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Abstract

The concept ofunreliable failure detectowas introduced by Chandra and Toueg as a mechanism that provides information about
process failures. This mechanism has been used to solve different problems in asynchronous systems, in particular the Consensus problenr
In this paper, we present a new class of unreliable failure detectors, which wevegitually Consisterdand denote by>C. This class
combines the failure detection capabilities of clgsS with the eventual leader election capability of cldsThis capability allows all
correct processes to eventually choose the same correct procksslas We study the relationship betwe&C and other classes of
failure detectors. We also propose an efficient algorithm to transfdéhinto <P in models of partial synchrony. Finally, to show the
power of this new class of failure detectors, we present a Consensus algorithm bas@dTdms algorithm successfully exploits both the
leader election and the failure detection capabilities of the failure detector, and performs better in number of rounds than all the previously
proposed algorithms fo¢S.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction was introduced by Chandra and Toueg[®), where they
proposed several classes of unreliable failure detectors. Af-
1.1. Unreliable failure detectors ter this seminal work, a number of authors have proposed

other classes of unreliable failure detectdis4,11,19]

An unreliable failure detectois a mechanism that pro- These failure detectors have been used to solve several
vides (possibly incorrect) information about faulty pro- fundamental problems in asynchronous distributed systems
cesses. As originally defined, when queried by a process, a(e.g., consensys]).
failure detector returns a set of processes believed to have In [6], failure detectors were characterized in terms of
crashed (suspected processes). The sets returned to differetivo propertiesicompletenesand accuracy Completeness
processes can be different, and can contain processes thatharacterizes the failure detector capability of suspecting
have not crashed. The concept of unreliable failure detectorevery incorrect process (processes that actually crash), while

accuracy characterizes the failure detector capability of not
suspecting correct processes. Two kinds of completeness and
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Fig. 1. Four classes of failure detectors defined in terms of completeness and accuracy.

e Strong completenessEventually every process that how to transform ab)V failure detector into a2 failure

crashes is permanently suspecteddwery correct pro- detector in an asynchronous system. The algorithm to imple-
cess. ment<$S proposed if16] also implicitly implements aif2

e Weak completenessventually every process that crashes failure detector. More recently, Aguilera et §] have pro-
is permanently suspected bpmecorrect process. posed several algorithms for implementi2ghat arestable

e Eventual strong accuracyThere is a time after which i.e., once a leader is elected, it remains the leader for as long
correct processes are not suspected by any correct processs it does not crash and its links behave well. Finally, Aguil-
e Eventual weak accuracyThere is a time after which  era et al[3] have presented systems with weak requirements
some correct process is never suspected by any correctn which Q failure detectors can be implemented, wRiH®
process. failure detectors cannot.
Combining in pairs these completeness and accuracy
properties, we obtain four different failure detector classes
which are shown in Figl. In [6], Chandra and Toueg also

proposed an algorithm to implement<sP failure detec- The Consensus problej21] is a fundamental problem in
tor in models of partial synchrony. Other more efficient yigyipyted systems. It was shown by Fischer efdithat it
algorithms under similar models have been proposed 10 jmpossible to solve Consensus deterministically in a pure
|mple_r_nent failure detectors of all these clas§&s], and asynchronous system. Chandra and Toueg showédl ihat
specifically of clas>S [16]. their unreliable failure detectors allow to solve Consensus in

In [5] Chandra et al. defined another class of failure detec- 55y nchronous systems. Since then, several distributed fault-
tors, denoted2, and used it to prove that)V is the weakest  y,jarant algorithms to solve Consensus based on unreliable
failure detector class for solving Consensugvhen queried failure detectors have been propoged,18,22]

by a procesp, a failure detector of clas returns asingle Most Consensus algorithms based on failure detectors
processg, currently considered to beorrect (we say that  \yith eventual accuracy require at least a failure detector of
p trusts . A failure detector inQ satisfies the following class &S and proceed in rounds. In each round a differ-
property: ent process acts as coordinator, following a prearranged se-
qguence. This approach is known as th&ating coordinator
paradigm If the coordinator of a round crashes or is sus-
pected by several processes, the round may fail and the con-
sensus is not reached in that round. With a failure detector
) = - of class<¢S it is guaranteed the existence of a correct pro-
eventual leader election capabilityince it guarantees that, cess, nameljeader, that is eventually not suspected by any
eventually, all correct processes will agree on trusting the g rect process. If after no process suspectsaijereven-
same correct process (a leader). This capability does not givey 5y hecomes the coordinator, the consensus is guaranteed
knowledge of when the leader has been elected and allows;y e reached.
the existence of several trusted processes at the same time. 1ha inconvenience of theS-Consensus algorithms based
Note that, translating the concept of trusted processes to they, the rotating coordinator paradigm is thatlg&derdoes
classical of suspected processes, implicitlyailure detec- ot hecome coordinator unfilrounds after no process sus-
tors always suspect all processes except one. This imp”espects it, the processes may have to wait tHesgunds to
that, in general(2 failure detectors provide less accuracy (esch consensus (whereould beQ(n), with n being the
(information.ab(.)ut correct processes) than detectors fromp,wper of processes). It would be nice to have Consensus
the classes in FidL. _ , o algorithms that quickly chooskeader as the coordinator,
There are several algorithms implement@dailure de-  pence reducing the number of rounds required to reach con-
tectors in the literature. Chandra et[&l] and Chu[7] show SENSUS.

T . i : There have been other approaches to solve the Consensus
To prove their result Chandra et al. show first téatis at least as

strong as¢W, and then that any failure detectdr that can be used to problem In non—synchronous systems[.8h Dwork etal. as-

solve Consensus is at least as strongland hence at least as strong SUumed partially synchronous models and proposed Consen-
asoW). sus algorithms for these models. These algorithms also use

1 1.2. Consensus algorithms

Property 1. There is a time after which every correct pro-
cess permanently trusts the same correct process.

This property ofQ failure detectors can be seen as an
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the rotating coordinator paradigm and can present the abovegorithm only requires the input links to the leader chosen

problem.

by D to be partially synchronous (eventually there is an un-

To our knowledge, the first Consensus algorithm that usesknown bound on the delay suffered by messages) and the
a kind of eventual leader election algorithm to choose the output links to be fair (messages can be lost, but if infi-

coordinator of a round (instead of using a rotating coordina-
tor approach) is the Paxos Consensus algor(tt®h In this

algorithm a system model different from the above is used,

in which periods of synchrony and asynchrony alternate.

nite messages are sent, then infinite messages are received).
Eventually only these links carry messages. Recently, Aguil-
era et al.[2] have proposed an algorithm following a sim-
ilar approach for implementingP based on a2 failure

The Paxos Consensus algorithm proceeds in asynchronousletector. This algorithm assumes a weak model of partial

rounds, with a coordinator, given by the leader election al-
gorithm, for each round.

Recently, Mostefaoui and Rayng0] have proposed a
Consensus algorithm, based on @rfailure detector, that

synchrony, in which onlyn bidirectional links are required
to be eventually timely. In their algorithm eventually only
these bidirectional links carry messages.

Finally, to show the power of this class of failure detectors,

does not use the rotating coordinator paradigm. Hence, theirwe present a Consensus algorithm basee>6nThis algo-

algorithm does not present the above problem. However,

instead it has to deal with the lack of accuracy of e
failure detectors.

1.3. Our contributions

In this paper, we define a new class of unreliable failure

rithm proceeds in asynchronous rounds and each round is
divided in several phases, like most previguS-Consensus
algorithms[6,12,18,22] The main difference of our algo-
rithm is the way the coordinator is selected. We do not use
the rotating coordinator paradigm as they do, but the leader
election capability of>C. This algorithm reaches consensus
in at most one round after the leader election property of
&C is satisfied, while we show that any rotating coordinator

detectors that combines the completeness and accuracy of>S-Consensus algorithm requires— 1 additional rounds
the S failure detectors and the eventual leader election ca- after stabilization in the worst case.

pability of 2 failure detectors. We call this claBventually
Consistentand denote it by>C. The main property of the
failure detectors in this class is that they provide simulta-
neously the classical failure detection functionality (i.e., a
set of suspected processesxe$ failure detectors and the

In this Consensus algorithm we introduce an additional
improvement that makes use of the accuracy and complete-
ness properties oC. In previous algorithms (see for in-
stance the>S-Consensus algorithm ii]), the round coor-
dinator proposes a value and waits for replies (accepting or

eventual leader election capability (i.e., a common trusted not that value) from a majority of processes (the existence

process) of? failure detectors.

of a majority of correct processes is a requirement). If any

Considering the Consensus problem, the eventual leaderof these replies is negative, the decision is not made. One

election functionality of the>C failure detectors allows ev-

single negative reply blocks the decision. In our algorithm,

ery correct process to eventually agree on a coordinator thatthe coordinator waits for replies as long as a decision can
can be used to reach consensus. Hence, with these failurestill be made in the round. Then, if a majority of replies
detectors we do not need to rely on the rotating coordinator are positive, the decision is made, even if there are negative

paradigm for eventually choosing an appropriate coordina-

tor. Additionally, the consensus algorithm may take advan-
tage of the accuracy and completeness properties afthe

replies.
Compared with the Paxos Consensus algoritbah men-
tioned above, our algorithm works in an asynchronous sys-

failure detectors to speed up the agreement. We present dem extended with a failure detector, while Paxos assumes a

Consensus algorithm that uses these properties.

We study the relationship betwe&¥xC and the classes of
failure detectors presented in Fify. We first observe that
any implementation of>P can be trivially used to imple-
mentdC. Similarly, we observe thatC can be implemented
on top of any implementation o$S (and hence of>W)
by means of an asynchronous distributed algorif&nT].
We then show that>)C can be implemented as efficiently
as<S in models of partial synchron6,8]. To show that,
we observe that the&S failure detectors implemented by
the efficient algorithms presented|it5,16] can be used to
implement>C at no additional cost in terms of message ex-
changes.

Then, we propose an efficient algorithm to transform any
failure detectofD of class<C into a failure detector of class
<P in a model of partial synchrony. The transformation al-

system model in which there are periods of synchrony. Apart
from that, the leader election algorithm proposedl8] is
basically a failure detection algorithm. However, it strongly
relies on the existence of long enough periods of synchrony
in the system, as the consensus algorithm itself does. Be-
sides that, both algorithms use similar approaches.
Recently, Mostefaoui and Rayng0] have proposed a
Consensus algorithm, based on @Qrfailure detector, that
does not use the rotating coordinator paradigm. This work is
inspired on previous versions of the present pdpérl7]
This algorithm has to deal with the lack of accuracy of the
detector. Since the detector only gives information about one
process, in order to make a decision, the coordinator does not
have any information about which processes may reply. To
prevent one single negative reply from blocking the decision
as we mentioned above, the coordinator waits#or f
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replies, wheréis an upper bound on the number of processes tem, requests for sets of suspected processes and requests

that can fail. The number — f can be much smaller than for trusted processes. The sets of suspected processes sat-

the number of replies that could in fact be received, and a isfy the conditions of aS failure detector and the trusted

small number of negative replies can block the decision. In processes satisfy the conditions of @railure detector.

fact, if all it is known is that there is a majority of correct

processes (i.e.f < n/2), the algorithm only waits for a  Definition 1. A failure detector belongs to thEventually

majority of replies as above, and one negative reply blocks Consistentlass of failure detectors, denoted’, if it pro-

the decision. vides to every procegs with a set of suspected processes
The rest of the paper is organized as follows. In Secion  D.suspecteg and one trusted processtrusted,, such that,

we establish the model of the system we use in the rest ofe the setsD.suspecteq satisfy strong completeness and

the paper and define the new class of failure detectpfs. eventual weak accuracy (likeS),
In Section3, we study its relationship with other classes e the trusted processés.trusted, satisfy Propertyl (like
of failure detectors. In Sectiod, we propose an efficient ), and

algorithm to transform®C into <P in models of partial e there is a time after which the trusted processes are not

synchrony. In Sectio®, we present an efficient Consensus  suspected, i.eD.trusted, ¢ D.suspecteg|.

algorithm based or>C. Finally, Section6 concludes the

paper. Observe that the completeness and accuracy properties of
the setsD.suspected are the same as those®&. Hence a
failure detector of clas$C can be seen as@sS failure de-

2. Definitions tector enhanced with an eventual leader election mechanism
(provided by the trusted processedrusted,). This mech-
2.1. System model anism guarantees that after some point in time all correct

processes converge to a leader process. (However, it does not

We consider a distributed System Consisting of a finite to- provide any know|edge of when the leader has been elected,
tally ordered sef of n processes/l = {p1, p2, ..., pn}- and allows the existence of several leaders at the same time.)
Processes communicate only by sending and receiving mesThijs property can be used by algorithms in which the safety
sages. Every pair of processes is assumed to be connected byroperties are not affected by the simultaneous existence of
two reliable communication links (in opposite directions). several leaders, and that guarantee termination if a unique
Unless stated otherwise, the systemagynchronousi.e., leader exists. As it is well known, usually it is not neces-
there are no timing assumptions about neither the relative sary for the failure detector to reach permanent stability to
speeds of the processes nor the delay of messages. Processgs useful. Instead, many algorithms can successfully com-
can fail bycrashing that is, by prematurely halting. Crashes  pjete if the failure detector provides a unique leader for long
are permanent, i.e., crashed processes do not recover.  enpugh periods of time. Furthermore, these failure detectors

A distributed failure detectocan be viewed as asetof  can be very useful to algorithms that have early termination
failure detection modules, each one attached to a differentyhen there is a unique leader.
process in the system. These modules cooperate to satisfy the Finally, note that this definition of>C does not impose

required properties of the failure detector. A process requeststhat all processes but one must be suspected, as the definition
information about failures to its attached failure detector of @ alone implicitly does. This means th&C can have a

module by requesting a set of suspected processes (e.g., t@igher degree of accuracy th&h

a ¢S failure detector) or by requesting the identity of a

trusted process (e.g., to &failure detector). We will denote

by D.suspecteg] the set of suspected processes returned 3, Relation betweens>C and other failure detector

by a failure detecto® to a given procesp. Similarly, we classes

will denote byD.trusted, the trusted process returned by

a failure detectorD to a proces®. These suspected and  |n this section we will briefly study the relationship be-
trusted processes can differ from one process to another atween the clas$>C and other classes of failure detectors.
a given time. We assume that a process interacts only withFijrst, observe that & failure detectorD can be trivially

its local failure detection module. built on top of any failure detectofDg. D simply returns
to a proces as the trusted proceg&trusted, the process
2.2. Eventually consistent failure detectors Dg trusted, returned byDg, and as the set of suspected

processe®.suspecteg] all the processes except this trusted
We introduce now the class of eventually consistent fail- process. This transformation is very simple and efficient (no
ure detectors>C. The main characteristic of these failure extra messages are needed). However, it offers very poor
detectors is that they combine the characteristics®&fand accuracy.
Q failure detectors. Then, a failure detectrof class<&C Observe also that angP failure detectorD,p can be
attends two types of requests from the processes in the sysused to implement a>C failure detectorD. With Dp,
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eventually the set of processes suspected by every corrects sent, then an infinite number of the messages sent (and
process becomes the same, containing only all the processeenly those) is received (if the destination is correct). There
that actually crash. TheR returns to a procegsas the setof ~ are no restrictions on the rest of links.

suspected processéssuspecteq] the setD.,p.suspecteg Fig. 2 presents the algorithm in detail, which works as
returned byD.p, and as the trusted proceBstrusted, the follows. Eachleaderprocess (i.e., each procgsshat con-
first (with respect to the ordepy, ..., p, assumed in the  siders itself as leader becauBerusted, = p) builds a lo-
system model) process not in that set. cal list of suspected processes by using time-outs (Tasks 3
Similarly, a<>C failure detectoD can be implemented on  and 4), and sends its list periodically to the rest of processes
top of any failure detector in class€sV or <S as follows. (Task 1). Concurrently, each process periodically sends an
First, we have that af? failure detectoDg can be obtained  I-AM-ALIVE message to its trusted process (Task 2). Finally,
from any W (and hencedS) failure detectoff5,7]. Then, when a process receives a list of suspected processes from
D returns to a process as the trusted proced3.trusted, its trusted process, it adopts this list as its own list (Task 5).
the processDg trusted, returned byDy,. If the original Note that the algorithm only uses detecidto query for its
detector is @)V failure detector, it is transformed intotaS trusted process. Hence, this algorithm could also be used to
failure detectof6]. As a consequence we have>a failure transform an? failure detector into &P failure detector.

detectorDss, and D returns to a procesg as the set of
suspected processéssuspecteql the setD.,s.suspecteg
returned by that detector.

However, the transformation protocols frapV to Q of
Chandra et a[5] and Chy7] are expensive in the number of

messages exchanggd, .since they require that_ every processroof. The proof relies on the property satisfied by
send messages periodically to all processes in the SYSIeMp trusted,: there is a time after which all the correct pro-
Fortunately, there are S failure detectors that can be used to  oggeg permanentlyust the same COrrect proce$feader

build a<C failure detector at no additional cost. An example | ot us assume the system has become stable, i.e., we have
is a<S failure detector that guarantees that the first correct .ooched a time’ > max(t, GST). Then,

process (in some known order) is eventually not suspected (1) by Task 3, eventually every process that crashes is per-
by any correct process. Then, using a similar technique as manently suspected hyjeades and

the one above foKk>P failure detectors, we can obtain a (2) by Tasks 2, 3, 4, and 5 there is a time after which
<&C failure detector without extra cost. One algorithm that correct processes are not suspecteghbyuer This can
satisfies these requirements is thé& ring-based algorithm be easily shown. First note thaleager NEVEr suspects
proposed in[15] for a partially synchronous model. With itself (in Tasks 3 and 5). Then, for the rest of processes
this algorithm, the set of non-suspected processes can be | o se contradiction. Assume the period of Task 2 in
different in different processes, but the algorithm guarantees all processes i®. Then, oNCeieader SUSPECTS a correct
that eventually the first (starting from a special prodegml procesgy, it receives an AM-ALIVE message frong in
candidate to leadeand following the order defined by the at most 2b+ A time, by Task 2 and the fact that the link
ring) non-suspected process is the same for every correct .0 g 10 pleader iS partially synchronous. From Task

process, and that it is correct. 4, pleader Stops suspecting and increases the time-out
interval 4,,(¢). Let us suppose by way of contradiction
) . ) . thatq is suspected byjeageran infinite number of times.
4. Transforming <¢C into ¢P in models of partial After a bounded number of times the time-ofi(¢)
synchrony will be larger than @+ A andq will never be suspected
. . . , again, a contradiction.

In this section, we present an efficient algorithm that trans- Hence, by (1) and (2) there is a timé after which every
forms any failure detectdP of class<C into a failure de- process that crashes is permanently suspectegbisss and
tector Dyp of class<&P. The approach foIIowgd isto use g correct process is suspectedyaderafter . Then, by
the eventually agreed trusted proceggder provided byD Tasks 1 and 5, and the fairness of the output links@fges
to build and propagate a list of suspected processes that satayentyally every correct process will permanently agree with
isfies the properties 6pP. _ , Pleader in the set of suspected processes. This gives us the
_ The transformation algorithm requires thatthe 1 input 6 properties required byP: eventually every process that
links Of pieader are reliable and follow a model of partial 5shes is permanently suspected by every correct process
synchrony like those considered[8]. In this model itis  (gyrong completeness), and there is a time after which correct

assumed that after some finite global stabilization WGBS, processes are not suspected by any correct process (eventual
every message sent is received and processed in at most §trong accuracy). [J

bounded but unknown timd. The algorithm also requires
then — 1 output links ofpjeagerto be fair, which means that If we assume that most of the time theC failure
they can lose messages, but if an infinite number of messagesletectorD provides a unique leader, then the cost of this

Theorem 1. Given a failure detectoD of class<C and a
partially synchronous system as descripia algorithm of
Fig. 2 implements a failure detector of clagsP.
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Every process p executes the following:

suspectedy, «— 0 {suspected, provides the properties of OP}
for all g € T {Ap(q) denotes the duration of p’s time-oul interval for q}
Ap(g) «— default time-out interval

cobegin

|| Task 1: repeat periodically
if D.trusted, = p then
send suspected, to the rest of processes

|| Task 2: repeat periodically
if D.trusted, # p then
send “p-is-alive” to D.trusted,

|| Task 3: repeat periodically
if D.trusted, = p then
for all g € 11, g # p:
if ¢ ¢ suspected, and
p did not receive “g-is-alive” during the last Ay(q) ticks of p’s clock then
suspectedy, «— suspected, U {q} {p times-out on q: it suspects q has crashed}

|| Task 4: when receive “g-is-alive” for some ¢

if D.trusted, = p and q € suspected, then {p knows that it prematurely timed-out on q}
suspected, «— suspected, — {q} {1. p repents on q, and}
Ap(q) — Ap(g) +1 {2. p increases its time-out period for q}

|| Task 5: when receive suspectedy for some g
if D.trusted, = q then
suspected, — suspectedq — {p} {p adopts suspectedq}

coend

Fig. 2. Transforming the>C failure detectorD into a <P failure detector in a model of partial synchrony.

transformation algorithm in terms of the number of mes- 5. Solving consensus using-C

sages periodically sent igi2— 1), since the leader process

sends a message to the rest of processes, and they serll. The consensus problem

a message to the leader process. Thus, the algorithm has

a linear cost. Furthermore, this cost can be reduced in Inthe Consensus problem, each process initially proposes
practice. If we assume that the algorithm implementihg  a value, and all correct processes must reach an irrevocable
requires the leader process to periodically send a messagelecision on some common value that is equal to one of
to the rest of processes (this is the case if we b@illdn the proposed values. Formally, the Consensus problem is
top of the &S algorithm proposed if16], for instance), defined in terms of two primitiveproposeanddecide When
then the list of suspected processes can be piggy-backed process executggoposév), we say that itproposes v

on this message, reducing the number of messages of theSimilarly, when a process executdscid€v), we say that it
transformation algorithm to the half. This may require to decides vTheConsensuproblem must satisfy the following

revise our assumptions on the synchrony of the links. properties.
Following the previous strategy, we get an extremely ef- e Termination Every correct process eventually decides
ficient implementation of>P that has a cost of @2 — 1) some value.

messages periodically semt £ 1 of the implementation of e Uniform integrity Every process decides at most once.
the <&C failure detectorD based or{16], andn — 1 of the e AgreementNo two correct processes decide differently.
transformation algorithm of Fig2). This compares favor- e Validity: If a process decideg, thenv was proposed by
ably to the implementation a$P proposed by Chandra and some process.

Toueg[6], which has a cost 0f2. Also, this is slightly bet- Termination defines the liveness property associated with
ter than the cost (2 messages) of the ring algorithm im- the Consensus problem, while Uniform integrity, Agreement
plementingdP proposed by Larrea et al. {i5], and this and Validity define its safety properties.

approach has the additional benefit of not suffering of the = The Agreement property allows faulty processes to decide
high latency in crash detection of this algorithm (due to differently from correct processes. This fact can be some-
the propagation of the list of suspected processes over theimes undesirable as it does not prevent an incorrect pro-
ring). cess to propagate a different decision throughout the system
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before crashing. In thelniform Consensuproblem, agree-  coordinator for the round. In Phase 1, every process sends
ment is defined by the following property, which enforces its current estimate of the decision value time-stamped with

the same decision on any process that decides: the round number in which it adopted this estimate, to its
e Uniform agreementNo two processes (correct or faulty) coordinator. Also after Phase 0 and concurrently with the
decide differently. main algorithm, each process sendsudl estimate to any

It has been shown ifiL0] that any algorithm that solves  other coordinator of the current or previous rounds (first task
Consensus using a failure detector of clés$ also solves  of Fig. 4).

Uniform Consensus. Since every failure detector of cfaGs In Phase 2, each coordinator tries to gather a majority
includes a failure detector of clagsS, we in fact consider  of estimates. If it succeeds, then it selects an estimate with
the Uniform Consensus problem here. the largest time-stamp and sends it to all the processes as a

proposition. On the other hand, if it does not receive a ma-
jority of estimates then it sendsll proposition to all pro-
cesses. In Phase 3, each process waits for a proposition from
its coordinator. However, it also stops waiting if it suspects
5.2. The algorithm its coordinator or if it receives a non-null proposition from
some other coordinator. If the process receives a non-null
In this section, we present an algorithm that solves Uni- proposition from some coordinator (including its own), then
form Consensus using an eventually consistent failure de-it adopts it and sends aasck message to this coordinator.
tector. We assume the system model defined in Se@&ion If the process receivesraull proposition from its coordina-
In addition, we assume that the system is augmented withtor, it stops waiting and passes to the next phase. Finally,
a failure detectoD of class<C, to which processes have if the process suspects its coordinator, it sendaeckmes-
access. Finally, we assume that a majority of processes aresage to it. After this phase and concurrently with the main

correct, i.e., do not crash. Thus, if we denotefltlje num- algorithm, each process sendsiack message to any late
ber of processes that can fail, we assughe< n/2. This coordinator from which it receives a non-null proposition
is a necessary requirement to solve Consensus gsihip for the current or previous rounds (second task of Bjg.
asynchronous systems. This can be derived from the rela-Finally, in Phase 4 the coordinator that succeeded in Phase
tionship betweenr>P and <C, and Theorem 6.3.1 if6], 2 and sent a non-null proposition (if any, and as we will see

which shows that to solve Consensus even with there at most one) tries to gather a majorityadk messages. If it
must be a majority of correct processes. We also assume thasucceeds, then it knows that a majority of processes adopted
the value off is not known. its proposition as their new estimate. Consequently, this co-
Our algorithm is an adaptation of tkeS-Consensus al-  ordinator R-broadcasts a request to decide its proposition.
gorithm of Chandra and Toueg (where the communication At any time, if a process R-delivers such a request, it decides
pattern is centralized: all the messages of a round are ei-accordingly.
ther sent by the coordinator or received by the coordina- Note that in Phases 2 and 4 the coordinator queries the
tor). Figs.3 and 4 present the algorithm in detail. It is failure detector and tries to get a majority of “useful” or
made of a main task (Fi) and 3 additional tasks (Fid). “positive” replies (i.e.,estimatemessages in Phase 2 and
From these 3 additional tasks, the two first tasks are nec-ack messages in Phase 4), without blocking thanks to the
essary to ensure that a coordinator will never block during strong completeness of the sebssuspecteg. More pre-
the computation, while the third task is used to take the cisely, in Phase 2 instead of waiting for just a majority of
decision. replies, each coordinator also waits for a reply from every
Each process runs an instance of this algorithm, which process it does not suspect. This way additional valid esti-
proceeds in asynchronous rounds. As th§-Consensus  mates can be received, allowing maybe the coordinator to
algorithm of Chandra and Toud§], it goes through three  succeed in the current round. A similar strategy is used in
asynchronous epochs, each of which may span severaPhase 4 when waiting farck/nack messages: once a ma-
rounds. In the first epoch, several decision values are pos-ority of messages are received, the coordinator waits until
sible. In the second epoch, a value gkeisked no other every process that is not suspected replies. This way, even
decision value is possible. In the third epoch, processesif nackmessages are received among the first majority, de-
decide the locked value. cision can still be taken if enough additioretk messages
Each round of the main task is divided into five asyn- are received.
chronous phases. In Phase 0, every process determines its If we would like to follow a similar strategy using &2
coordinator for the round. A procegsbecomes its own  failure detector instead of @C failure detector, after the
coordinator for the round if it is the process returned by reception of a majority of messages the coordinator would
D.trusted,. A coordinator announces itself by sendingoa never wait for more messages, because in order to satisfy
ordinator message to the rest of processes. A process be-
comes a non-coordinator, i.e., a participant, if it receives in 2t 4 processp waiting in Phase 0 of a round receives first a
Phag 0 a message from a coordinator, which becomes its coordinator message for a round > r, thenp advances to round’.
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procedure propose (vp)

estimatep «— vp {estimatep is p’s estimate of the decision value}
statep «— undecided

rp— 0 {rp is p’s current round number}
tsp — 0 {tsp is the last round in which p updated estimatep, initially 0}
while state, = undecided {Rotate until decision is reached}

choseny — false
repliedy, — false
rp—7rp+1

Phase 0: {Each process determines its coordinator for the round}
wait until [p = D.trusted, or for a process g: received (q,rq, coordinator) such that (rq > 7p)] {Query D}
if [for a process ¢: received (g, rq, coordinator) such that (rq4 > rp)] then
cp —q
rp —Tq
else
Cp— P
send (p, rp, coordinator) to the rest of processes
choseny < true

Phase 1: {Each process p sends estimatep to its current coordinator}
send (p, Tp, estimatep, tsp) 1o ¢p

Phase 2: {Each coordinator tries to gather [w] estimates to propose a new estimate}
if p = ¢y then
wait until [for - processes g: received (g, rp, estimateq, tsq) or received (g, rp, null_estimate, 0)] an
it until [for [ ived (g, Tp, estimateq, tsq ived (g, 7p, null_estimate, 0)] and
[for every process q: received (q,rp, estimateq,tsq) or received (q,7p, null_estimate, 0) or
(q € D.suspectedy)]

msgsp(rp] — {(q, rp, estimateq,tsq) | p received (g, rp, estimateq, tsq) from g}

if [for [%] processes q: received (g, rp, estimateg, tsq)] then
decidable, «— true
t — largest tsq such that (q,rp, estimateq,tsq) € msgsp[rp)
estimatep, < select one estimateq such that (g, 7y, estimateq, t) € msgsp[rp)
send (p, Tp, estimatep) to all
else {p received null_estimate from some process}
decidabley, — false
send (p, rp, null_estimate) to all

{ FEach process waits for a new estimate proposed by a coordinator }
Phase 3: . . ; ) .
or to receive null_estimate from its coordinator or to suspect it
wait until [received (cp, 7p, null_estimate) from cp or ¢p € D.suspected, or for a process g: received (g, rp, estimateq)]
if [for a process ¢: received (g, rp, estimateq)] then {p received estimateq from a process q}
estimatep < estimateq
tsp «— Tp
send (p,rp,ack) to g
else if [received (cp, rp, null_estimate) from ¢p] then {p received null_estimate from cp}
discard message
else {p suspects that ¢, crashed}

send (p,rp,nack) to cp
repliedy «— true

. . . . . (n+1) . . o,
Phase 4: The coordinator that can still decide (if any) waits for [—2 1 replies. If they indicate that }

[@] processes adopted its estimate, the coordinator R-broadcasts a decide message
if (p = ¢p) and (decidable,) then
wait until [for [@] processes ¢: received (g, rp, ack) or received (g, rp, nack)] and
[for every process g: received (g, rp, ack) or received (g, rp,nack) or (q € D.suspectedp)]
if [for [("'QH)] processes ¢: received (g, rp,ack)] then
R-broadcast (p,rp, estimatep, decide)

Fig. 3. Solving Consensus using afy € <C.



M. Larrea et al. / J. Parallel Distrib. Comput. 65 (2005) 361-373 369

when received (g, rq, coordinator) from ¢ such that ((rq < rp) or ((rq = rp) and (choseny)))
send (p, rq, null_estimate, 0) to q

when received (q,rq, estimateq) from g such that ((rq < rp) or ((rq =rp) and (repliedy)))
send (p,rq,nack) to q

when R-deliver (q,rq, estimateq, decide) {If p R-delivers a decide message, p decides accordingly}
if state, = undecided then
decide (estimateq)
statep «— decided

Fig. 4. Separate tasks for replying to late coordinators and taking the decision.

strong completeness with the detector all processes but c's estimate at the end of Phase 2 of rountilVe claim that

the leader must be suspected. for all roundsr’ >r, if a coordinatorc’ sendsestimate in
Phase 2 of round’, thenestimate = estimate.
5.3. Correctness proof of the consensus algorithm The proof is by induction on the round number. From

Lemmal and the fact that sendsestimate at the end of
In this section, we prove the correctness of the algorithm Phase 2 of round, any other coordinator of roundsends
presented. Note that some parts of the proof rely on the null_estimateat the end of Phase 2 of roumd Thus, the
properties satisfied by a communication primitive cafet  claim holds forr’ = r. Now assume that the claim holds
liable BroadcastWe refer the reader 6] for details about ~ for all ', » <r’ < k. We will show that the claim holds for

this primitive. r’ =k, that is, ifc¢; is a coordinator of rouné that sends
estimatg, in Phase 2, themstimate, = estimate.

Lemma 1. In any round t at most one coordinator ¢ will From the algorithm it is clear that ify sendsestimatg,

send a non-null estimatd.e, a message of typéc, r, in Phase 2 of roundt then it must have received estimates

estimatg), to all processes at the end of Phaae from at least[(n + 1)/2] processes. Thus, there is at least

one proces® such that (1)p sent a fp, r, ack message to

cin Phase 3 of round, and (2) 6, k, estimatg, ts,,) is in
Proof. From the algorithm, it is clear that each process sends”sgsq [k] in Phase 2 of round. Sincep sent 6, r, ack)
its estimate to only one coordinator in Phase 1. A coordinator t0 ¢ in Phase 3 of round, s, = r at the end of Phase 3
must gather a majority of such estimates in order to send aOf roundr. Sincets), is non-decreasings, >r in Phase 1
non-null estimate at the end of Phase 2. Thus, at most oneof roundk. Thus, in Phase 2 of rourk (p, k, estimatsg,
coordinator can gather such a majority and send a non-nullZsp) is in msgsc, [k] with 15, > r. It is easy to see that there
estimate. O is no messagey( k, estimatg, ts,) in msgs, [k] for which

ts; >k. Let t be the largests, such that ¢, k, estimatg,

From the above lemma and the algorithm, it is easy ?Sq) IS in msgse, [k]. Thus,r <r < k.

to see that in any round at most one coordinatoc In Phase 2 of rounk, ¢, executegstimatg, <« estimatg
will R-broadcast a & r, estimatg, decidd message in ~ Where @, k, estimatg, t) is in msgsc [k] (remember that
Phase 43 we assume that; sendsestimatg, in Phase 2 of round
K). From Fig.3, it is clear thatq adoptedestimatg as its
Lemma 2. No two processes decide differently. estimate in Phase 3 of roundThus, a coordinator of round

t sentestimatg to g in Phase 2 of round Sincer <r < k,

by the induction hypothesigstimatg = estimate. Thus,
Proof. If no process ever decides, the lemma is trivially true. cx Setsestimatg, < estimate in Phase 2 of round. This
If any process decides, it must have previously R-delivered concludes the proof of the claim.
a message of type (-, —, decidd. By the uniform integrity We now show that if a process decides a value, then it
property of Reliable Broadcast and the algorithm, a coordi- decidesestimate. Suppose that some procgs®K-delivers
nator previously R-broadcast this message. This coordinator(d: 74, estimatg, decidg, and thus decidesstimatg. By
must have received at |eaW + 1)/2‘| messages of type the uniform Integrlty property of Reliable Broadcast and the
(-, — ack) in Phase 4. Let be the smallest round number algorithm, procesgmust have R-broadcast, ¢4, estimatg,
in which at least{(n + 1)/2] messages of type (-, ack) decidg in Phase 4 of round,. From Fig.3, g must have

are sent to a coordinaterin Phase 3. Leestimatg denote  received[(n + 1)/2] messages of type (+,, acK in Phase
4 of roundr,. By the definition ofr, r <r,. From the above

3This is achieved through the use of thecidablg, boolean variable. claim, estimatg = estimatg. [
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Lemma 3. Every correct process eventually decides some eventually receive at leagtn + 1)/2] such messages. Also,
value. since the set®.suspecteg satisfy strong completeness, for
every processg, that coordinator will eventually receive a
message frong or will suspectq. Note that only the coor-
dinators that sent a non-null estimate at the end of Phase 2
(1) Some correct process decides. It must have R-deliveredexecute thevait statement of Phase 4. Thus, no coordinator
some message of type (-, —decidg. By the agreement  can block at thevait statement of Phase 4. This shows that
property of Reliable Broadcast, all correct processes all correct processes complete rourda contradiction that

Proof. There are two possible cases:

eventually R-deliver this message and decide. completes the proof of our claim.

(2) No correct process decides. We claim that no correct Since the valued.trusted, satisfy the eventual leader
process remains blocked forever at one ofitfadt state- election property, there is a correct procesand a time
ments. The proof is by contradiction. Liebe the small- t such that every correct process permanetriigts qaf-

est round number in which some correct process blockstert, i.e. for every correct procegs D.trusted, = ¢ after
forever at one of thevait statements. Therefore, ev- t. Lets > ¢ be a time such that all faulty processes have
ery correct process reaches Phase 0 of raurfefom crashed. From the above claim, any round that started be-
the eventual leader election property ®f eventually fore ' will eventually end. Let be a round that starts after
some correct processwill become coordinator (i.e., that happens. Clearly is the only possible coordinator of
¢ = D.trusted,) in some round-’>r. Hence,c will roundr. In Phase O of round, g sends ¢, r, coordinato
send a message of type ¢’, coordinato)) to the rest to all correct processes except itself. Thus, in Phase 0 every
of processes. Thus, all correct processes reach the enaorrect process exceptreceives ¢, r, coordinatoi) from g
of Phase 0 of round, either by becoming coordina- and sets as its coordinator and as its current round. In
tor, or by receiving a message of type ¢, coordi- Phase 1, all correct processes send their estimatgslto
nator) from a coordinator of round’>r. If ¥’ > r Phase 2q receives[(n + 1)/2] such estimates, and sends
this directly translates the process to roundlhus, no (g, r, estimate) to all processes. In Phase 3, sirpes not
correct process blocks forever at tait statement of ~ suspected by any correct process after tiheevery cor-
Phase 0. rect process waits fog's estimate, eventually receives it,
Itis also clear from the algorithm that all correct processes and replies with arack to g. Thus, in Phase 4 receives
reach the end of Phase 1 of roundhey all send a message [(n + 1)/2] messages of type (+,ack (and no message of
of type (—,r, estimatg —) to their current coordinator. Let  type (—r, nack), and R-broadcasts|(r, estimatg, decidg.
us consider now Phases 2 and 3. For each coordicaibr By the validity and agreement properties of Reliable Broad-
roundr, there are two cases to consider: cast, eventually all correct processes R-deliyemrmessage
(@) From the first task of Figd and since a majority  anddecide—a contradiction. Thus, case (2) is impossible,
of the processes are correct, eventuallyeceives at  and this concludes the proof of the lemma.l
least[(n + 1)/2] messages, either of type (r, esti-
mate —) or (—,r, null_estimate 0). Also, since the sets
D.suspecteql satisfy strong completeness, for every Theorem 2. The algorithm of Figs3 and4 solves Uniform
processy, ¢ will eventually receive a message fragn Consensus using €C failure detectorD in asynchronous
or will suspectq. Finally, according to the messages systems withy’ < n/2.
receivedc replies by sendingc( r, estimatg) or (c, r,
null_estimatg. Thus,c does not block forever at the

wait statement in Phase 2. Proof. Lemmas2 and3 show that the algorithm of Fig8
(b) ccrashes. and4 satisfies the uniform agreement and termination prop-
In the first case, every correct procgs®ventually re- erties of Consensus, respectively. From the algorithm, it is
ceives ¢, r, estimatg) from a coordinator (which can be clear that no process decides more than once, and hence the
its coordinator) or ¢, r, null_estimatg from its coordina- ~ uniform integrity property holds. From the algorithm it is
tor ¢,. In the second case, since the s@tsuspecteg sat- also clear that all thestimateshat a coordinator receives in

isfy strong completeness, for every correct progesisere Phase 2 are proposed values. Therefore, the decision value
is a time after which its coordinater, is permanently sus-  that a coordinator selects from thesstimatesmust be a
pected byp, thatis,c, € D.suspectegl. Thus in either case, ~ value proposed by some process. Thus, uniform validity of
no correct process blocks at theait statement in Phase Consensus is also satisfied.]

3. From Phase 3 of the algorithm and the second task of

Fig. 4, it must be clear that every correct process that re-

ceives a non-null estimate from a coordinatoprreplies to 5.4. Performance analysis

it with a message of type (+, ack or (-, r, nack. Since

there are at leagt(n 4+ 1)/2] correct processes, a coordina- In this section, we analyze the performance of the pro-
tor that sent a non-null estimate at the end of Phase 2 will posed<{C-based Consensus protocol, and compare it with



M. Larrea et al. / J. Parallel Distrib. Comput. 65 (2005) 361-373 371

the<$>S-based protocol proposed by Chandra and Tqégg process), until a correct and not-suspected process becomes
and the2-based protocol proposed by Mostefaoui and Ray- coordinator of a round. We assume here that Consensus can-
nal [20]. First, we compare them in terms of the num- not be reached if all processes suspect of the potential co-
ber of communication steps per round, and the number of ordinator of a round.

messages exchanged per round, showing that there is an

inherent trade-off between these two measures. We showrpagrem 3. For any algorithm that solves Consensus with
then that our¢C-Consensus protocol performs better in- 5 (s detector based on the rotating coordinator paradigm

the number of rounds required to solve Consensus than,ere is 4 run that requires n rounds after the failure detector
the &S-based protocols, due to the fact that the later rely g ¢iape.

on the rotating coordinator paradigm while ours do not.
The protocol of Mostefaoui and Raynal exhibits also this
advantage. . . : .

If we look to the number of communication steps (phases) Proof. We will can|der here a run in which the rounds run
per round, the protocol proposed in this paper has five phasesynchronously, i.e., all processors start and end the same
per round. The protocol of Chandra and Toueg has four round simultaneously. TheS failure detector we use satis-

phases per round, and the protocol of Mostefaoui and Raynalﬁes that, bgfore some timall processes s_uspect each other,
has three phases per round. and att a given corregt procespsstp_ps being sgspected by
Concerning the number of messages exchanged in eactfVery Process, reaching the stability of the failure detector.
round, and considering the “normal” case in which there e getto chooseandp. .
are no crashes and the failure detector does not make any 'Note first that in any algorithm all processes must be
mistake, our>C-Consensus protocol requires, 4.e., O (n), potentlal coordinators over and over again until Consen-
messages per round. Similarly, the protocol of Chandra andSUS 1S reached. Otherwise, we can choose a processor
Toueg requires i3 i.e., ©(n), messages per round, and the that does.not satisfy this and_ some tinafter p is poFen—
protocol of Mostefaoui and Raynal requireg3i.e., @(n?), tial coordinator for the last time, and Consensus is never
messages per round. (In this protocol, each one of its three"®ached. _ . .
phases begins with a message broadcast.) In all cases, we Then, there is qt least one process for which consecutive
have not considered the messages involved irRaliable ~ 'ounds as potential coordinator andry, are at leasn
Broadcastprimitive used to communicate the decision to oUnds apart. Let us maleany such process, anthe time
all processes. Note also that Phase 0 of ©drConsensus round rg ends. Then, the claim follows, since until round
protocol could require2(n?) messages in the “bad” case 1=70+n Consensus cannot be reached]
in which all the processes consider themselves as the
leader. However, even if the detector is not stable, Consensus
Clearly, there exists a trade-off between the number of can be reached if the appropriate conditions are met. As we
messages and the number of communication steps per roundnentioned above, to improve the chances of reaching Con-
of the protocols. For example, we could reduce the number sensus, we have introduced in this protocol an interesting
of phases of out>C-Consensus protocol by merging Phases feature. The two wait statements in Phases 2 and 4 block
0 and 1 in the following way: each process sends its estimatethe execution of the coordinator until it receives a major-
to its leader (obtained by querying the failure detector), and ity of replies and it has received a reply from each pro-
it also sendsull_estimateto every other process. This re- cess it does not suspect. Then, in both cases it is enough to
duction on the number of phases has the cost of augmentinghave a majority of positive replies to continue toward a de-
the number of messages, which becorf¥s?) instead of cision, while many of the other replies could be negative.
O). This feature may mean the difference between deciding or
Finally, concerning the number of rounds required to solve notin a given round, compared, for instance, with the Chan-
Consensus, note that ogC-based Consensus protocol and dra and Toueg protocol, in which a coordinator only waits
the Q-based protocol of Mostefaoui and Raynal do not use for a majority of replies (the firsf(n 4 1)/2] replies) and
the rotating coordinator paradigm. Instead, in both cases thedoes not decide in the round if any reply is not positive.
eventual leader election functionality provided by the failure This feature also shows how the possible higher accuracy
detector is exploited. As a result, in the case of stability of of a detector in®C could be useful versus a detector in
the failure detector (i.e., it returns the same trusted process®. In the protocol of Mostefaoui and Raynal all they could
to all processes), Consensus is solved in only one round,do was to wait forn — f replies, since the detector only
providing early consensus. provides information about one process. If there is not a
As shown in the following theorem, in aryS-Consensus good knowledge abodt their protocol could not decide in
algorithm based on the rotating coordinator paradigm (like, a round with a majority of positive replies. For instance, if
for instance, the Chandra and Toueg protocol), the numberall it is known is thatf < n/2, a single negative reply in
of rounds can b&(n) once the failure detector is stable (i.e., the first[(n + 1)/2] replies prevents from deciding in that
there is one correct process that is never suspected by anyound.
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