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Abstract

The concept ofunreliable failure detectorwas introduced by Chandra and Toueg as a mechanism that provides information about
process failures. This mechanism has been used to solve different problems in asynchronous systems, in particular the Consensus problem.
In this paper, we present a new class of unreliable failure detectors, which we callEventually Consistentand denote by♦C. This class
combines the failure detection capabilities of class♦S with the eventual leader election capability of class�. This capability allows all
correct processes to eventually choose the same correct process asleader. We study the relationship between♦C and other classes of
failure detectors. We also propose an efficient algorithm to transform♦C into ♦P in models of partial synchrony. Finally, to show the
power of this new class of failure detectors, we present a Consensus algorithm based on♦C. This algorithm successfully exploits both the
leader election and the failure detection capabilities of the failure detector, and performs better in number of rounds than all the previously
proposed algorithms for♦S.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Unreliable failure detectors

An unreliable failure detectoris a mechanism that pro-
vides (possibly incorrect) information about faulty pro-
cesses. As originally defined, when queried by a process, a
failure detector returns a set of processes believed to have
crashed (suspected processes). The sets returned to different
processes can be different, and can contain processes that
have not crashed. The concept of unreliable failure detector
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was introduced by Chandra and Toueg in[6], where they
proposed several classes of unreliable failure detectors. Af-
ter this seminal work, a number of authors have proposed
other classes of unreliable failure detectors[1,4,11,19].
These failure detectors have been used to solve several
fundamental problems in asynchronous distributed systems
(e.g., consensus[6]).

In [6], failure detectors were characterized in terms of
two properties:completenessandaccuracy. Completeness
characterizes the failure detector capability of suspecting
every incorrect process (processes that actually crash), while
accuracy characterizes the failure detector capability of not
suspecting correct processes. Two kinds of completeness and
four kinds of accuracy were defined in[6], which combined
yield eight classes of failure detectors.

In this paper, we focus on the following completeness and
accuracy properties, from those defined in[6]. We say that a
processp suspectsa processq if q is in the set of suspected
processes returned by the failure detector when queried
by p.
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Fig. 1. Four classes of failure detectors defined in terms of completeness and accuracy.

• Strong completeness: Eventually every process that
crashes is permanently suspected byeverycorrect pro-
cess.
• Weak completeness: Eventually every process that crashes

is permanently suspected bysomecorrect process.
• Eventual strong accuracy: There is a time after which

correct processes are not suspected by any correct process.
• Eventual weak accuracy: There is a time after which

some correct process is never suspected by any correct
process.
Combining in pairs these completeness and accuracy

properties, we obtain four different failure detector classes,
which are shown in Fig.1. In [6], Chandra and Toueg also
proposed an algorithm to implement a♦P failure detec-
tor in models of partial synchrony. Other more efficient
algorithms under similar models have been proposed to
implement failure detectors of all these classes[15], and
specifically of class♦S [16].

In [5] Chandra et al. defined another class of failure detec-
tors, denoted�, and used it to prove that♦W is the weakest
failure detector class for solving Consensus.1 When queried
by a processp, a failure detector of class� returns asingle
processq, currently considered to becorrect (we say that
p trusts q). A failure detector in� satisfies the following
property:

Property 1. There is a time after which every correct pro-
cess permanently trusts the same correct process.

This property of� failure detectors can be seen as an
eventual leader election capability,since it guarantees that,
eventually, all correct processes will agree on trusting the
same correct process (a leader). This capability does not give
knowledge of when the leader has been elected and allows
the existence of several trusted processes at the same time.
Note that, translating the concept of trusted processes to the
classical of suspected processes, implicitly� failure detec-
tors always suspect all processes except one. This implies
that, in general,� failure detectors provide less accuracy
(information about correct processes) than detectors from
the classes in Fig.1.

There are several algorithms implementing� failure de-
tectors in the literature. Chandra et al.[5] and Chu[7] show

1 To prove their result Chandra et al. show first that� is at least as
strong as♦W, and then that any failure detectorD that can be used to
solve Consensus is at least as strong as� (and hence at least as strong
as♦W).

how to transform a♦W failure detector into an� failure
detector in an asynchronous system. The algorithm to imple-
ment♦S proposed in[16] also implicitly implements an�
failure detector. More recently, Aguilera et al.[2] have pro-
posed several algorithms for implementing� that arestable,
i.e., once a leader is elected, it remains the leader for as long
as it does not crash and its links behave well. Finally, Aguil-
era et al.[3] have presented systems with weak requirements
in which� failure detectors can be implemented, while♦P
failure detectors cannot.

1.2. Consensus algorithms

The Consensus problem[21] is a fundamental problem in
distributed systems. It was shown by Fischer et al.[9] that it
is impossible to solve Consensus deterministically in a pure
asynchronous system. Chandra and Toueg showed in[6] that
their unreliable failure detectors allow to solve Consensus in
asynchronous systems. Since then, several distributed fault-
tolerant algorithms to solve Consensus based on unreliable
failure detectors have been proposed[12,18,22].

Most Consensus algorithms based on failure detectors
with eventual accuracy require at least a failure detector of
class♦S and proceed in rounds. In each round a differ-
ent process acts as coordinator, following a prearranged se-
quence. This approach is known as therotating coordinator
paradigm. If the coordinator of a round crashes or is sus-
pected by several processes, the round may fail and the con-
sensus is not reached in that round. With a failure detector
of class♦S it is guaranteed the existence of a correct pro-
cess, namelyleader, that is eventually not suspected by any
correct process. If after no process suspects it,leadereven-
tually becomes the coordinator, the consensus is guaranteed
to be reached.

The inconvenience of the♦S-Consensus algorithms based
on the rotating coordinator paradigm is that, ifleaderdoes
not become coordinator untili rounds after no process sus-
pects it, the processes may have to wait thesei rounds to
reach consensus (wherei could be�(n), with n being the
number of processes). It would be nice to have Consensus
algorithms that quickly chooseleader as the coordinator,
hence reducing the number of rounds required to reach con-
sensus.

There have been other approaches to solve the Consensus
problem in non-synchronous systems. In[8], Dwork et al. as-
sumed partially synchronous models and proposed Consen-
sus algorithms for these models. These algorithms also use
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the rotating coordinator paradigm and can present the above
problem.

To our knowledge, the first Consensus algorithm that uses
a kind of eventual leader election algorithm to choose the
coordinator of a round (instead of using a rotating coordina-
tor approach) is the Paxos Consensus algorithm[13]. In this
algorithm a system model different from the above is used,
in which periods of synchrony and asynchrony alternate.
The Paxos Consensus algorithm proceeds in asynchronous
rounds, with a coordinator, given by the leader election al-
gorithm, for each round.

Recently, Mostefaoui and Raynal[20] have proposed a
Consensus algorithm, based on an� failure detector, that
does not use the rotating coordinator paradigm. Hence, their
algorithm does not present the above problem. However,
instead it has to deal with the lack of accuracy of the�
failure detectors.

1.3. Our contributions

In this paper, we define a new class of unreliable failure
detectors that combines the completeness and accuracy of
the♦S failure detectors and the eventual leader election ca-
pability of � failure detectors. We call this classEventually
Consistentand denote it by♦C. The main property of the
failure detectors in this class is that they provide simulta-
neously the classical failure detection functionality (i.e., a
set of suspected processes) of♦S failure detectors and the
eventual leader election capability (i.e., a common trusted
process) of� failure detectors.

Considering the Consensus problem, the eventual leader
election functionality of the♦C failure detectors allows ev-
ery correct process to eventually agree on a coordinator that
can be used to reach consensus. Hence, with these failure
detectors we do not need to rely on the rotating coordinator
paradigm for eventually choosing an appropriate coordina-
tor. Additionally, the consensus algorithm may take advan-
tage of the accuracy and completeness properties of the♦C
failure detectors to speed up the agreement. We present a
Consensus algorithm that uses these properties.

We study the relationship between♦C and the classes of
failure detectors presented in Fig.1. We first observe that
any implementation of♦P can be trivially used to imple-
ment♦C. Similarly, we observe that♦C can be implemented
on top of any implementation of♦S (and hence of♦W)
by means of an asynchronous distributed algorithm[5,7].
We then show that♦C can be implemented as efficiently
as♦S in models of partial synchrony[6,8]. To show that,
we observe that the♦S failure detectors implemented by
the efficient algorithms presented in[15,16] can be used to
implement♦C at no additional cost in terms of message ex-
changes.

Then, we propose an efficient algorithm to transform any
failure detectorD of class♦C into a failure detector of class
♦P in a model of partial synchrony. The transformation al-

gorithm only requires the input links to the leader chosen
by D to be partially synchronous (eventually there is an un-
known bound on the delay suffered by messages) and the
output links to be fair (messages can be lost, but if infi-
nite messages are sent, then infinite messages are received).
Eventually only these links carry messages. Recently, Aguil-
era et al.[2] have proposed an algorithm following a sim-
ilar approach for implementing♦P based on an� failure
detector. This algorithm assumes a weak model of partial
synchrony, in which onlyn bidirectional links are required
to be eventually timely. In their algorithm eventually only
these bidirectional links carry messages.

Finally, to show the power of this class of failure detectors,
we present a Consensus algorithm based on♦C. This algo-
rithm proceeds in asynchronous rounds and each round is
divided in several phases, like most previous♦S-Consensus
algorithms[6,12,18,22]. The main difference of our algo-
rithm is the way the coordinator is selected. We do not use
the rotating coordinator paradigm as they do, but the leader
election capability of♦C. This algorithm reaches consensus
in at most one round after the leader election property of
♦C is satisfied, while we show that any rotating coordinator
♦S-Consensus algorithm requiresn − 1 additional rounds
after stabilization in the worst case.

In this Consensus algorithm we introduce an additional
improvement that makes use of the accuracy and complete-
ness properties of♦C. In previous algorithms (see for in-
stance the♦S-Consensus algorithm in[6]), the round coor-
dinator proposes a value and waits for replies (accepting or
not that value) from a majority of processes (the existence
of a majority of correct processes is a requirement). If any
of these replies is negative, the decision is not made. One
single negative reply blocks the decision. In our algorithm,
the coordinator waits for replies as long as a decision can
still be made in the round. Then, if a majority of replies
are positive, the decision is made, even if there are negative
replies.

Compared with the Paxos Consensus algorithm[13] men-
tioned above, our algorithm works in an asynchronous sys-
tem extended with a failure detector, while Paxos assumes a
system model in which there are periods of synchrony. Apart
from that, the leader election algorithm proposed in[13] is
basically a failure detection algorithm. However, it strongly
relies on the existence of long enough periods of synchrony
in the system, as the consensus algorithm itself does. Be-
sides that, both algorithms use similar approaches.

Recently, Mostefaoui and Raynal[20] have proposed a
Consensus algorithm, based on an� failure detector, that
does not use the rotating coordinator paradigm. This work is
inspired on previous versions of the present paper[14,17].
This algorithm has to deal with the lack of accuracy of the�
detector. Since the detector only gives information about one
process, in order to make a decision, the coordinator does not
have any information about which processes may reply. To
prevent one single negative reply from blocking the decision
as we mentioned above, the coordinator waits forn − f
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replies, wheref is an upper bound on the number of processes
that can fail. The numbern − f can be much smaller than
the number of replies that could in fact be received, and a
small number of negative replies can block the decision. In
fact, if all it is known is that there is a majority of correct
processes (i.e.,f < n/2), the algorithm only waits for a
majority of replies as above, and one negative reply blocks
the decision.

The rest of the paper is organized as follows. In Section2,
we establish the model of the system we use in the rest of
the paper and define the new class of failure detectors (♦C).
In Section3, we study its relationship with other classes
of failure detectors. In Section4, we propose an efficient
algorithm to transform♦C into ♦P in models of partial
synchrony. In Section5, we present an efficient Consensus
algorithm based on♦C. Finally, Section6 concludes the
paper.

2. Definitions

2.1. System model

We consider a distributed system consisting of a finite to-
tally ordered set� of n processes,� = {p1, p2, . . . , pn}.
Processes communicate only by sending and receiving mes-
sages. Every pair of processes is assumed to be connected by
two reliable communication links (in opposite directions).
Unless stated otherwise, the system isasynchronous, i.e.,
there are no timing assumptions about neither the relative
speeds of the processes nor the delay of messages. Processes
can fail bycrashing, that is, by prematurely halting. Crashes
are permanent, i.e., crashed processes do not recover.

A distributed failure detectorcan be viewed as a set ofn
failure detection modules, each one attached to a different
process in the system. These modules cooperate to satisfy the
required properties of the failure detector. A process requests
information about failures to its attached failure detector
module by requesting a set of suspected processes (e.g., to
a ♦S failure detector) or by requesting the identity of a
trusted process (e.g., to an� failure detector). We will denote
by D.suspectedp the set of suspected processes returned
by a failure detectorD to a given processp. Similarly, we
will denote byD.trustedp the trusted process returned by
a failure detectorD to a processp. These suspected and
trusted processes can differ from one process to another at
a given time. We assume that a process interacts only with
its local failure detection module.

2.2. Eventually consistent failure detectors

We introduce now the class of eventually consistent fail-
ure detectors♦C. The main characteristic of these failure
detectors is that they combine the characteristics of♦S and
� failure detectors. Then, a failure detectorD of class♦C
attends two types of requests from the processes in the sys-

tem, requests for sets of suspected processes and requests
for trusted processes. The sets of suspected processes sat-
isfy the conditions of a♦S failure detector and the trusted
processes satisfy the conditions of an� failure detector.

Definition 1. A failure detector belongs to theEventually
Consistentclass of failure detectors, denoted♦C, if it pro-
vides to every processp with a set of suspected processes
D.suspectedp and one trusted processD.trustedp, such that,
• the setsD.suspectedp satisfy strong completeness and

eventual weak accuracy (like♦S),
• the trusted processesD.trustedp satisfy Property1 (like

�), and
• there is a time after which the trusted processes are not

suspected, i.e.,D.trustedp /∈ D.suspectedp.

Observe that the completeness and accuracy properties of
the setsD.suspectedp are the same as those of♦S. Hence a
failure detector of class♦C can be seen as a♦S failure de-
tector enhanced with an eventual leader election mechanism
(provided by the trusted processesD.trustedp). This mech-
anism guarantees that after some point in time all correct
processes converge to a leader process. (However, it does not
provide any knowledge of when the leader has been elected,
and allows the existence of several leaders at the same time.)
This property can be used by algorithms in which the safety
properties are not affected by the simultaneous existence of
several leaders, and that guarantee termination if a unique
leader exists. As it is well known, usually it is not neces-
sary for the failure detector to reach permanent stability to
be useful. Instead, many algorithms can successfully com-
plete if the failure detector provides a unique leader for long
enough periods of time. Furthermore, these failure detectors
can be very useful to algorithms that have early termination
when there is a unique leader.

Finally, note that this definition of♦C does not impose
that all processes but one must be suspected, as the definition
of � alone implicitly does. This means that♦C can have a
higher degree of accuracy than�.

3. Relation between♦C and other failure detector
classes

In this section we will briefly study the relationship be-
tween the class♦C and other classes of failure detectors.
First, observe that a♦C failure detectorD can be trivially
built on top of any� failure detectorD�. D simply returns
to a processp as the trusted processD.trustedp the process
D�.trustedp returned byD�, and as the set of suspected
processesD.suspectedp all the processes except this trusted
process. This transformation is very simple and efficient (no
extra messages are needed). However, it offers very poor
accuracy.

Observe also that any♦P failure detectorD♦P can be
used to implement a♦C failure detectorD. With D♦P ,
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eventually the set of processes suspected by every correct
process becomes the same, containing only all the processes
that actually crash. ThenD returns to a processpas the set of
suspected processesD.suspectedp the setD♦P .suspectedp
returned byD♦P , and as the trusted processD.trustedp the
first (with respect to the orderp1, . . . , pn assumed in the
system model) process not in that set.

Similarly, a♦C failure detectorD can be implemented on
top of any failure detector in classes♦W or♦S as follows.
First, we have that an� failure detectorD� can be obtained
from any♦W (and hence♦S) failure detector[5,7]. Then,
D returns to a processp as the trusted processD.trustedp
the processD�.trustedp returned byD�. If the original
detector is a♦W failure detector, it is transformed into a♦S
failure detector[6]. As a consequence we have a♦S failure
detectorD♦S , and D returns to a processp as the set of
suspected processesD.suspectedp the setD♦S .suspectedp
returned by that detector.

However, the transformation protocols from♦W to � of
Chandra et al.[5] and Chu[7] are expensive in the number of
messages exchanged, since they require that every process
send messages periodically to all processes in the system.
Fortunately, there are♦S failure detectors that can be used to
build a♦C failure detector at no additional cost. An example
is a♦S failure detector that guarantees that the first correct
process (in some known order) is eventually not suspected
by any correct process. Then, using a similar technique as
the one above for♦P failure detectors, we can obtain a
♦C failure detector without extra cost. One algorithm that
satisfies these requirements is the♦S ring-based algorithm
proposed in[15] for a partially synchronous model. With
this algorithm, the set of non-suspected processes can be
different in different processes, but the algorithm guarantees
that eventually the first (starting from a special processinitial
candidate to leaderand following the order defined by the
ring) non-suspected process is the same for every correct
process, and that it is correct.

4. Transforming ♦C into ♦P in models of partial
synchrony

In this section, we present an efficient algorithm that trans-
forms any failure detectorD of class♦C into a failure de-
tectorD♦P of class♦P. The approach followed is to use
the eventually agreed trusted processpleader provided byD
to build and propagate a list of suspected processes that sat-
isfies the properties of♦P.

The transformation algorithm requires that then−1 input
links of pleader are reliable and follow a model of partial
synchrony like those considered in[6,8]. In this model it is
assumed that after some finite global stabilization timeGST,
every message sent is received and processed in at most a
bounded but unknown time�. The algorithm also requires
then−1 output links ofpleaderto be fair, which means that
they can lose messages, but if an infinite number of messages

is sent, then an infinite number of the messages sent (and
only those) is received (if the destination is correct). There
are no restrictions on the rest of links.

Fig. 2 presents the algorithm in detail, which works as
follows. Eachleaderprocess (i.e., each processp that con-
siders itself as leader becauseD.trustedp = p) builds a lo-
cal list of suspected processes by using time-outs (Tasks 3
and 4), and sends its list periodically to the rest of processes
(Task 1). Concurrently, each process periodically sends an
I-AM-ALIVE message to its trusted process (Task 2). Finally,
when a process receives a list of suspected processes from
its trusted process, it adopts this list as its own list (Task 5).
Note that the algorithm only uses detectorD to query for its
trusted process. Hence, this algorithm could also be used to
transform an� failure detector into a♦P failure detector.

Theorem 1. Given a failure detectorD of class♦C and a
partially synchronous system as described, the algorithm of
Fig. 2 implements a failure detector of class♦P.

Proof. The proof relies on the property satisfied by
D.trustedp: there is a timet after which all the correct pro-
cesses permanentlytrust the same correct processpleader.
Let us assume the system has become stable, i.e., we have
reached a timet ′ > max(t, GST ). Then,
(1) by Task 3, eventually every process that crashes is per-

manently suspected bypleader, and
(2) by Tasks 2, 3, 4, and 5 there is a time after which

correct processes are not suspected bypleader. This can
be easily shown. First note thatpleader never suspects
itself (in Tasks 3 and 5). Then, for the rest of processes
we use contradiction. Assume the period of Task 2 in
all processes is�. Then, oncepleadersuspects a correct
processq, it receives an I-AM-ALIVE message fromq in
at most 2�+� time, by Task 2 and the fact that the link
from q to pleader is partially synchronous. From Task
4, pleader stops suspectingq and increases the time-out
interval�p(q). Let us suppose by way of contradiction
thatq is suspected bypleaderan infinite number of times.
After a bounded number of times the time-out�p(q)

will be larger than 2�+� andqwill never be suspected
again, a contradiction.

Hence, by (1) and (2) there is a timet ′′ after which every
process that crashes is permanently suspected bypleader, and
no correct process is suspected bypleader after t ′′. Then, by
Tasks 1 and 5, and the fairness of the output links ofpleader,
eventually every correct process will permanently agree with
pleader in the set of suspected processes. This gives us the
two properties required by♦P: eventually every process that
crashes is permanently suspected by every correct process
(strong completeness), and there is a time after which correct
processes are not suspected by any correct process (eventual
strong accuracy). �

If we assume that most of the time the♦C failure
detectorD provides a unique leader, then the cost of this



366 M. Larrea et al. / J. Parallel Distrib. Comput. 65 (2005) 361–373

Fig. 2. Transforming the♦C failure detectorD into a♦P failure detector in a model of partial synchrony.

transformation algorithm in terms of the number of mes-
sages periodically sent is 2(n− 1), since the leader process
sends a message to the rest of processes, and they send
a message to the leader process. Thus, the algorithm has
a linear cost. Furthermore, this cost can be reduced in
practice. If we assume that the algorithm implementingD
requires the leader process to periodically send a message
to the rest of processes (this is the case if we buildD on
top of the♦S algorithm proposed in[16], for instance),
then the list of suspected processes can be piggy-backed
on this message, reducing the number of messages of the
transformation algorithm to the half. This may require to
revise our assumptions on the synchrony of the links.

Following the previous strategy, we get an extremely ef-
ficient implementation of♦P that has a cost of 2(n − 1)

messages periodically sent (n− 1 of the implementation of
the♦C failure detectorD based on[16], andn − 1 of the
transformation algorithm of Fig.2). This compares favor-
ably to the implementation of♦P proposed by Chandra and
Toueg[6], which has a cost ofn2. Also, this is slightly bet-
ter than the cost (2n messages) of the ring algorithm im-
plementing♦P proposed by Larrea et al. in[15], and this
approach has the additional benefit of not suffering of the
high latency in crash detection of this algorithm (due to
the propagation of the list of suspected processes over the
ring).

5. Solving consensus using♦C

5.1. The consensus problem

In the Consensus problem, each process initially proposes
a value, and all correct processes must reach an irrevocable
decision on some common value that is equal to one of
the proposed values. Formally, the Consensus problem is
defined in terms of two primitives,proposeanddecide. When
a process executespropose(v), we say that itproposes v.
Similarly, when a process executesdecide(v), we say that it
decides v. TheConsensusproblem must satisfy the following
properties.
• Termination: Every correct process eventually decides

some value.
• Uniform integrity: Every process decides at most once.
• Agreement: No two correct processes decide differently.
• Validity: If a process decidesv, thenv was proposed by

some process.
Termination defines the liveness property associated with

the Consensus problem, while Uniform integrity, Agreement
and Validity define its safety properties.

The Agreement property allows faulty processes to decide
differently from correct processes. This fact can be some-
times undesirable as it does not prevent an incorrect pro-
cess to propagate a different decision throughout the system
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before crashing. In theUniform Consensusproblem, agree-
ment is defined by the following property, which enforces
the same decision on any process that decides:
• Uniform agreement: No two processes (correct or faulty)

decide differently.
It has been shown in[10] that any algorithm that solves

Consensus using a failure detector of class♦S, also solves
Uniform Consensus. Since every failure detector of class♦C
includes a failure detector of class♦S, we in fact consider
the Uniform Consensus problem here.

5.2. The algorithm

In this section, we present an algorithm that solves Uni-
form Consensus using an eventually consistent failure de-
tector. We assume the system model defined in Section2.
In addition, we assume that the system is augmented with
a failure detectorD of class♦C, to which processes have
access. Finally, we assume that a majority of processes are
correct, i.e., do not crash. Thus, if we denote byf the num-
ber of processes that can fail, we assumef < n/2. This
is a necessary requirement to solve Consensus using♦C in
asynchronous systems. This can be derived from the rela-
tionship between♦P and♦C, and Theorem 6.3.1 in[6],
which shows that to solve Consensus even with♦P there
must be a majority of correct processes. We also assume that
the value off is not known.

Our algorithm is an adaptation of the♦S-Consensus al-
gorithm of Chandra and Toueg (where the communication
pattern is centralized: all the messages of a round are ei-
ther sent by the coordinator or received by the coordina-
tor). Figs. 3 and 4 present the algorithm in detail. It is
made of a main task (Fig.3) and 3 additional tasks (Fig.4).
From these 3 additional tasks, the two first tasks are nec-
essary to ensure that a coordinator will never block during
the computation, while the third task is used to take the
decision.

Each process runs an instance of this algorithm, which
proceeds in asynchronous rounds. As the♦S-Consensus
algorithm of Chandra and Toueg[6], it goes through three
asynchronous epochs, each of which may span several
rounds. In the first epoch, several decision values are pos-
sible. In the second epoch, a value getslocked: no other
decision value is possible. In the third epoch, processes
decide the locked value.

Each round of the main task is divided into five asyn-
chronous phases. In Phase 0, every process determines its
coordinator for the round. A processp becomes its own
coordinator for the round if it is the process returned by
D.trustedp. A coordinator announces itself by sending aco-
ordinator message to the rest of processes. A process be-
comes a non-coordinator, i.e., a participant, if it receives in
Phase 0 a message from a coordinator, which becomes its

coordinator for the round.2 In Phase 1, every process sends
its current estimate of the decision value time-stamped with
the round number in which it adopted this estimate, to its
coordinator. Also after Phase 0 and concurrently with the
main algorithm, each process sends anull estimate to any
other coordinator of the current or previous rounds (first task
of Fig. 4).

In Phase 2, each coordinator tries to gather a majority
of estimates. If it succeeds, then it selects an estimate with
the largest time-stamp and sends it to all the processes as a
proposition. On the other hand, if it does not receive a ma-
jority of estimates then it sends anull proposition to all pro-
cesses. In Phase 3, each process waits for a proposition from
its coordinator. However, it also stops waiting if it suspects
its coordinator or if it receives a non-null proposition from
some other coordinator. If the process receives a non-null
proposition from some coordinator (including its own), then
it adopts it and sends anack message to this coordinator.
If the process receives anull proposition from its coordina-
tor, it stops waiting and passes to the next phase. Finally,
if the process suspects its coordinator, it sends anackmes-
sage to it. After this phase and concurrently with the main
algorithm, each process sends anackmessage to any late
coordinator from which it receives a non-null proposition
for the current or previous rounds (second task of Fig.4).
Finally, in Phase 4 the coordinator that succeeded in Phase
2 and sent a non-null proposition (if any, and as we will see
at most one) tries to gather a majority ofackmessages. If it
succeeds, then it knows that a majority of processes adopted
its proposition as their new estimate. Consequently, this co-
ordinator R-broadcasts a request to decide its proposition.
At any time, if a process R-delivers such a request, it decides
accordingly.

Note that in Phases 2 and 4 the coordinator queries the
failure detector and tries to get a majority of “useful” or
“positive” replies (i.e.,estimatemessages in Phase 2 and
ack messages in Phase 4), without blocking thanks to the
strong completeness of the setsD.suspectedp. More pre-
cisely, in Phase 2 instead of waiting for just a majority of
replies, each coordinator also waits for a reply from every
process it does not suspect. This way additional valid esti-
mates can be received, allowing maybe the coordinator to
succeed in the current round. A similar strategy is used in
Phase 4 when waiting forack/nack messages: once a ma-
jority of messages are received, the coordinator waits until
every process that is not suspected replies. This way, even
if nackmessages are received among the first majority, de-
cision can still be taken if enough additionalackmessages
are received.

If we would like to follow a similar strategy using an�
failure detector instead of a♦C failure detector, after the
reception of a majority of messages the coordinator would
never wait for more messages, because in order to satisfy

2 If a processp waiting in Phase 0 of a roundr receives first a
coordinatormessage for a roundr ′ > r, thenp advances to roundr ′.
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Fig. 3. Solving Consensus using anyD ∈ ♦C.
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Fig. 4. Separate tasks for replying to late coordinators and taking the decision.

strong completeness with the� detector all processes but
the leader must be suspected.

5.3. Correctness proof of the consensus algorithm

In this section, we prove the correctness of the algorithm
presented. Note that some parts of the proof rely on the
properties satisfied by a communication primitive calledRe-
liable Broadcast. We refer the reader to[6] for details about
this primitive.

Lemma 1. In any round r, at most one coordinator c will
send a non-null estimate, i.e., a message of type(c, r,
estimatec), to all processes at the end of Phase2.

Proof. From the algorithm, it is clear that each process sends
its estimate to only one coordinator in Phase 1. A coordinator
must gather a majority of such estimates in order to send a
non-null estimate at the end of Phase 2. Thus, at most one
coordinator can gather such a majority and send a non-null
estimate. �

From the above lemma and the algorithm, it is easy
to see that in any roundr at most one coordinatorc
will R-broadcast a (c, r, estimatec, decide) message in
Phase 4.3

Lemma 2. No two processes decide differently.

Proof. If no process ever decides, the lemma is trivially true.
If any process decides, it must have previously R-delivered
a message of type (–, –, –,decide). By the uniform integrity
property of Reliable Broadcast and the algorithm, a coordi-
nator previously R-broadcast this message. This coordinator
must have received at least�(n+ 1)/2� messages of type
(–, –, ack) in Phase 4. Letr be the smallest round number
in which at least�(n+ 1)/2� messages of type (–, –,ack)
are sent to a coordinatorc in Phase 3. Letestimatec denote

3 This is achieved through the use of thedecidablep boolean variable.

c’s estimate at the end of Phase 2 of roundr. We claim that
for all roundsr ′�r, if a coordinatorc′ sendsestimatec′ in
Phase 2 of roundr ′, thenestimatec′ = estimatec.

The proof is by induction on the round number. From
Lemma1 and the fact thatc sendsestimatec at the end of
Phase 2 of roundr, any other coordinator of roundr sends
null_estimateat the end of Phase 2 of roundr. Thus, the
claim holds forr ′ = r. Now assume that the claim holds
for all r ′, r �r ′ < k. We will show that the claim holds for
r ′ = k, that is, if ck is a coordinator of roundk that sends
estimateck

in Phase 2, thenestimateck
= estimatec.

From the algorithm it is clear that ifck sendsestimateck

in Phase 2 of roundk then it must have received estimates
from at least�(n+ 1)/2� processes. Thus, there is at least
one processp such that (1)p sent a (p, r, ack) message to
c in Phase 3 of roundr, and (2) (p, k, estimatep, tsp) is in
msgsck

[k] in Phase 2 of roundk. Sincep sent (p, r, ack)
to c in Phase 3 of roundr, tsp = r at the end of Phase 3
of round r. Sincetsp is non-decreasing,tsp �r in Phase 1
of round k. Thus, in Phase 2 of roundk, (p, k, estimatep,
tsp) is in msgsck

[k] with tsp �r. It is easy to see that there
is no message (q, k, estimateq , tsq ) in msgsck

[k] for which
tsq �k. Let t be the largesttsq such that (q, k, estimateq ,
tsq ) is in msgsck

[k]. Thus,r � t < k.
In Phase 2 of roundk, ck executesestimateck

← estimateq
where (q, k, estimateq , t) is in msgsck

[k] (remember that
we assume thatck sendsestimateck

in Phase 2 of round
k). From Fig.3, it is clear thatq adoptedestimateq as its
estimate in Phase 3 of roundt. Thus, a coordinator of round
t sentestimateq to q in Phase 2 of roundt. Sincer � t < k,
by the induction hypothesis,estimateq = estimatec. Thus,
ck setsestimateck

← estimatec in Phase 2 of roundk. This
concludes the proof of the claim.

We now show that if a process decides a value, then it
decidesestimatec. Suppose that some processp R-delivers
(q, rq , estimateq , decide), and thus decidesestimateq . By
the uniform integrity property of Reliable Broadcast and the
algorithm, processqmust have R-broadcast (q, rq ,estimateq ,
decide) in Phase 4 of roundrq . From Fig.3, q must have
received�(n+ 1)/2� messages of type (–,rq , ack) in Phase
4 of roundrq . By the definition ofr, r �rq . From the above
claim,estimateq = estimatec. �
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Lemma 3. Every correct process eventually decides some
value.

Proof. There are two possible cases:

(1) Some correct process decides. It must have R-delivered
some message of type (–, –, –,decide). By the agreement
property of Reliable Broadcast, all correct processes
eventually R-deliver this message and decide.

(2) No correct process decides. We claim that no correct
process remains blocked forever at one of thewait state-
ments. The proof is by contradiction. Letr be the small-
est round number in which some correct process blocks
forever at one of thewait statements. Therefore, ev-
ery correct process reaches Phase 0 of roundr. From
the eventual leader election property ofD, eventually
some correct processc will become coordinator (i.e.,
c = D.trustedp) in some roundr ′�r. Hence,c will
send a message of type (c, r ′, coordinator) to the rest
of processes. Thus, all correct processes reach the end
of Phase 0 of roundr, either by becoming coordina-
tor, or by receiving a message of type (–,r ′, coordi-
nator) from a coordinator of roundr ′�r. If r ′ > r

this directly translates the process to roundr ′. Thus, no
correct process blocks forever at thewait statement of
Phase 0.

It is also clear from the algorithm that all correct processes
reach the end of Phase 1 of roundr: they all send a message
of type (–, r, estimate, –) to their current coordinator. Let
us consider now Phases 2 and 3. For each coordinatorc of
roundr, there are two cases to consider:
(a) From the first task of Fig.4 and since a majority

of the processes are correct, eventuallyc receives at
least�(n+ 1)/2� messages, either of type (–,r, esti-
mate, –) or (–,r, null_estimate, 0). Also, since the sets
D.suspectedp satisfy strong completeness, for every
processq, c will eventually receive a message fromq
or will suspectq. Finally, according to the messages
receivedc replies by sending (c, r, estimatec) or (c, r,
null_estimate). Thus,c does not block forever at the
wait statement in Phase 2.

(b) c crashes.
In the first case, every correct processp eventually re-

ceives (c, r, estimatec) from a coordinatorc (which can be
its coordinator) or (cp, r, null_estimate) from its coordina-
tor cp. In the second case, since the setsD.suspectedp sat-
isfy strong completeness, for every correct processp there
is a time after which its coordinatorcp is permanently sus-
pected byp, that is,cp ∈ D.suspectedp. Thus in either case,
no correct process blocks at thewait statement in Phase
3. From Phase 3 of the algorithm and the second task of
Fig. 4, it must be clear that every correct process that re-
ceives a non-null estimate from a coordinatorc, replies to
it with a message of type (–,r, ack) or (–, r, nack). Since
there are at least�(n+ 1)/2� correct processes, a coordina-
tor that sent a non-null estimate at the end of Phase 2 will

eventually receive at least�(n+ 1)/2� such messages. Also,
since the setsD.suspectedp satisfy strong completeness, for
every processq, that coordinator will eventually receive a
message fromq or will suspectq. Note that only the coor-
dinators that sent a non-null estimate at the end of Phase 2
execute thewait statement of Phase 4. Thus, no coordinator
can block at thewait statement of Phase 4. This shows that
all correct processes complete roundr—a contradiction that
completes the proof of our claim.

Since the valuesD.trustedp satisfy the eventual leader
election property, there is a correct processq and a time
t such that every correct process permanentlytrusts qaf-
ter t, i.e. for every correct processp: D.trustedp = q after
t. Let t ′ > t be a time such that all faulty processes have
crashed. From the above claim, any round that started be-
fore t ′ will eventually end. Letr be a round that starts after
that happens. Clearly,q is the only possible coordinator of
round r. In Phase 0 of roundr, q sends (q, r, coordinator)
to all correct processes except itself. Thus, in Phase 0 every
correct process exceptq receives (q, r, coordinator) from q
and setsq as its coordinator andr as its current round. In
Phase 1, all correct processes send their estimates toq. In
Phase 2,q receives�(n+ 1)/2� such estimates, and sends
(q, r, estimateq ) to all processes. In Phase 3, sinceq is not
suspected by any correct process after timet ′, every cor-
rect process waits forq’s estimate, eventually receives it,
and replies with anack to q. Thus, in Phase 4,q receives
�(n+ 1)/2�messages of type (–,r, ack) (and no message of
type (–,r, nack)), and R-broadcasts (q, r, estimateq , decide).
By the validity and agreement properties of Reliable Broad-
cast, eventually all correct processes R-deliverq’s message
anddecide—a contradiction. Thus, case (2) is impossible,
and this concludes the proof of the lemma.�

Theorem 2. The algorithm of Figs.3 and4 solves Uniform
Consensus using a♦C failure detectorD in asynchronous
systems withf < n/2.

Proof. Lemmas2 and3 show that the algorithm of Figs.3
and4 satisfies the uniform agreement and termination prop-
erties of Consensus, respectively. From the algorithm, it is
clear that no process decides more than once, and hence the
uniform integrity property holds. From the algorithm it is
also clear that all theestimatesthat a coordinator receives in
Phase 2 are proposed values. Therefore, the decision value
that a coordinator selects from theseestimatesmust be a
value proposed by some process. Thus, uniform validity of
Consensus is also satisfied.�

5.4. Performance analysis

In this section, we analyze the performance of the pro-
posed♦C-based Consensus protocol, and compare it with
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the♦S-based protocol proposed by Chandra and Toueg[6],
and the�-based protocol proposed by Mostefaoui and Ray-
nal [20]. First, we compare them in terms of the num-
ber of communication steps per round, and the number of
messages exchanged per round, showing that there is an
inherent trade-off between these two measures. We show
then that our♦C-Consensus protocol performs better in
the number of rounds required to solve Consensus than
the♦S-based protocols, due to the fact that the later rely
on the rotating coordinator paradigm while ours do not.
The protocol of Mostefaoui and Raynal exhibits also this
advantage.

If we look to the number of communication steps (phases)
per round, the protocol proposed in this paper has five phases
per round. The protocol of Chandra and Toueg has four
phases per round, and the protocol of Mostefaoui and Raynal
has three phases per round.

Concerning the number of messages exchanged in each
round, and considering the “normal” case in which there
are no crashes and the failure detector does not make any
mistake, our♦C-Consensus protocol requires 4n, i.e.,�(n),
messages per round. Similarly, the protocol of Chandra and
Toueg requires 3n, i.e., �(n), messages per round, and the
protocol of Mostefaoui and Raynal requires 3n2, i.e.,�(n2),
messages per round. (In this protocol, each one of its three
phases begins with a message broadcast.) In all cases, we
have not considered the messages involved in theReliable
Broadcastprimitive used to communicate the decision to
all processes. Note also that Phase 0 of our♦C-Consensus
protocol could require�(n2) messages in the “bad” case
in which all the processes consider themselves as the
leader.

Clearly, there exists a trade-off between the number of
messages and the number of communication steps per round
of the protocols. For example, we could reduce the number
of phases of our♦C-Consensus protocol by merging Phases
0 and 1 in the following way: each process sends its estimate
to its leader (obtained by querying the failure detector), and
it also sendsnull_estimateto every other process. This re-
duction on the number of phases has the cost of augmenting
the number of messages, which becomes�(n2) instead of
�(n).

Finally, concerning the number of rounds required to solve
Consensus, note that our♦C-based Consensus protocol and
the �-based protocol of Mostefaoui and Raynal do not use
the rotating coordinator paradigm. Instead, in both cases the
eventual leader election functionality provided by the failure
detector is exploited. As a result, in the case of stability of
the failure detector (i.e., it returns the same trusted process
to all processes), Consensus is solved in only one round,
providing early consensus.

As shown in the following theorem, in any♦S-Consensus
algorithm based on the rotating coordinator paradigm (like,
for instance, the Chandra and Toueg protocol), the number
of rounds can be�(n) once the failure detector is stable (i.e.,
there is one correct process that is never suspected by any

process), until a correct and not-suspected process becomes
coordinator of a round. We assume here that Consensus can-
not be reached if all processes suspect of the potential co-
ordinator of a round.

Theorem 3. For any algorithm that solves Consensus with
a ♦S detector based on the rotating coordinator paradigm
there is a run that requires n rounds after the failure detector
is stable.

Proof. We will consider here a run in which the rounds run
synchronously, i.e., all processors start and end the same
round simultaneously. The♦S failure detector we use satis-
fies that, before some timet all processes suspect each other,
and att a given correct processp stops being suspected by
every process, reaching the stability of the failure detector.
We get to chooset andp.

Note first that in any algorithm all processes must be
potential coordinators over and over again until Consen-
sus is reached. Otherwise, we can choose a processorp
that does not satisfy this and some timet after p is poten-
tial coordinator for the last time, and Consensus is never
reached.

Then, there is at least one process for which consecutive
rounds as potential coordinator,r0 and r1, are at leastn
rounds apart. Let us makep any such process, andt the time
round r0 ends. Then, the claim follows, since until round
r1�r0 + n Consensus cannot be reached.�

However, even if the detector is not stable, Consensus
can be reached if the appropriate conditions are met. As we
mentioned above, to improve the chances of reaching Con-
sensus, we have introduced in this protocol an interesting
feature. The two wait statements in Phases 2 and 4 block
the execution of the coordinator until it receives a major-
ity of replies and it has received a reply from each pro-
cess it does not suspect. Then, in both cases it is enough to
have a majority of positive replies to continue toward a de-
cision, while many of the other replies could be negative.
This feature may mean the difference between deciding or
not in a given round, compared, for instance, with the Chan-
dra and Toueg protocol, in which a coordinator only waits
for a majority of replies (the first�(n+ 1)/2� replies) and
does not decide in the round if any reply is not positive.
This feature also shows how the possible higher accuracy
of a detector in♦C could be useful versus a detector in
�. In the protocol of Mostefaoui and Raynal all they could
do was to wait forn − f replies, since the detector only
provides information about one process. If there is not a
good knowledge aboutf, their protocol could not decide in
a round with a majority of positive replies. For instance, if
all it is known is thatf < n/2, a single negative reply in
the first�(n+ 1)/2� replies prevents from deciding in that
round.
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6. Conclusions

In this paper, we have proposed a novel class of unreliable
failure detectors, called Eventually Consistent and denoted
♦C. We have studied the relationship between♦C and other
failure detector classes. We have also proposed an efficient
algorithm transforming♦C into ♦P in models of partial
synchrony.

The failure detectors of class♦C combine a failure detec-
tion capability with an eventual leader election functionality.
These properties can be very useful. To demonstrate it, we
have presented an efficient algorithm for solving Consensus
based on an eventually consistent failure detector. The class
♦C allows the algorithm to use a more selective approach
to choose a coordinator. This approach allows our algorithm
to reach consensus in one single round in stability, while
♦S-Consensus algorithms based on the rotating coordinator
paradigm may require�(n) rounds.
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