions to this problem (e.g. [4], [13], [11],
[16]). Our work could be combined with these works to form
a complete solution for the explicit-rate flow control prob-
lem. This would also make the work applicable to current
technologies such as TCP and ATM. In particular, since, our
flow control algorithm is a type of explicit rate flow control,
it can directly be applied to ATM/ABR type feedback flow
control mechanisms. It can also be applied to TCP with the
introduction of Active Queue Management (AQM) strate-
gies such as Explicit Congestion Notification (ECN) [7] and
Random Exponential Marking (REM). For example, REM
is a practical implementation of the network-level optimal
flow control algorithm in [13]. Our work could then be com-
bined with REM by simply replacing the fixed available link
capacity, by a time-varying link capacity as determined by
our predictive flow control algorithm. However, because the
available link capacity is time-varying now, many new open
problems will arise. For example, the fairness and optimal-
ity considered in [13] may not hold now. This will form the
basis for our future work in this area.

6. NUMERICAL RESULTS

In this section, we assume that V' (n) is wide sense stationary.
We also assume that H;(z) is of the form Z%":O BW ™.
From the discussion above, we know that if we design pre-
dictors that do not satisfy the condition E::—(Y <H;(1)<1,
the tail probability of the queue length may be much greater
than that of predictors which satisfy the condition. Most
current works on predictive flow control and even more gen-
eral feedback flow control focus on minimizing the mean

square of some control objective, for example, the mean
square of unused link capacity. In [17], a low pass filter
is also applied to the high priority traffic to improve the
performance and stability. Under this type of method, the
predictor may not satisfy the condition ”:_—_‘;/ <H;(1)<1
and in some cases could result in increased congestion. We
will demonstrate this through our simulation results. As
mentioned in Section 5, since the above condition is sat-
isfied for all p when H;(1) = 1, the first requirement for
our predictor is that H;(1) = 1. Under the condition that
H;(1) =1, there are still a number of predictors that we can
choose. How to choose an appropriate predictor depends on
how much information we can infer from the network. We
will discuss three approaches to designing the predictors un-
der the condition of H;(1) = 1.

Predictor A1: The first predictor we use is very simple. We
simply choose a fixed low pass filter Hrpr(z) as the predic-
tor. This is in fact the predictor used in the Hy scheme of
[17]. Note that although the H> scheme uses the same pre-
dictors as ours, it does not use the same control algorithm as
ours. In [17], it is assumed that V1 (n) < pu at all time n and
a linear version of Eq. (2), a1(n) = pp — Vi(n+ n1), is used
to calculate the available link capacity. This could result
in poor performance, when the non-linear control Eq. (2) is
applied, as shown in Figure 6 of this Section.

So, for predictor Al, we let H;(2) = Hrpr(z). It satisfies
the condition H;(1) = 1.

Predictor A2: In designing predictor A2, we assume that we
can obtain information about both the NRT traffic and the
aggregate RT traffic. Hence, here we assume that per-flow
information will be available. Again, for simplicity, we first
consider the case of one NRT traffic source. From the proof
of Theorem 1, we know that the upper bound on ¢(n) is:

am) Saom)+ swp DT AG) = nf D0 AQ)

0Snosn j_pnot1 j=no+1

Let I = n — no and define
Xoi 2 ) A@= ) AG).
j=n—I1+1 Jj=np+1
Since E{X,,;} = 0, we will consider Var{X, ;}.
Var{X,,} = Var{ 3 A(j)}

j=n—Ii+1
n

> Ca(il-j2)

jl=n—I+1j2=n—I+1

> Y Cait-j2),

jl=—I+1j2=—I+1

where Ca(j) is the auto-covariance function of A(n). Be-
cause of the stationarity of V(n), Var{X,,;} does not de-
pend on n. Next, we will minimize lim;_, o, Var{X, ;} un-
der the condition H;(1) = 1. The intuition for minimizing
lim;_, o Var{X,;} is that this asymptotic variance is related
to the congestion in the system (namely P{Q > z}) [6]. De-
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From Eq. (8), we can calculate Bél), B§1), e ,B](\,}i, and we
are done. In the case of multiple NRT sources, we can still
use Eq. (8) to calculate H;(z). What we need to do now is
to replace My with M;, n, with n;, and B(()l), .- ,BI(VH with
B{",--- ,BJ).

From Eq. (8), it is immediately apparent that the per-flow
information (i.e., round trip delay n;) is required. Hence, for
different NRT traffic loops with different round trip delays,
we need to have different predictors. This approach is the
most complex of the three approaches.

Predictor A3: In predictor A3, we still use Eq. (8) to cal-
culate the predictor parameters. But rather than try to
estimate a round trip delay for each NRT flow, we roughly
estimate a round trip delay no for all NRT flows. Once the
round trip delay n; is fixed to ng, Eq. (8) will be the same
for all NRT flows. Thus, as in Al, only one predictor is
needed for all NRT traffic flows (this also implies that only
one virtual queue needs to be maintained). Since A3 also
does explicit prediction based on the stochastic properties
of the RT traffic, rather than just use smoothing, we ex-
pect that A3 will perform better than Al. In fact, what we
will demonstrate through our numerical results is that the
performance of A3 (that does not require per-flow informa-
tion) approximates the performance of A2 (requires per-flow
information) quite well.

Under the condition H; = 1, there are still other approaches
to choose the predictors. For example, in the above ap-
proaches, we have only considered the stochastic properties
of the RT traffic up to two moments. Higher order moments
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Figure 2: Tail probability with MPEG video traces
as RT traffic

and distributions are not considered, primarily because of
the complexity this would entail in terms of measurements,
in practice. However, given more information on the RT
traffic, for example, an accurate model for the RT traffic,
one can always design a better predictor.

In the following simulations, we will use the control algo-
rithm defined in section 3.1 (single NRT source case) and
in section 4 (multiple NRT sources case). From Proposi-
tion 1, we know that once p is fixed, the output link uti-
lization will also be fixed. In this section, we will compare
the performance of the different predictors under the same
output link utilization. The predictor designed with mini-
mizing mean square method is represented as MMSE. The
MMSE predictor is designed as follows. First, a low pass
filter is applied to the high-priority RT traffic. Here, we
use a simple move average filter Hopr(2) = (1 4+ 27" +
272 +27%) as the low pass filter. Next, a standard minimiz-
ing mean square error linear predictor Hymse(z) with the
form En]\fizo B{Yz7"~"™ ig calculated based on the low fre-
quency part of the RT traffic. And the final MMSE predictor
is zin’Hl(Z) = HLPF(Z)HMMSE(Z). Note that HMMSE(Z)
will require explicit knowledge of the round trip delays (i.e.,
per-flow information).

In Al, the fixed low pass filter is chosen as Hrpr(z) =
1(1+27"+272+27?). In A2, A3, and MMSE predictors,
M; is set to 5. Our simulation results are shown in Figs. 2-4.
In these simulations, five NRT sources are simulated and the
round trip delays are varied from 5 to 9. In A3, the roughly
estimated round trip delay no is set to 5.

Fig. 2 shows the result of a simulation generated with actual
MPEG-video traces as the RT traffic input. The mean rate
of the aggregate RT traffic is 11.6Mbps. We set the output
link rate p = 15Mbps and the utilization p = 98%. From
this figure, we can see that Al, A2, and A3 predictors all
have comparable performance, but are all much better than
the traditional MMSE predictor.

In Fig. 3, V(n) is a generated Gaussian process which is
multi-time scale correlated with C,, (k) = 479.599 x 0.999'%! +
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Figure 3: Tail probability with Gaussian process as
RT traffic
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Figure 4: Tail probability with voice sources mod-
eled by exponential on-off processes as RT traffic

161.787 x 0.99'% + 498.033 x 0.9'% and V = 100. The link
capacity is 200, and the utilization is set to 98%. In this
case, Vimaz is no longer finite and our theorem will not hold.
However, even in this case, we can observe from Fig. 3, that
our predictors significantly outperform the MMSE predictor.
In this case, predictors A2 and A3 have similar performance
and both outperform Al, especially for small values of the
buffer level x.

In Fig. 4, 1000 multiplexed voice sources correspond to the
aggregate RT traffic. Each voice source is modeled by a
Markov modulated On-Off fluid process. The state transi-
tion matrix and rate vector are given as follows.

0.9833 0.01677 ]

State transition matrix : [ 0.025 0.975

0
Input rate vector : [ 0.85 ]

The mean rate of the aggregate RT traffic is 341.2. We set
the link capacity to 500 and the utilization to 99.8%. In
this figure, we compare the performance of three predictors
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Figure 6: Tail probabilities with different control
algorithms

Al, A2 and A3. Since all three predictors satisfy the con-
dition H;(1) = 1, in most cases, they perform quite well.
For example, in the above two figures, A2 and A3 are better
than A1, but not by a significant amount. However, in some
cases, the difference between the A1l predictor and the other
two predictors can be quite substantial, as is illustrated by
Fig 4. This is the case, here, because the A2 and A3 predic-
tors (unlike A1) try to predict the RT traffic at the queue
at explicit times in the future, which can be done accurately
when the RT traffic is generated from Markovian sources (as
is the case, here). We can also see from the above simula-
tions that although predictor A3 does not require per-flow
informations, the performance of A3 is almost identical to
A2 in most cases. Hence, compared to Al and A2, the pre-
dictor A3 will be a better choice in practical networks.

To explain our main results more clearly (Theorem 1), we
do the following simulation. In this simulation, we have only
one NRT sources with round trip delay 5. The RT source
and the link capacities are the same as in Fig. 3. But we
vary the utilization from 90% to 99% with a step of 1%.
The result is shown in Fig. 5. We can observe that, with
an A3 predictor, the tail probability remains low even when
the utilization is very high. But with the MMSE predictor,
when the utilization increases, the tail probability also in-
creases. In fact, for the MMSE predictor, H;(1) = 0.878.



When p = 94%, we have ’—’“-‘% = 0.88. So, when p < 94%,
the tail probabilities of the MMSE and A3 predictor are
quite close. However, when p > 94%, the difference is sub-
stantial. Hence, our analytical result in Theorem 1 provides
a guideline as to when the MMSE predictor will work well
and when it would not.

In Fig 6, we compare our control algorithm with the control
algorithm that uses Eq. (2). As we mentioned in Section 3,
when Vi (n) < pp for all n, our control algorithm and Eq. (2)
reduce to the same linear equation. But when this condition
is not true, we can see the difference between these two
control algorithms in Fig. 6. In this simulation, there is only
one NRT sources with round trip delay 5.The RT source and
the link capacity are still the same as in Fig. 3. To see the
difference when the condition Vi(n) < pp is violated, we
use the same A3 predictor in both control algorithms. In
the figure, our control algorithm is marked C1, and the one
that uses Eq. (2) is marked C2. The utilization is set to
98%. But note that when using control algorithm C2, given
p, the utilization is not fixed at p. In this simulation, we set
p = 97.5% for C2 to make sure that the measured utilization
is 98%, the same as Cl. From this figure, using the same
predictor, we can see that our control algorithm outperforms
the one that uses Eq. (2).

7. CONCLUSION

In this paper, we first present a predictive flow control model
and motivate its development. We then analyze this pre-
dictive flow control system allowing both the control and
the queueing process to be non-linear. Our analysis gives
us insights on what parameters to choose for designing the
predictor. Through simulations, we show that our predic-
tive flow control algorithm can significantly outperform the
MMSE based predictive flow control algorithm. In fact, even
our predictive flow control algorithms that do not require
per-flow information also do substantially better than the
MMSE based algorithm that uses per-flow information. This
tells us that simply minimizing the prediction error without
taking into account the queueing in the system, can yield
very poor performance.

Through our analysis, we are also able to determine when
other predictors in the literature such as the MMSE pre-
dictor work well. For example, if a prediction scheme has
H(1) = 1, it is generally expected to perform well. Our
main contribution has been in solving the individual-link
level problem and to provide a scheme to predict the avail-
able link capacity when high priority traffic is present. It
can be combined with other solutions for network-level prob-
lems to form a complete solution. Qur scheme has also been
shown to be flexible. For example, depending on the charac-
teristic of the RT traffic, a control algorithm using a virtual
queue or a simple linear control algorithm can be chosen.
Similarly, depending on how much information we can ob-
tain from the network, there are different approaches that
can be used to design the predictor in our framework. In
our numerical study, we compare the performance of three
such approaches that use differing level of information from
the network.
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APPENDIX
A. PROOF OF LEMMA 1
For ¢1(n), we have, ¢1(0) = 0 and
q1(n) = [q1(n = 1) + Vi(n) — p] ™. (9)
For g2(n), we have, g2(0) = 0 and
¢2(n) = [g2(n — 1) + Vi(n) + a(n) — pp]*,

where a(n) = a1(n—n1). Forn < ni,a(n) =ai(n—n1) =0,
Hence, for n < n1, g2(n) = q1(n). For n > ni, we will use
induction to prove g2(n) = g1(n). Assuming that g2(n—1) =
qi1(n — 1), for n > n1, we have,

a(n) = a1(n —m) = [pp — Vi(n) — a1 (n — 1)]".

Next, we will discuss two cases. When py — Vi(n) — q1(n —
1) > 0, we have g1 (n) = [g1(n — 1) + Vi(n) — pu]t = 0 and

@(n) = [g(n—1)+Vi(n)+a(n) —pu]*
= [g2(n —1) + Vi(n) + pp — Vi(n)
—q1(n—1) —pu]*

[2(n—1) —qi(n— 1)]* = 0.
When pp — Vi(n) — q1(n— 1) < 0, a(n) =0,

@) = [@pm—1)+Vi(n)—pp]*
= [p(n—-1)+ Vi (n) — pN]+
q1(n)

In both cases, we have
g2(n) = qi(n).

B. PROOF OF PROPOSITION 1

Throughout this proof, we use the definitions of ¢1(n) and
g2(n) defined in Lemma 1.

For any j > n1, we have,

o —Vi(j) =G — ]F
= [ —Vi(G) — (i - D]*
> pu—Vi(j) —@2(j — 1)

a(j) = a1(j —m)

So,
a(j) + Vi(j) + (G —1) —pu >0

@) = (@ -1)+a()+Vi@) —pul*
= @@ —1)+a() + Vi(j) —pp.

a(j) = @) —aG—1) +pp—Vi(j)
= @(j) —a(G—1) +pp—Vi(j).

Because a(j) = 0 for j < n;, we have,

da()= Y a()
j=1 j=n1+1

= ) —q(m)+@m-n)pp— Y Vi(j) (10)
j=ni+1

Next, we focus on ¢i1(n) — ¢1(n1). Let ¢1 and g2 be the
queueing systems with queue lengths ¢1(n) and g2(n), re-
spectively. Further, let u(n) be the amount of traffic that
leaves g1 at time n. We then have,

n

am)+ S V@ =am+ > uG)

j=ni1+1 j=ni1+l1

n

am)—am)= Y Vi)- Y u).

j=ni1+1 j=ni+l

Because V < pp, 1 will be a stable system. Hence,
Z?:n1+1 »(j) — lim E;'Z:nl+1 Vi(4)

lim = ‘7:
n—o0 n n— 00 n
ie.,
lim o) —qa(m) —0. (11)
n—o00 n
So, from Egs. (10) and (11),
. E;'Z:1 a(j) =
e A (12)

C. PROOFOF THEOREM 1

First, we will prove two lemmas that will be needed later to
prove Theorem 1.

For the next lemma, we define two queueing systems with
service rate pu . The first queueing system has input rate
Vi(n) and corresponding queue length ¢; (n), while the sec-

ond queueing system has input rate a(n) + Vi(n) (where
a(n) is determined by our flow control algorithm) and queue

length @ (n).

LEMMA 2. Under the above definitions, if ul > pp, we
have q3(n) = q1(n), for any n > 0.

Proof: From Lemma 1 and our algorithm, we know that
a(n) = [pu—Vi(n) —qi(n—1)]", n > ni and a(n) =0, n <
n1. Now, we define a’ (n) as, a (n) = [p’ Vi (n)—q;(n—l)]*',
n>mn and a (n) =0, n <mi. ¢1 and qll have the same
input traffic rate Vi (n). But the output link rates are py and
p' respectively. Because ,u' > pu, we have g1 (n) > qll (n) for
any n. So, we have a(n) < a (n) for any n > 0.

Now, consider a queueing system with u’ as the output link
rate and a (n) + Vi(n) as the input traffic rate. We denote
the queue length as q;(n). Comparing q'2 and q;,, we find
they have the same output link rate. But since a(n) < a (n)
for any n, the input traffic rate of q; will always be less than
or equal to the input traffic rate of qlg. Hence, we have
g>(n) < gs(n) for any n.

Similar to the proof of Lemma 1, we can also prove that
q1(n) = gz(n). Hence, ¢2(n) < ¢;(n). Also, obviously,
q2(n) > g1(n). Thus,

! I

g2(n) = g1(n).



It should be noted that the requirement that u’ > pp is
necessary for stability because our objective is to utilize the
link at a level pu.

~ LemMA 3. Define D(j) = Hi(1)(V(j) — V) — (Vi(j) —
V). If Vinae < o0, there exists a constant Ci1 such that
Z;”:no_H D(j)| < Ci for anyn >0 and 0 < np < n.

Proof: Let D(z) be the Z-transform of D(j). We have,
D(z) = Hi(1)V(2) = Vi(2) = (Hi(1) — 27" Hi(2))V(2)
Because z = 1 is a zero point of H1(1) — 27 "' H1(z), we can

write the above equation as:
D(z) = (1~ 2z ")H(2)V(2),
where H(z) is still causal and stable. Now, define Y (n) =
> o D(i). We have,
1
Y(2) = mD(Z) = H(2)V(2)

Because V (n) is bounded and H(z) is a stable linear system,

we know that Y (n) will also be bounded. So, >." D(j) =

j=no+1
Y (n) — Y(ng) is also bounded, i.e, there exists a constant
C1 such that for any n > 0 and 0 < no < n,

n

> D()

j=no+1

<G

[ |

Now, we can prove Theorem 1. First, we define A(y) =
V(j) —vi(4).

AG) = V) -Vil) = (V) - V)= (i) - V)

= D)+ 1 -H(1)(V()-V).
a(§) + V(i) — p=a(§) + Va(j) + A(j) — p

= a(j) +Vi(j) + DG) + (1 — Hi()(V(§) = V) —

= a(j) +Vi() — 4 + D) + (1 - H())(V () — p),
where p = Hy(1)p + (1 — Hy(1))V.

a) = sy n{j}?ﬂ (at) +VG) 1)}
< s {3 () +0i6)-#))
SPOST T j=ng+1
+0<sup< Xn: D(j)}
SMOST T j=ng+1
s-m) s {3 (V) -n))
SMOST T j=ng+1
< e+ s {37 DG+~ Hi(W)ao(n)

j=no+1

If Hi(1) > 2“-‘%, we will have p' > pu. From Lemma 2 we
know,

q2(n) = q1(n) = sup
0<ng<n

> (-}

j=no+1

Vi(j) = V) = Hi(1)(V(j) - V)
FH()VE) - V) +V -y
= —D()+H1)V({) —p)

Vi(j) — i

So,

q;(n) = qll(n)z sup { i (‘}l(j)_l‘,)}

0<ng<n j=no+1

Oss::lopsn { j:%o:_,_l _D(j)}
> (v -u)}

j=no+1

{ , i D(J')} + Hy(1)qo(n).

j=no+1

IA

+H;(1) sup
0<ng<n

— inf
0<ng<n

IA

() + (1 — Hi(1))qo(n)
> D)}
j=no+1

> b6}

j=no+1

OSnOSn{ . Xn: D(])}

— inf
j=no+1

+ sup
0<ng<n

IN

qo(n) + sup
0<ng<n

< go(n) +2C:

D. PROOF OF THEOREM 2

First, we let Q;(n) denote the queue length of a queue with
Na;(n—mn;)+V(n) as the input traffic rate and p as output
link rate. From the definition of a;(n) and Theorem 1, we
know, there exists a constant C; such that

Qi(n) < qo(n) + 2G5,

where go(n) is the queue length of a queue without NRT
traffic.

Because the input rate to g is a(n) + V(n), we have,

aw) = swp n{jijﬂ (a) + V() - )}
= s jiﬁﬂ (gaxa‘ —ne) + V() — 1) }
= o {5 §=Z+ (Vaitg — ) + V() - )}
< 2 (,om, jgﬁ (VastG —m) + V)~ ) })

N N

= %ZQ@‘(”) < %Z (qo(n) +20i) < qo(n) + 2C,

i=1 i=1

where C = maxlSiSN Cq,



