A Randomiz ed Art-Galler y Algorithm for Sensor Placement

Héctor Gonzalez-Banos
CS Robotics Laboratory
Stanford University
Stanford, CA 95405, USA

hhg@robotics.stanford.edu

ABSTRACT

This paper describes a placement strategy to compute a set
of “good” locations where visual sensing will be most effec-
tive. Throughout this paper it is assumed that a polygonal
2-D map of a workspace is given as input. This polygonal
map — also known as a floor plan or layout — is used to
compute a set of locations where expensive sensing tasks
(such as 3-D image acquisition) could be executed. A map-
building robot, for example, can visit these locations in order
to build a full 3-D model of the workspace.

The sensor placement strategy relies on a randomized al-
gorithm that solves a variant of the art-gallery problem [12,
15, 19]: Find the minimum set of guards inside a polygonal
workspace from which the entire workspace boundary is vis-
ible. To better take into account the limitations of physical
sensors, the algorithm computes a set of guards that satisfies
incidence and range constraints. Although the computed set
of guards is not guaranteed to have minimum size, the algo-
rithm does compute with high probability a set whose size
is at most a factor O(log(n + h) - log(clog(n + h))) from the
optimal size ¢, where n is the number of edges in the input
polygonal map and h the number of obstacles in its interior
(holes).

1. INTRODUCTION

One of the most basic tasks for a mobile robot is to build
a representation of the environment using its sensors. The
model constructed by the robot may be the goal of a recon-
naissance or exploration mission, or instead can be used to
facilitate subsequent tasks to be performed by the robot or
other agents. Sometimes a 2-D model of the workspace is
sufficient, in which case a system like the one described in [9]
can be used to build such a representation. In other cases
— most notably in systems that allow remote users to “fly-
trough” a virtual representation of the environment — it
is necessary to efficiently acquire full 3-D and texture data
in order to synthesize a realistic visual and/or geometric
model. While the environment can be represented in sev-
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eral ways (e.g., geometric primitives, image-based rendering,
or light-field models [10]), one thing is certain: visual sen-
sors have to be placed throughout the workspace in order to
acquire this representation. An important question is thus
the following: How should we place the necessary sensors
(cameras, range-finders, etc.) to gather the information re-
quired to build the visual/geometric model as efficiently as
possible? Or in the case of a mobile robot equipped with a
range sensor, which locations should the robot visit in order
to collect the necessary data?

Counsider the robot/sensor configuration shown in Fig-
ure 1(a). It consists of a laser range-sensor mounted on
top a mobile robot. This sensor acquires distance informa-
tion along a vertical cross-section of the environment. By
performing a rotational sweep, and acquiring multiple scans
during the sweep, the robot is able to capture a 3-D image of
the environment at a particular location (Figure 1(b)). This
3-D image consists of a set of points, and its resolution is
a function of the rotational speed used during the sweeping
operation (a slow sweep produces a high resolution image).
As a result, the acquisition of a high-quality 3-D image is a
relatively costly operation, and post-processing this image
can be computationally expensive because the set of points
may be large.

Suppose that we want to build a high-quality 3-D model
of a large workspace. In order to expedite this operation, the
problem is now to minimize the number of locations where
the robot should perform the rotational sweeps. Assume
that a polygonal 2-D map of the environment is available.
This paper proposes to compute the smallest set of locations
in the 2-D map from which the entire polygonal contour is
visible. Once this set is computed, the robot is then sent to
these locations to acquire 3-D images that are later merged
into a complete model of the workspace. If necessary, the
robot may later be sent to additional locations during a
refinement stage to fill any remaining gaps in the model.

The purpose of this paper is not to investigate 3-D model-
ing. Model construction using range-sensors is a well-studied
engineering problem (e.g., see [1, 7, 5, 11, 14, 20]). Instead,
our goal is to investigate algorithms to compute a set of
good sensor locations in a polygonal model of a workspace,
locations at which expensive sensing operations will later be
executed. This placement problem is closely related to the
art-gallery problem [12]: Find the minimum set of guards
such that any point in an art gallery is visible from at least
one guard. Practical range sensing, however, introduces
two complications: the operational range of most sensors
is lower- and upper-bounded, and range finders cannot re-
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Figure 1: A robot as a 3-D sensor: (a) a robot
equipped with a laser range-finder may capture 3-
D information by sweeping the environment with a
plane of light; (b) an example of a range-image cap-
tured using rotational sweeps.

liably detect surfaces oriented at grazing angles relative to
the sensor’s line of sight.

The algorithms presented in this paper acknowledge these
practical visibility restrictions by solving a variant of the art-
gallery problem. Although the art-gallery problem is NP-
hard, our strategy produces a set of guards that with high
probability is at most a factor O(log(n + h) - log(clog(n + h)))
from the optimal size ¢, where n is the complexity of the
input polygonal map and h is the number of obstacles in its
interior (holes).

2. EXTENDED ART-GALLER Y PROBLEM

The art-gallery problem is now a classic problem in the
study of algorithms. Although many extensions to the tradi-
tional problem exist [15, 19], most of the past work assumes
a classical “line-of-sight” visibility model: one point sees
another if the line segment between them does not intersect
any object.

Here, we restrict this classic notion of visibility to account
for range and incidence restrictions. Our visibility model is
as follows:

DEFINITION 2.1. (VISIBILITY UNDER INCIDENCE AND
RANGE CONSTRAINTS). Let the open subset W C R? de-
scribe the workspace layout. Let OW be the boundary of W.

A point w € OW is visible from a point ¢ € W if the fol-
lowing conditions are true:

1. Line of sight constraint: The open line segment S(w, q)
joining q and w does not intersect OW.

2. Range constraint: dpin < d(q,w) < dmaz , where
d(q,w) is the Euclidean distance between q and w,
and dpin > 0 and dmaz > dmin are input constants.

3. Incidence constraint: Z(n,v) < 7, where n is a vector
perpendicular to OW at w, v a vector oriented from w
to q, and T € [0,7/2] is an input constant.

Consider the robot/sensor configuration of Figure 1(a).
This implements a mobile omnidirectional 3-D sensor, sub-
ject to range and incidence restrictions. The robot/sensor
pair can be modeled with the definition stated above. With
slight modifications, Definition 2.1 can also model other sen-
sors restricted to move in a plane. For example, when a
standard CCD video camera is used to capture images for
image-based rendering, we would add the condition that the
segment S(w, q) lies inside a cone oriented along the camera
axis to account for the fact that the camera is not omnidi-
rectional. For stereo systems, a point in the WV is visible if
Definition 2.1 holds for both cameras. Etc.

In order to construct a 3-D model of the environment,
it is necessary to scan walls and other objects throughout
the workspace. Therefore, we are interested in solving an
art-gallery problem that requires the guards to cover only
the boundary of the 2-D layout, including the boundary of
any “holes” produced by obstacles in the workspace. This
extended art-gallery problem is defined as follows:

PROBLEM 2.1 (EXTENDED ART-GALLERY PROBLEM).
For a given layout W C R2, compute the minimum set of
guard locations G = {g1,92,...,9n} in W, such that every
point w € OW is visible from at least one point in G under
Definition 2.1.

A variant of the problem is to require coverage of a large
fraction of O instead of the entire boundary. For the re-
minder of this paper, it is assumed that W is a polygonal
subset of 2 bounded by a list of polygons W (the outer
boundary and the list of holes).

Effect of the constraints

Not all layouts can be fully covered under Definition 2.1,
while others may require an infinite number of guards. For
instance, narrow corridors cannot be covered by any set of
guards if d,,;;, is too large for the choice of 7 (Figure 2(a)).
Likewise, walls meeting at an acute angle cannot be covered
by a finite set of guards (Figure 2(b)).

An effect of the incidence constraint is that a layout does
not admit a finite solution if the internal angle of any of
its vertices is less than 90 — 7 degrees. This fact can be
easily inferred from the situation shown in Figure 2(c). An
interesting consequence is that no triangular shape admits
a finite cover when 7 < 30 deg.

Some optimal covers may require extremely precise sensor
positioning to carry out in practice, even for sensors with-
out range or incidence restrictions. Consider the layout in
Figure 3. The optimal cover consists of a single guard lo-
cated at the center of the layout, but the sensor has to be
placed exactly at this location. Any deviation will leave a
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Figure 2: Examples of workspaces that cannot be
completely covered under incidence and range con-
straints: (a) narrow corridors may be impossible to
cover if dp,;, is too large for a given 73 (b) under in-
cidence limitations there always remains an unseen
section e for walls meeting at a very acute angle, re-
gardless of the number of guards; (c¢) a workspace
cannot be fully covered if the angle of any of its
vertices is smaller than 90 — 7 degrees.

section of OW uncovered. Optimal covers that exhibit this
behavior have measure zero. In practice, they are difficult or
impossible to achieve by mobile sensors, and they cannot be
computed using the random-sampling techniques proposed
later in this paper (since the probability of sampling a subset
of measure zero is null).

3. A RANDOMIZED STRATEGY

The classical art-gallery problem is NP-hard [15], and
Problem 2.1 is at least as difficult. Thus, we can only hope
for an approximate solution. Our approximation algorithm
first samples the workspace W at random to construct a rel-
atively large set Gsqm of guard candidates. Afterwards, it
selects the subset C C Gsam of minimum cardinality among
all subsets covering W as the solution to Problem 2.1.

Hence, the basic idea is to use random sampling to trans-
form Problem 2.1 into a set cover problem. A near-optimal

Figure 3: This workspace is fully covered using a
single guard located at the center (here d,,;, = 0,
dmaez = 00, and 7 = 90 deg), but any deviation from
this position will leave a section of 0}V uncovered.

Ry=1(1,6,7,89,10}

Ro= 123 Ry=(5,6,7,10,11,12,13)
7= (1,2,

Rg=(12,13,14)

I I LU AP I I I I
X= 1 2 345 6 7891011 12 13 14

Ry=134567) |

R5 ={9,10,11,12)

Figure 4: Each edge of the workspace is decomposed
into cells, such that all points within the same cell
are seen by exactly the same subset of Gsum. Each
cell is labeled with an integer and grouped under X.
A set R; is defined as the set of cells visible from g;.

solution to the later problem can be computed using a greedy
algorithm. This solution in turn becomes an approximate
solution to Problem 2.1 as well. We will see, however, that
traditional bounds for the greedy approximation to the op-
timal set cover do not produce a useful competitive ratio for
the approximation to the original art-gallery problem. This
will lead us in Section 5 to consider a different set-cover
algorithm.

3.1 BasicAlgorithm

Let Gsam C W be a set of m locations selected at ran-
dom in W. For every edge e € OW, compute the frac-
tion seen by each element in Gsem. The arrangement of
all covered portions decompose each edge into cells such
that all points in the same cell are seen by exactly the
same subset of Gsam (see Figure 4). Next, enumerate all
cells in the decomposition of VW and group them under
the ground set X = {1,2,...,1}, where [ is the number of
cells, Build the set family R = {Ri, R2,...,Rn}, where
R; = {x € X | g; covers z} is the subset of all the elements
from X that are covered by g; € Gsam. By construction, the
union of all the sets in R is equal to X. Let the set system
¥ = (X, R) represent the sampled (or discretized) instance
of Problem 2.1.

In Section 4, we will show that under some conditions
Gsam covers OW (i.e., any point in W is seen from at least
one member of Gsem), and that with high probability the
optimal set of guard locations G is contained in Gsam. Prob-



lem 2.1 is henceforth reduced to that of finding a set cover of
minimum size, where a set cover is a sub-collection C C R,
such that the union of all the R;’s in C equals X. The size
of C is the number of sets in C.

The set cover problem is NP-hard, and its corresponding
decision problem is NP-complete [4]. Thus, our problem
remains NP-hard. However, algorithms for finding near-
optimal set covers have been well studied. A particularly
appealing one due to its simplicity is the GREEDY algorithm:
Find the set R € R with largest cardinality, remove this set
from R, and delete the contents of R from X and from the
remaining covering sets R\ {R}. In the next iteration, select
again the set with largest cardinality and repeat the process
until the set X is empty.

Figure 5 shows examples of computed guard locations us-
ing our strategy. The full algorithm is summarized below:

Algorithm Randomized Art-Gallery Algorithm
Input: 1.- Polygonal Region W
2.- Visibility constraints {7, rmn,"maz}
3.- An integer m (the number of samples)
4.- Function SET COVER that computes a near-
optimal set cover (e.g. GREEDY)

Output: A near-optimal set of guards C covering OW

1. Construct the set of guard candidates Gsam by sam-
pling W m times uniformly at random.

2. For every g € Gsam, compute the portions of the
edges in OW that are visible under Definition 2.1.

3. Compute the decomposition X of 9}V and the set
family R = {R1,...,Rm}.

4. Invoke SET COVER on ¥ = (X,R), and return the
computed cover C as the near-optimal set of guards.

3.2 Computational Cost

Step 1. Verifying that a sample point g falls in W can
be done in time O(n). It is possible to reduce this time to
O(logn) by using a hierarchical triangulation scheme whose
construction takes O(nlogn) of preprocessing time [17]. To
construct Gsam, merely generate a point uniformly at ran-
dom inside the bounding box of W, verify whether it falls
inside W (discard it otherwise), and repeat until m valid
samples are generated.

A quicker way of generating Gsam is to construct a pseudo-
uniform distribution of sample points. First, W is triangu-
lated, which can be done in O(nlogn) time by a line-sweep
algorithm [2]. Afterwards, the m sample points are dis-
tributed among all triangles according to their relative areas.
Each triangle is then uniformly sampled, which can be done
in O(1) per sample point. The total cost of this sampling
scheme is O(nlogn + m).

Step 2. The visibility region from each point g € Gsam
can be computed in time O(nlogn) [13] by a ray-sweep algo-
rithm. Under Definition 2.1, the edges of the classic visibility
polygon must be cropped to satisfy the sensor constraints,
but this operation takes O(1) per edge. Therefore, even un-
der the presence of incidence and range constraints, the total
cost of Step 2 is O(mnlogn)).

Step 3. The number of cells in the boundary decom-
position is O(m(n + h)), where h is the number of holes in
W. Indeed, the subset of W visible from a sample point
s consists of up to 2(n + h) separate pieces (under no in-
cidence or range restrictions the visible subset contains at
most n + h segments, adding upper-range and incidence

Figure 5: Computed guard positions in a 2-D map:
(a) with no constraints three guards are needed; (b)
with a minimum required incidence of 60 degrees,
six guards are needed. The portions of walls seen
from two guard locations are shown in (c)-(d).



constraints leaves the total unchanged, but the minimum
range restriction may split a visible segment into two sep-
arate pieces). The endpoints of all visible pieces must be
sorted along the edges in WV in order to construct the ar-
rangement X. This is done in time O(nmhlog(mh)), for all
edges in OW, by using n balanced trees to maintain a sorted
sequence of intervals along each edge. In practice, however,
the usual size of the decomposition is much smaller than
O(m(n + h)). Most samples do not influence the decomposi-
tion of an edge either because they see it entirely, or because
they do not see it at all.

Step 4. The computational cost of this step depends on
the function SET COVER. Let GREEDY be our choice for the
function SET COVER. Then the cost is O(|R1| + |Rz2|+... +
|R»|). This is because, as function GREEDY executes, every
element in X must be deleted along with all its representa-
tives in R. Therefore, every set in R is eventually deleted,
and the sum of their cardinalities gives the cost for Step 4.

A very generous upper bound for the cost of GREEDY is
O(m|Ryg|), where Ry, is the set in R with largest cardinal-
ity. This in turn is bounded by O(m2(n + h)), because there
are at most O(m(n + h)) boundary elements in X and Ry,
cannot be larger than X. However, most of the samples in
Gsam observe only a fraction of the elements in X, and the
size of X is usually much smaller than this upper bound.
Therefore, the running time of GREEDY is commonly below
O(m?(n + h)).

3.3 Quality of the Solution using GREEDY

Is the approximate solution computed using GREEDY close
to optimal? Assume for the time being that m is large
enough and that the optimal solution to the art-gallery prob-
lem (Problem 2.1) is contained in Gsqm (see Section 4). Un-
der this assumption, the problem is now just a matter of
extracting the right subset from Gsqm. Thus, the quality of
the set cover approximation defines the quality of the overall
algorithm.

The set cover solution computed by GREEDY can be proven
to have an approximation ratio bounded by (1+log |R|) [6],
where Ry, is the largest set in R. At first glance this loga-
rithmic factor looks good, but in reality it is not very useful.
Ry, can be as large as O(m(n + h)), which results in an ap-
proximation factor that is a function of the number m of
sample points. Not only m can be very large, but it is not
a fixed constant for a given workspace. While a large m
will increase the probability that Gsem contains the optimal
solution to Problem 2.1, this will also reduce the quality of
the set cover.

The problem lies with the bound for the greedy solution.
In most applications, the size |Rp| is a small fraction of
the size of the ground set X, and so the greedy set cover is
guaranteed to be close to optimal. Unfortunately, this is not
the case here — Ry, can be as large as X. Are there better
general bounds for the greedy set cover? It turns out that
the ratio bound has been proved to be ezactly log(|X|) —
loglog(|X|) + ©(1) (see [16]). This means not only that the
greedy solution falls within a logarithmic factor of | X| from
the optimal, but that there are instances where this bound
is actually achieved.

A large X, however, does not imply that the set-cover
problem is particularly “complicated.” In fact, we have ob-
served during experiments that the randomized art-gallery
algorithm always produces a reasonable number of guards

once the sampling becomes dense enough. If the sampling
is made denser, the solution remains about the same and it
never becomes worse. This is evidence that the set system
¥ = (X, R) possesses additional structure that GREEDY fails
to exploit during the computation of the set cover. In Sec-
tion 5 we will describe a different set-cover algorithm that
exploits this structure.

4. SAMPLING

In general, the optimal solution to the sampled art-gallery
problem is not the solution to the original problem (Prob-
lem 2.1). Indeed, if the sample set is poor (e.g., it contains
too few sample points and/or has an incorrect distribution),
or the workspace admits no finite solution, or the optimal
cover has measure zero, an optimal set of guards cannot be
obtained by solving the sampled problem.

The advantage of sampling is that it usually produces sat-
isfactory guard placements at a small cost even for “impos-
sible” cases. But more importantly, most workspaces can be
solved in this way with high probability if the sampling is
dense enough. That is, the probability that Gsqm contains
the optimal set of guards quickly approaches 1 under most
scenarios. This is true because the optimal solution for most
problems can be perturbed slightly and remain optimal. We
call this property the elasticity of the solution.

We have seen in Section 2 that some solutions to the art-
gallery problem require perfect positioning of the sensor to
be executed in practice (see Figure 3). This type of solu-
tions cannot be found by randomized sampling, and in fact
solutions like this are usually undesirable in engineering ap-
plications. If we focus only on those solutions that do not
require perfect positioning, it is then possible to give a qual-
itative assessment of the efficiency of the sampling process.

4.1 Elastic Solutions

Let Bs(g) = {p € R? | d(p,g) < &}, where d(-,-) is the
Euclidean distance between two points. The set Bs(g) is
simply an open ball centered at g. A set of guards G =
{91,92,...,9n} is said to cover W with elasticity 4 if: (1)
every point w € OW is visible from at least one point in G
under Definition 2.1, and (2) the same is true for any other
set of guards G’ = {¢1, g5, .-.,gr} such that g; € (Bs(g:) N
W) fori=1,2,...,n.

The optimal elastic solution to Problem 2.1 is the collec-
tion G of minimum size that is also elastic for some § > 0.
Note that given two covers G and G', with |G| < |G’| and
elasticities § < ', G is closer to optimality even if it is not
as elastic as G'. Therefore, the open balls around the guards
in an optimal elastic cover do not intersect with each other,
otherwise we could construct a better cover of smaller size
and smaller elasticity.

Suppose there is an optimal cover G of size ¢ with elasticity
4, and suppose that we sample the workspace W a number of
m times uniformly at random. What will be the probability
that all the balls around the guards of G are sampled? This
probability is given by the following equation:

P(e) = Z(,j)(—n’“(l—ka)m, ¢y
k=0

where o is the area of Bs(-) normalized with respect to the
area of W. This equation can be simplified when m is much



Figure 6: This workspace can be fully covered using
a single guard located at the center, but the best
elastic cover is of size 2 (here dp;n, = 0, dmaz = 00,
and 7 =90 deg).

larger than ¢ and oc is a small fraction of the total area:
Ple) = (1-(1—-0)™° for m>c. (2)

The expression above is simply the probability of sampling
every ball in the cover when we have a very large supply of
samples to toss.

Since the number of samples m appears as an exponent of
the factor (1 — o), equation (2) approaches 1 very quickly.
Therefore, with high probability, the set of samples Gsam will
contain a set of guards that is equivalent to the optimal set
G. Afterwards, by solving the set cover problem described in
the previous section, this optimal set of guards is extracted
from Gsam. In other words, we may assume that with high
probability the optimal set cover C for the set system ¥ =
(X, R) is also the optimal set of guards G for Problem 2.1.

There are three caveats to the argument presented here.
First, increasing the value of m reduces the quality of the set
cover computed using algorithm GREEDY. This problem can
be circumvented by using instead the algorithm presented
in the next section. What is inevitable is the impact of m
on the running time of any set cover algorithm. Therefore,
the choice of m should be selected wisely (a choice that is
perhaps more a craft than a science).

The second caveat is that the best elastic solution is not
necessarily the best solution in the traditional sense. Again,
for the workspace shown in Figure 3, the best elastic solu-
tion is a set of size 2 (not 1) as shown in Figure 6. This
can be a major problem in an application requiring a set of
guards of absolute minimum size. But it can be an advan-
tage on applications where guard covers with measure zero
are infeasible to carry out in practice.

The final caveat is that an optimal elastic cover may not
exist at all. As explained in Section 2, some workspaces
cannot be fully guarded (see Figure 2). The question is
then if we can detect these scenarios during the sampling
process, and toss only enough samples to solve the fraction
of the problem that can indeed be solved. It turns out that
this is possible, as we will see in the next subsection.

4.2 A Dual Sampling Scheme

Sampling W uniformly at random has the serious draw-
back that most samples are wasted when the sensor range
is lower- and upper-bounded. For instance, a sensor located
at the center of a big room is unable to observe the walls
if the sensor’s range is smaller than the room’s width. It is
desirable to avoid sampling regions of the interior of W that

cannot possibly cover the boundary. This can be achieved
by sampling the constraints of the problem (the points in
OW that must be to covered) before sampling the interior
of W.

First, a boundary point w € 9W is selected at random,
and the region V(w) C W from which such point can be ob-
served is computed using the classic ray-sweep algorithm (in
O(nlogn)). The region V(w) is sampled pseudo-uniformly
by first triangulating the region, and then distributing m’
sample points among all triangles according to their relative
areas. These points are stored in the sample list Gsam. Be-
cause V(w) is a visibility polygon, a triangulation computed
from w is direct, and the cost of computing and sampling
V(w) is O(nlogn +m').

Second, a point p € V(w) is selected at random and used
as a proxy of V(w). From this position we compute the
fraction of OW visible from p, and we subtract this from
OW to compute the new unobserved boundary OW'. A new
point w € OW' is randomly selected, and the entire process
is repeated

The advantage of this sample scheme is that a user may
prescribe a degree of coverage as the termination criterion:
i.e., stop when the reduction of the unobserved perimeter
is not changing significantly with respect to previous itera-
tions. This is very useful, for in most cases few guards cover
almost the entire boundary, but many more are required to
cover narrow corners that compose a small fraction of the
total. But more importantly, workspaces that cannot be
fully guarded can be dealt in practice using this scheme.

5. NEAR-OPTIMAL COVERSFOR THE
SAMPLED PROBLEM

This section shows that the sampled instance of Prob-
lem 2.1, represented by ¥ = (X, R), can be solved within a
factor O(log(n + h) - log(clog(n + h))) from the optimal size c.
The approximation factor depends only on the complexity
of W, and not on the size of Gsam. To achieve this, we will
use the algorithm proposed by Brénnimann and Goodrich [4]
for finding near-optimal set covers for set systems with finite
VC-dimension.

The main result from [4] is that, for set systems with
VC-dimension d, it is possible to compute in polynomial-
time a hitting set of size O(dclog(dc)), where ¢ is the size
of the smallest hitting set. To apply this result, we must
first introduce hitting sets and transform our problem into
an instance of the hitting-set problem by computing the
dual of X. Afterwards, we define the VC-dimension of a
set system, and show that the dual of ¥ has VC-dimension
d = O(log(n + h)).

5.1 Hitting Setsand the Vapnik-Cervonenkis
Dimension

Let ¥ = (X,R) be a set system. The dual set system
¥ = (X',R') is defined by X' = R and R' = {R.|z € X},
where R, consists of all the sets R € R that contain .
The dual set system for the art-gallery problem is illustrated
in Figure 7. Notice that the set of guard candidates now
becomes the ground set X'.

A hitting set for ' = (X', R') is a set H' C X' such that
H'NR' # § for every set R’ in R’ (i.e., H' contains members
from all the sets in R'). The problem of finding the optimal
set cover for ¥ is equivalent to that of finding the smallest
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Figure 7: The art-gallery problem can be posed as
a hitting-set problem. The guard candidates are la-
beled and grouped under X', and each set R, € R’ is
the set of samples covering element i in the bound-
ary decomposition. This formulation is the dual of
the one shown in Figure 4. The problem of finding
the best set cover is transformed into that of finding
the best hitting set.

R

Figure 8: Each guard candidate projects a set of
intervals onto the boundary of the environment; X’
can be seen as an arrangement of intervals. A partic-
ular subset A C X' creates its own sub-arrangement
and subdivisions. For any two members of R’ con-
tained inside the same subdivision, RN A = R; N A.

hitting set for X', Let ¢ be the size of the smallest hitting
set (also the size of the smallest set cover).
The VC-dimension of ¥’ is defined as follows:

DEFINITION 5.1  (VAPNIK-CERVONENKIS DIMENSION).
Let Y = (X', R') denote a set system. A set A C X' is said
to be shattered by R’ if for any subset B C A there exists
some R' € R’ such that B= AN R'. The VC-dimension of
Y’ is the cardinality of the largest shattered subset of X'.

In other words, A is shattered if each of its subsets can
be induced by intersecting A with some set in R'. Although
it may not be possible to shatter all sets of size d, as long
as there exists one such set we say that the VC-dimension
is at least d. To state that a set system has VC-dimension
d we must prove that no set of size larger than d can be
shattered.

The VC-dimension of our dual set system ¥’ = (X', R')
is upper bounded by the following theorem:

THEOREM 5.1. (VC-DIMENSION FOR SAMPLED ART-
GALLERIES). The VC-dimension of the dual of the set sys-
tem representing the sampled instance of Problem 2.1 is
bounded by O(log(n + h)).

Proof. We proceed as follows (see Figure 8): The portion
of OW seen by each guard candidate consists of at most

k = 2(n+h) pieces. Thus, X' can be seen as an arrangement
of k-intervals, where a k-interval is a set composed of at
most k disjointed regular intervals. Select A C X' with
d = |A|. The set A defines a sub-arrangement of at most 2kd
subdivisions in W, and any two members of R’ within the
same subdivision induce the same subset of A (i.e. RjNA =
R; N A, if R; and R} are in the same subdivision). In order
to shatter A each of its subsets must be induced, but no R;
can induce more than one subset of A. Therefore, to induce
all the subsets in A there must be at least 2¢ subdivisions
in the sub-arrangement. In other words, it is impossible to
shatter A if:
d 2¢

2kd < 2% = 2%k < h (3)
For d > 4, log(2k) < d/2 = 2k < 2¢/d. This observation,
along with the fact that k¥ = 2(n + h), implies that the VC-
dimension is upper bounded by 2log(4(n + h)). O

5.2 Finding a Near-Optimal Hitting Set

The algorithm proposed by Bréonnimann and Goodrich is
based on finding an e-net that approximates the optimal
hitting set. Let ¥ = (X, R) denote a set system. A set
N C X is said to be an e-net of X if it intersects each set
R € R of cardinality larger than €|X|. We can generalize
this definition by including an additive weight function w
on every subset of X. In the generalized case, an e-net is
required to hit every R with weight at least ew(X).

Let a net finder of size s be an algorithm A that given a
weight function w on X, returns a (1/r)-net of size s(r) for
a set system 3. Also, a verifier is an algorithm B that given
a subset H C X either confirms that H is a hitting set, or
returns a witness set R € R such that RN H = () when H
is not a hitting set of X.

The main result from [4] is that given algorithms A and
B, we can find a hitting set of size at most s(4c) (where c is
the optimal size) by executing the following procedure:

Procedure HITTING-SET(X,R)
1. Select ¢ = 1.

2. Given the net finder A and the verifier B, confirm if
there is a hitting set H of size at most s(2¢):

(a) Set the weights of all the elements in X equal to

1. Set k= 1.
(b) Use A to find a (1/2¢’)-net of size s(2¢’) (call this
net V).

(c) Using B, verify if N is a hitting set. If NV is not a
hitting set, then B returns a set R € R such that
RNN =0.

(d) If N is a hitting set, then H = N and Step 2
exits with TRUE. Else if k > 4c’ log(|X|/c'), then
Step 2 exits with FALSE.

(e) Else set k = k + 1, and double all the weights of
the elements of R. Return to step (b).

3. If Step 2 returns TRUE (i.e., there is a hitting set H of
size ¢'), then the procedure terminates and H is the
near-optimal hitting set. Otherwise, set ¢’ = 2¢’ and
repeat Step 2.



The termination condition in Step 2(d) is a remarkable
result from [4]. Indeed, it can be proven that Step 2 always
returns a hitting set within 4c’ log(|X|/c’) iterations if one
exists. Because Step 2 returns a hitting set of size s(2¢'), and
because of the doubling condition in Step 3, the hitting set
H is of size at most s(4c). The overall cost of this procedure
is O(CIOg(|X‘/C))(TA(|X|7 |R|7 C) +Ts (lea |R|7 C)), where T'a
and T'g are the running times of the net finder and verifier,
respectively.

¥ = (X, R) is said to have a subsystem oracle of degree D
if given a subset A C X it is possible in time O(|A|P+1!) to
compute the subsystem (A, R|4) (where R4 is the family of
subsets B C A that can be generated by intersecting A with
the sets in R). Likewise, the oracle is a witness oracle if for
any B € R4, a witness R € R satisfying that B = RN A
can be found in time O(|X|).

If the subsystem oracle exists, it has been shown [3] that
a (1/r)-net of size O(drlog(dr)) can be computed in time
0(d)*"rP log? (rd)| X | for a set system ¥ of VC-dimension d.
Therefore, the running time for the net finder is linear in
|X|. For the verifier, it is simply a matter of running the
subsystem oracle on H. If () is not in R then H is a hitting
set. Otherwise, run the witness oracle to find a witness R
that verifies that 0 is in R - Hence, the running time for
the verifier is also linear on | X]|.

Under the above conditions, the algorithm HITTING-SET
returns a hitting set of size O(dclog(de)) in polynomial time.
We only have to prove now that the dual set system of the
sampled instance of the art-gallery problem admits a subsys-
tem oracle of finite degree. Afterwards, it is straightforward
to prove the main result of this section.

THEOREM 5.2. (SUBSYSTEM ORACLE FOR SAMPLED
ART-GALLERIES). Let X' be the dual of the set system rep-
resenting the sampled instance of Problem 2.1. ¥’ admits a
subsystem oracle with running time O((n + h)|A|log|Al).

The proof for this theorem is analogous to that of Theo-
rem 5.1. X' can be seen as an arrangement of k-intervals,
and any A C X' creates a sub-arrangement of at most 2k|A|
subdivisions (recall Figure 8). To compute R4 we merely
have to sort and sweep these subdivisions. This has cost
O((n + h)|Allog |A|) because k is bounded by O(n + h), and
the sorting operation is done over |A| pre-sorted lists of size
O(n + h).

THEOREM 5.3. (NEAR OPTIMAL COVERS FOR SAMPLED
ART-GALLERIES). For the sampled instance of Problem 2.1,
a set of guards of size at most O(clog(n + h) - log(clog(n + h)))
can be found in polynomial time, where c is the optimal size.

Proof. Finding the optimal cover for the sampled art-
gallery problem is equivalent to that of computing the op-
timal hitting set for the dual problem. Theorem 5.1 states
that the dual VC-dimension of the problem is O(log(n + h)),
while Theorem 5.2 states that our problem admits a sub-
system oracle of finite degree. We satisfy all the conditions
stated in [4], and is therefore possible to compute a set of
guards of size at most O(clog(n + h) - log(clog(n + h))). [

Remarks. The quality of the approximation obtained here
is not a function of m. This number only affects the runtime
of the algorithm. Of course, as discussed in Section 4, the
value of m also affects the probability that the near-optimal

solution to the sampled problem is in fact a near-optimal
solution to Problem 2.1.

6. CONCLUSION AND EXTENSIONS

The computation of efficient motions for high-level vision-
oriented operations is a problem that has received little at-
tention so far. This paper presents a novel approach to
reduce the number of sensing operations during the con-
struction of large models. Specifically, we incorporated sen-
sor limitations into a practical sensor placement algorithm.
This algorithm is based on a random-sampling strategy that
transforms the art-gallery problem into an instance of the
set cover problem. This paper also shows how to solve this
set cover problem efficiently.

An interesting topic for future research is to study place-
ment strategies that address image registration issues. Due
to errors in robot localization, views captured at different
locations must be aligned prior to the construction of a con-
sistent model. Reliable alignment techniques are essential
in this context, which by necessity require some degree of
overlap between images [18]. This fact further constrains
the placement of guards by demanding a minimum overlap
between their views. Adding this new constraint to the ran-
domized strategy presented here is straightforward. But the
problem of computing the image sequence (i.e., the sensing
order) that minimizes registration errors remains open.

An obvious extension to the sensor placement problem
is to generate routes instead of positions for tasks involv-
ing mobile sensors. This is a simple statement that has
profound consequences. If the cost of sensing is very ex-
peunsive relative to the cost of motion — in time, resources,
or computation — then motion costs can be neglected and
the problem becomes identical to the one addressed in Sec-
tion 2. Conversely, the cost of sensing can be neglected when
sensing is cheap compared to the cost of motion. In this sce-
nario, the mobile device is assumed to be capable of almost
continuous sensing. The planning problem now becomes the
watchman route problem [15]: Find the shortest closed path
from which the entire workspace is visible. Extending the
randomized techniques presented in this paper to compute
watchman routes is an interesting topic for future research.

A more difficult problem is when neither the cost of sens-
ing nor the cost of motion can be neglected. This is a more
general problem, and the art-gallery and watchman-route
problems become special cases. In practice, the problem is
complicated by other considerations such as fuel and total
distance traveled. This topic remains largely unexplored,
but some preliminary work exists [8].

The algorithm presented in this paper can be embedded
into a larger autonomous model-building system as follows.
Once the set of guard locations is computed, a graph is
constructed using these locations as nodes. A pair of nodes
(g1, g2) in this graph is connected if two conditions hold true:
(a) The line segment connecting g1 with g2 does not intersect
AW, and (b) there is a minimum overlap between the visible
regions at g1 and go. Afterwards, the graph can be processed
using a traveling-salesman algorithm in order to compute the
shortest route (under some metric) connecting all of these
locations. The resulting system produces a tour that a robot
may follow in order to build a large model of a building, in
spite of image registration constraints. The computed tour
will not be optimal, but from the engineering perspective it
represents a practical solution. Generating optimal routes



for mobile sensors under image-registration constraints is an
open problem, and will probably remain so for some time.

7. ACKNOWLEDGEMENTS

We would like to thank Alon Efrat for pointing out the
potential of using the concept of VC-dimension to analyze
the performance of the randomized art-gallery algorithm;
and Dan Halperin, T.M. Murali and David Hsu for their
observations on how to improve the bound in Theorem 5.1.
We also thank Leo Guibas for his comments and suggestions.

This work was funded by DARPA contract DAAEQ7-98-
L027, ARO MURI grant DAAH04-96-1-007 and NSF grant
115-9619625.

8. REFERENCES

[1] J.E. Banta, Y. Zhien, X.Z. Wang, G. Zhang, M.T.
Smith, and M.A. Abidi. A “next-best-view” algorithm
for three-dimensional scene reconstruction using range
images. In SPIE, volume 2588, pages 418-29, 1995.

[2] M. Bern. Triangulations. In J.E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and
Computational Geometry, pages 413-428. CRC Press,
Boca Raton, FL, 1997.

[3] H. Bronnimann, B. Chazelle, and J. Matousek.
Product range spaces, sensitive sampling, and
derandomization. In Proc. of 84th IEEE Symposium
on Foundations of Computer Science, pages 400—409,
1993.

[4] H. Brénnimann and M.T. Goodrich. Almost optimal
set covers in finite vc-dimension. Discrete and
Computational Geometry, 14:463-479, 1995.

[5] C. I. Conolly. The determination of next best views.
In IEEE Int. Conf. on Robotics and Automation,
pages 432-435, 1985.

[6] T.H. Cormen, C.E. Leiserson, and R.L. Rivest.
Introduction to Algorithms. MIT Press, Cambridge,
MA, 1990.

[7] B. Curless and M. Levoy. A volumetric method for
building complex models from range images. In Proc.
ACM SIGGRAPH, pages 303-312, August 1996.

[8] T. Danner and L. Kavraki. Randomized planning for
short inspection paths. In Proc. 2000 IEEE Int’l Conf.
Robotics & and Automation, pages 971-976, April
2000.

[9] H. Gonzélez-Banos, A. Efrat, J.C. Latombe, E. Mao,
and T.M. Murali. Planning robot motion strategies for
efficient model construction. In J. Hollerbach and
D. Koditschek, editors, Robotics Research - The Ninth
Int. Symp., Salt Lake City, UT, 1999. Springer-Verlag.

[10] M. Levoy and P. Hanrahan. Light field rendering. In
Proc. ACM SIGGRAPH, pages 31-42, 1996.

[11] J. Maver and R. Bajcsy. Occlusions as a guide for
planning the next view. IEEE Trans. Pattern Analysis
and Machine Intelligence, 15(5):417-433, May 1993.

[12] J. O’'Rourke. Art Gallery Theorems and Algorithms.
Oxford University Press, New York, NY, 1987.

[13] J. O’Rourke. Visibility. In J.E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and
Computational Geometry, pages 467-479. CRC Press,
Boca Raton, FL, 1997.

[14] R. Pito. A solution to the next best view problem for
automated cad model acquisition of free-form objects
using range cameras. Technical Report 95-23, GRASP
Lab, University of Pennsylvania, May 1995.

[15] T. Shermer. Recent results in art galleries. Proc.
IEEE, 80(9):1384-1399, September 1992,

[16] Petr Slavik. A tight analysis of the greedy algorithm
for set cover. Journal of Algorithms, 25(2):237-254,
November 1997.

[17] J. Snoeyink. Point location. In J.E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and
Computational Geometry, pages 559-574. CRC Press,
Boca Raton, FL, 1997.

[18] G. Turk and M. Levoy. Zippered polygon meshes from
range images. In Proc. ACM SIGGRAPH, pages
311-318, 1994.

[19] Jorge Urrutia. Art gallery and illumination problems.
In J. R. Sack and J. Urrutia, editors, Hanbook on
Computational Geometry, pages 387-434. Elsevier
Science Publishers, 1997.

[20] L. Wixson. Viewpoint selection for visual search. In
Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, pages 800-805, 1994.



