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Abstract

We give an algorithm to compute all the local peaks in the k-level of an
arrangement of n lines in O(n log n) + Õ((kn)2/3) time. We can also find
τ largest peaks in O(n log2 n) + Õ((τn)2/3) time. Moreover, we consider
the longest edge in a parametric minimum spanning tree (in other words,
a bottleneck edge for connectivity), and give an algorithm to compute
the parameter value (within a given interval) maximizing/minimizing the
length of the longest edge in MST. The time complexity is Õ(n8/7

k
1/7 +

nk
1/3).

1 Introduction

The k-level of an arrangement of lines is one of popular geometric objects in
computational geometry [12, 29]. The k-level is the union of k-th lowest (closed)
line-segments of the arrangement, and it can be considered as the trajectory of
the k-th smallest element in a set of n data each of which depends on a parameter
x linearly. Thus, the k-level is a special case of the locus of the largest element
of the minimum base of a parametric matroid [17, 18, 13, 19, 21] with one
parameter; in precise, the k-level is the locus of the maximum element in the
minimum base of a parametric uniform matroid of rank k. From a different
aspect, the k-level is a dual concept of the k-set [12], and the complexity gk(n)
of the k-level of an arrangement of n lines is asymptotically same as the number
of different k-sets in a set of n points in a plane.

Lovász [23] first gave a nontrivial O(n3/2) upper bound for g⌊n/2⌋(n), and
also introduced Straus’s Ω(n logn) lower bound. The current best upper and

lower bounds for gk(n) are O(k1/3n) [11] and 2Ω(
√

log k)n [28], respectively. The
upper bound holds for any parametric matroid (with a linear parameter) of rank
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k in n elements [13]. Moreover, Cole et al. gave an O(gk(n) log
2 n) [8] time al-

gorithm to compute the k-level; this time complexity has been improved due to
improvement of algoirthms for the dynamic convex hull computation employed
as a key subroutine [5, 6]. The current best time complexity (randomized ex-
pected time) is O(gk(n)α(gk(n)) log n) time given by Har-Peled [20], where α()
is the inverse Ackermann function. Thus, the time complexity is very close to
O(gk(n) logn).

However, we often need a compact “outline” of a trajectory of a parametric
problem by using a small number of characteristic points on it. Such an out-
line, generally speaking, will be useful as a compact data to control parametric
problems, and possibly utilized in designing kinetic data structures [4, 3]. Local
peaks in the trajectory are considered to be natural characteristic points. A key
observation to investigate the k-level is that it has at most 2k−1 local peaks (at
most k maximal peaks and at most k−1 minimal peaks) [2, 13]. One interesting
problem is to compute all the local peaks efficiently. This enables us to give a
decomposition of the k-level into monotone chains, and hence create an outline
with a size O(k) of the k-level.

We give an algorithm to compute all the local peaks in the k-level of an
arrangement of n lines in O(n log n) + Õ((kn)2/3) time, where Õ is the big-O
notation ignoring polylogarithmic factors. The current estimate for the poly-
logarithmic factor of the second term is less than log5 n; however we do not give
it explicitly in this paper, since it is probably loose and will confuse readers.
The time complexity is better than O(gk(n) log n) for some restricted range of
k even if the current lower bound of gk(n) by Tóth [28] is tight. If we substitute
the current O(k1/3n) upper bound to gk(n), the time complexity is better than
O(gk(n) logn) if k = O(n/ logc n), where c is a suitable constant.

Another interesting question is how fast we can compute τ largest maximal
peaks for τ ≤ k. If τ = 1, Roos and Widmayer [26] gave a neat method to
compute the maximum point in the k-level in O(n log n + (n − k) log2(n − k))
time by using an efficient slope selection algorithm. We can compute τ largest
peaks in O(n log2 n) + Õ((τn)2/3) time by combining Roos and Widmayer’s
technique and the above mentioned method for computing all the peaks.

Finally, we investigate whether we can analogously treat some parametric
matroids: Compute peaks in the trajectory of the largest element in the mini-
mum weight base of a parametric matroid. In particular, the graphic matroid
is of wide interest [13, 17, 19]: Consider a weighted undirected connected graph
G(x) with k nodes and n edges, such that each edge has a parametric weight
that is linear in a parameter x. Here, k and n become the rank and size of the
graphic matroid, respectively. Let T (x) be the minimum weight spanning tree
of G(x) and consider the longest edge e(x) in T (x). Note that the minimum
weight spanning tree becomes a spanning tree that minimizes the length of the
longest edge. We call the edge e(x) the spanning bottleneck edge(SBE), and
write SBE(x) and wSBE(x) for e(x) and its weight, respectively. The naming
comes from the fact that wSBE(x) is the minimum value of w such that the
subgraph of G(x) consisting of edges with weights less than or equal to w is
connected.
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The following problems are important in sensitivity analysis: (1). Compute
the maximum value and the minimum value of wSBE(x) for x ∈ I, where I is a
given interval. (2). Compute all peaks of the trajectory y = wSBE(x).

For example, imagine a system represented by the graph G where a link
represented by an edge with a weight larger than a (controllable) threshold value
becomes unreliable, and the edge weight depends on a parameter x linearly
within an interval I. For a given subinterval J ⊂ I, we want to know the
threshold value of the edge weights so that the graph remains connected for
every x ∈ J . This can be reduced to the problem (1). Moreover, if we have
computed all peaks in I as a preprocessing (problem (2)), we can efficiently query
for the threshold value, provided that we have an efficient method (shown in
Section 4) to compute wSBE(x) at endpoints of J .

Both of problems (1) and (2) can be solved by computing the whole picture
of the transitions of the minimum spanning trees, and the time complexity of
the computation is O(kn logn) by using an algoirthm given by Fernandez-Baca

et al. [15]. Note that O(hk(n)n
2/3 log3/4) time output-sensitive algorithm of

Agarwal et al.[3] is better for some range of k, where hk(n) is the number of of
transitions of the minimum spanning tree. An O(k1/3n) upper bound [11] and
an Ω(nα(k)) lower bound [13] are known for hk(n).

Roos and Widmayer’s method can be directly applied to the first problem.
By using dynamic maintenance algorithms [14] of a minimum spanning tree,
the time complexity becomes O(

√
kn logn). Combined with range searching

techniques, we improve the time complexity to Õ(n8/7k1/7 + nk1/3). We give
some discussion on the second problem, although theoretical improvement on
the O(kn logn) time method remains open.

2 Preliminaries

2.1 Roos and Widmayer’s algorithm

Given a setH of n lines in the x-y plane, let Lk be the k-level of the arrangement
of H. Let p be a point on Lk that has the maximum y-value ymax. Without loss
of generality, we assume that such a point is unique. For any given value α, one
can decide whether ymax ≥ α or not in O(n log n) time: We sweep on the line h :
y = α from the leftmost intersection point to the right to compute the levels of all
intersection points on h with lines in the arrangement. If all intersection points
are above the k-level, α > ymax; otherwise, α ≤ ymax. By using this decision
method, a binary search algorithm works to compute p, and a weakly polynomial
time algorithm with a time complexity O(n log n log Γ) can be obtained, if each
coefficient of the lines is a quotient number of integers with log Γ bits. Roos and
Widmayer[26] applied an efficient slope selection method [7] to transform the
binary search algorithm into strongly polynomial, and gave an O(n log2 n) time
algorithm. They further improved the time complexity to O(n logn+ k log2 k)
for computing the minimum and O(n log n+ (n− k) log2(n− k)) for computing
the maximum.
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2.2 Range query and Matoušek’s point set decomposition

We use well-known (although sophisticated) simplex range query data struc-
tures [1]: We construct a data structure for a set S of n points in a plane such
that given a query halfplane H , we can compute the number of points in S
located in H efficiently. If we spend O(m) time for constructing the data space
for n logn ≤ m ≤ n2, the query time is Õ(n/m1/2). The query can be done in
polylogarithmic time by using O(n/m1/2) processors. The data structure uses
Õ(m) space, although we do not discuss space complexity in this paper. More-
over, we can query the number of points in the intersection of two (or three)
halfplanes in the same query time if we ignore a polylogarithmic factor. We can
also do reporting query by spending additional O(N) time if the region contains
N points.

Given a set H of n lines in a plane, we consider the set D(H) of their dual
points: The dual point of a line y = ax − b is (a, b). We construct a range
searching data structure for D(H). Given a point p = (x0, y0), the set of dual
points of lines below p is the set of points in D(H) located below the line
Y = x0X − y0, where X and Y correspond to coordinates of the dual plane.
Thus, we can compute the level of the point p in the arrangement of n lines by
using half-plane range searching. Moreover, we have the highest line below p in
the same query time. Also, we can query the number of lines which lie below
both of a pair of query points.

A main building block for the range query is the point set decomposition
structure of Matoušek [24], which we also need to utilize directly (we only de-
scribe its two-dimensional version):

Theorem 2.1 (Matoušek) Given a set S of n points in the plane, for any
given r < n, we can subdivide S into r disjoint subsets Si (i = 1, 2, . . . , r)
such that |Si| ≤ 2n/r satisfying the following condition: Each Si is enclosed
in a triangle σi, and any line in the plane cuts at most cr1/2 triangles among
σ1, σ2, . . . , σr where c is a constant independent of n and r. Such a decomposi-
tion can be constructed in O(n log n) time.

3 Computing all peaks in k-level

We assume k ≤ n/2 for simplicity from now on; if k > n/2, replace k by n− k
and exchange maximal and minimal in the statements. A key observation for
the k-level is that it is a subset of a union of k concave chains such that all
concave vertices of the k-level are vertices of these concave chains [2]; thus, a
k-level has at most k maximal peaks and k − 1 minimal peaks. We want to
compute all the local peaks in a given interval I of the x-coordinate value.

We apply a version of parametric search paradigm [25, 27]. However, before
applying the parametric search, we start with a simpler “k-branching binary
search” method. Without loss of generality, we assume that no line in the
arrangement is horizontal nor vertical.
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We prepare two key-subroutines: one-shot query and peak counting: Let
p(x0) be the point on the k-level at the x-coordinate value x0. Let ℓ−k (x0)
(resp. ℓ+k (x0)) be the line in the k-level at the x-coordinate value x0 − ǫ (resp.
x0 + ǫ) for infinitesimally small ǫ > 0. If x0 is not an x-coordinate value of a
vertex on the k-level, ℓ−k (x0) = ℓ+k (x0). The above operation to compute the
point (together with lines containing the point) on Lk at a given x-coordinate
value is called one-shot query. One-shot query is an analogue of ray shooting [1],
and thus the following lemma is basically well-known. The complexity q(n,m)
given in the lemma is called one-shot query-time for the k-level:

Lemma 3.1 If we preprocess the lines in H with O(m) time for n logn < m <
n2, given an x-coordinate value x0, we can compute p(x0), ℓ

−
k (x0) and ℓ+k (x0) in

q(n,m) = Õ(n/m1/2) time, and also in polylogarithmic time by using O(n/m1/2)
processors.

Proof By using the method given in the preliminary section, we can compute
the level of any given point (x0, y0) in polylogarithmic time by using O(n/m1/2)
processors. We now apply parametric searching to have the sequential time
bound to compute the point p(x0). A parametric searching algorithm is usually
stated as a sequential algorithm; however, it is naturally a parallel algorithm
if we use a parallel decision algorithm and also a parallel sorting algorithm.
We remark that we can do it easier without using the parametric searching if
we examine the range searching method in precise; however, we omit it in this
paper. ✷

The peak-counting is a routine to compute the number of peaks of the k-level
in a given interval J = [x0, x1] of x-coordinate values efficiently. The following
elementary lemma is essential:

Lemma 3.2 Let f(x0) and f(x1) are numbers of positive-slope lines below or
on the k-level at x0 and x1, respectively. Then, the number of maximal peaks of
Lk in the interval J is f(x0)− f(x1).

Proof At-most-k-level (the part of the arrangement below k + 1-level) is a
union of k concave chains such that all concave peaks in the chains appear in
the k-level [2]. If a concave chain among them has a peak in J , the slope of the
chain must be changed from positive to negative. Thus, the number of maximal
peaks within J is the difference between the numbers of positive slope lines at
two endpoints. ✷

We remark that f(x0)−f(x1) equals the number of positive slope lines inter-
secting the segment between p(x0) and p(x1) if the segment has a nonpositive
slope.

Lemma 3.3 For a given interval J of x-coordinate value, the number κ(J) of
peaks of Lk in J can be computed in O(q(n,m)) time if we preprocess the lines
with O(m) time. Also, the number of maximal peaks can be computed in
O(q(n,m)) time.
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Proof If we construct the dual of range search data structure for the set
of lines with positive slopes, the number of positive slope lines below a given
point (x0, y0) can be computed in O(q(n,m)) time. Hence, f(x0) and f(x1)
can be computed in O(q(n,m)) time, and the number of maximal peaks can be
computed by using Lemma 3. The number of minimal peaks is easily computed
from the number of maximal peaks and slopes of the k-level at endpoints. ✷

Now, we can apply a binary search paradigm to design a weakly-polynomial
time algorithm. First, for the input interval I, we compute the number of
peaks κ = κ(I) within the interval. The time complexity for this initialization
is negligible, and obviously κ ≤ 2k − 1. Next, we construct a data structure
for the one-shot query in O(m) time, where the choice of m will be explained
later. Suppose that coefficients of the equations of lines are quotient numbers
of log Γ bit integers. We apply κ-branching binary search to find all peaks;
At each stage of the binary search, we have at most κ subintervals which has
at least one local peak of Lk (such a subinterval is called an active interval),
and we recursively search in active subintervals. Thus, after examining κ log Γ
candidates of x-coordinate values, we can find all of the peaks.

Proposition 3.4 All the local peaks of Ik in the interval I can be computed in
O(κq(n,m) log Γ) time.

To make the complexity into strongly polynomial, we apply parametric
search by using the parallel algorithm for the one-shot query given in Lemma 3
as its guide algorithm. We run the guide algorithm without inputting the pa-
rameter value (in our case, an x-coordinate value), and decide the x-coordinate
values of the peaks by using the sequential one-shot query and the counting
algorithm of Lemma 3 as decision algorithms. The counting algorithm needs
two values of the parameter, which corresponds to endpoints of each of intervals
obtained by splitting active intervals in the parametric searching process. Usu-
ally, parametric searching method solves optimization problems on monotone or
convex functions. Here, k-level is neither monotone nor convex, but it consists
of κ monotone fragments. Thus, while running the guide algorithm, there are
at most κ different critical parameter values to determine all the comparisons
in the current parallel step that are necessary to proceed into the next parallel
step. In precise, the number of different choices is the number of active intervals
obtained breaking I by the critical parameter values found so far in the guide
algorithm. We make a clone of the guide algorithm for each active interval.
If the current interval is split into f active subintervals, f − 1 new clones are
created. Naturally, we create at most κ clones in our process. There is only one
critical parameter value to determine the comparisons in a “usual” parametric
search, and such a value can be found if we run the decision algorithm O(logN)
times if the guide algorithm is a parallel algorithm on N processors. In our case,
we run the decision algorithm O(κ logN) times at each level. Thus, we obtain
the following theorem:

Theorem 3.5 All the peaks on Lk within an interval I can be computed in
O(n logn) + Õ((κn)2/3) time if I has κ local peaks.
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Proof The parametric searching method gives Õ(κq(n,m)) time complexity
apart from the O(m) preprocessing time. We balance κq(n,m) = Õ(κn/m1/2)
and m to have m = (κn)2/3. If (κn)2/3 < n, we instead use m = n logn. This
gives the time complexity. ✷

Since κ ≤ 2k, we have the following:

Corollary 3.6 All the peaks on Lk can be computed in O(n log n)+ Õ((kn)2/3)
time.

3.1 Computing selected peaks

When κ is large, it may be too expensive to compute all the local peaks. Suppose
that we want to compute τ largest maximal peaks in the input interval I for
τ ≪ κ more efficiently than computing all the peaks. This can be done by
combining Roos and Widmayer’s algorithm and the algorithm given above.

We first run a binary search process with respect to y-coordinate values simi-
larly to Roos and Widmayer’s algorithm. At the intersection of the arrangement
with a horizontal line y = y0, we compute intervals on the line which are below
the k-level (we call them semi-active intervals) in O(n logn) time. We next com-
pute the sum s(y0) of numbers of local peaks in the semi-active intervals. We
could apply our counting method of Lemma 3 for each semi-active intervals to
compute the sum of maximal peaks in the intervals by using O(τq(n,m)) time.
More simply, we can compute it in O(n log n) time by counting the number of
intersecting positive slope lines with the horizontal line during the sweep. In
precise, we also need information of the arrangement at endpoints of the input
interval I if one (or both) of them is below k-level (we omit details).

If s(y0) is not between τ and 2τ , we continue binary search on y0: If s(y0) >
2τ , we increase y0 while if s(y0) < τ , we decrease y0. Thus, we can eventually
find a value y0 such that τ ≤ s(y0) ≤ 2τ . We have spent O(n log2 n) time so far.
Now, we search all peaks in the union of active intervals by using the method
given in the previous section. The following theorem is easy to see:

Theorem 3.7 We can compute τ largest maximal peaks of Lk in an interval
I in O(n log2 n) + Õ((τn)2/3) time. We can also compute τ largest local peaks
(including both maximal and minimal peaks) in the same time complexity.

Note that if we only use Roos and Widmayer’s algorithm in a naive fashion
to find τ largest peaks, it would cost O(τn log2 n) time. Analogously, we can
compute the τ -smallest minimal peaks.

Theorem 3.8 We can compute τ smallest minimal peaks of Lk in an interval
I in O(n log2 n)+ Õ((τn)2/3) time. We can also compute τ smallest local peaks
(including both maximal and minimal peaks) in the same time complexity.

For this τ smallest peak finding problem, we can modify Roos and Wid-
mayer’s method [26] to compute them in O(n log2 n+kτ log2 k) time. Although
n + (τn)2/3 ≤ 2(n + kτ) always holds, the time complexity is better than the
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one in Theorem 3.1 by a polylogarithmic factor if n1/2 log−c n < k < n1/2 logc n
for some constant c. Moreover, the algorithm does not use range search data
structure, and hence much simpler and uses smaller data space.

Proposition 3.9 The τ smallest local peaks in an interval I can be found in
O(n log2 n+ kτ log2 k) time.

Proof First we search for a horizontal line h such that it intersects k-level,
and the number of peaks below it is not less than τ . Such a line h can be found
in O(n log2 n) time. Next, let v and w be the leftmost intersection and the
rightmost intersection with the k-level on h, and let J be the interval between
them. If the k-level at an endpoint of the input interval I is below h, we
connect the point on k-level at the x-value of the endpoint to J with a segment
to form a chain C with at most three segments. Let H0 be the set of lines
in the arrangement intersecting with the chain C. The cardinality of H0 is at
most 2k because of Lemma 3. Finally, we find all peaks below h by using the
τ -branching binary search. Here, by using the windowing method of [26], we
should only take care of lines in H0 together with lines below endpoints of the
chain C. There are at most 4k such lines. Hence, this second step can be done
in O(kτ log2 k) time. ✷

4 Bottleneck edge length in a

parametric spanning tree

Next, we consider the parametric spanning tree problem. Consider a connected
graph G = (V,E) with k nodes and n edges. Because of the connectivity,
k − 1 ≤ n ≤ k(k + 1)/2. For each edge e ∈ E, we associate a weight function
we(x), which is linear on a parameter x. We assume that the arrangement
generated by lines y = we(x) : e ∈ E is simple, i.e., no three lines intersect at a
point. We can remove this assumption by giving a symbolic perturbation. G is
denoted by G(x) if it is considered as a weighted graph with parametric weights.
For a given value x, we consider the minimum spanning tree T (x) of G(x).

It is known that the number of transitions of the structure of the minimum
spanning tree T (x) is O(k1/3n), and all the transitions can be computed in
O(kn logn) time [15]. Moreover, the average edge weight in the minimum span-
ning tree is a concave function in x, and the value of x maximizing the average
edge weight of T (x) can be computed in O(n log n) time [15].

As parametric matroid problems, the average edge weight is a counterpart of
the average of y-values of k lines below (or on) the k-level. A natural counterpart
of the k-level itself in the minimum spanning tree is the longest (i.e. maximum
weight) edge in the minimum spanning tree. The edge is also called the spanning
bottleneck edge at x (SBE(x) in short), and its weight is denoted by wSBE(x).
It is easily observed that WSBE(x) is the minimum value of w such that the
subgraph of G(x) constructed from the set of edges whose weights are less than
or equal to w is connected.
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It is natural and important problem in sensitivity analysis [18] to trace the
trajectory y = wSBE(x) of the weight of SBE(x). Analogously to the k-level,
there are at most k maximal peaks in the trajectory y = wSBE(x). We want to
compute peaks in the trajectory.

4.1 One-shot query for the longest edge in MST

We first consider efficient query for SBE(x0) at any given value of x0 of the
parameter. This query is called one-shot query for the SBE. A naive method
is the following: First construct T (x0) in O(n) time, and select its longest edge.
Instead, we use the Matoušek’s set partition. In the dual space, the dual points
of n weight functions of the edges are partitioned into r subsets of size O(n/r).
Each subset is contained in a triangle, and O(r1/2) triangles are cut by any
query line.

Accordingly, we partition the set of n edges into r subsets each has O(n/r)
edges. For each subset, we compute a spanning forest (irrelevant to edge
weights) and store the connected components except singletons. Thus, each
component has a forest with O(min{k, n/r}) edges. This computation can be
done in O(n) additional time.

If we are given a parameter value x0, we sort O(r) vertices of the triangles
with respect to the inner product of them with the vector (x0, 1). We do binary
search on this sorting list. We guess a vertex v, and consider a line ℓ : Y =
x0X + c which goes through v. We recognize the triangles which are below ℓ;
thus, the edges in the subsets associated with the triangles has weights less than
c. We construct a spanning forest F of the union of forests in these subsets:
since they have O(rk) edges, this can be done in O(rk) time. If the forest F is
a spanning tree, we decide that v is too large in the sorting list, and continue
the binary search.

Otherwise, we consider the subsets associated with the triangles cut by ℓ.
They contain O(n/r1/2) points in total. We sort them with respect to the
weights, and greedily insert them into F until we have a spanning tree. If we
do not have a spanning tree, we decide v is too small, and continue the binary
search. If we have a spanning tree, we decide v is a candidate, but it may be
too large, and continue to search for the lowest vertex v satisfying the above
condition, and return the longest edge in the tree for that v. Note that the
spanning tree is not a minimum spanning tree in general; however, we correctly
recognize the longest edge in a minimum spanning tree.

This process needs O(rk + n/r1/2) time, and we do this process O(log r)
times during the binary search. Thus, if we set r = (n/k)2/3, the time com-
plexity is O(n2/3k1/3 log(n/k)), which is slightly better than O(n) if k = o(n).
By applying a hierarchical subdivision, we can further improve it: We fist start
r = r1, and decompose the subset of size O(r1n) into r2 smaller subsets, where

r2 = r
1/2
1 , and we further continue the refinement for ri = r

1/2
i−1 until ri becomes

below a constant. The query time becomes

k(r1 + r
1/2
1 r2 + . . . + (r1r2 . . . ri−1)

1/2ri) + n/(r1r2 . . . ri)
1/2. Setting r1 =
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(n/k)1/2, this enables Õ((nk)1/2) time computation for SBE(x0). Similarly
to the case of halfspace range searching, we can combine hierarchical cutting [9]
of the arrangement to have a preprocess-query trade-off (we omit details in this
version). Indeed, we have the following proposition:

Proposition 4.1 If we spend Õ(m) preprocessing time for n ≤ m, we can do
the one-shot query for SBE in
Õ(n/(m/k)1/2 + k) time.

Moreover, we will later use the following two-shot reporting query for a span-
ning forest, which reports a spanning forest consisting of edges whose weight
functions are below both of given two query points (x0, y0) and (x1, y1). This
can be done similarly to one-shot query (this is a counterpart of the simplex
range searching if the one-shot query is a counterpart of the halfplane range
searching).

Proposition 4.2 If we spend Õ(m) preprocessing time for n ≤ m, we can do
the two-shot reporting query in
Õ(n/(m/k)1/2 + k) time.

4.2 Computing the maximum peak

Let us consider the problem of computing the maximum peak in I. First, we
straightforwardly apply Roos-Widmayer’s algorithm. For a given y-value y0, we
want to decide whether Maxx∈IwSBE(x) ≤ y0 or not. We dynamically update
the spanning forest associated with edges with weight below y0 from x = x0 to
x = x1 if I = [x0, x1]. If we find a value x ∈ I such that the spanning forest
becomes a spanning tree, we know Maxx∈IwSBE(x) ≤ y0. It costs O(k1/2)
time to update a minimum spanning forest for insertion and deletion of edges.
Suppose that we sweep on the line y = y0 updating the minimum spanning
forest. The line y = y0 has at most n intersections with lines associated with
weight functions, and hence the method needs O(nk1/2) time for the decision.
Thus, the maximum peak can be found in O(nk1/2 logn) time.

We try to improve the above time complexity. We subdivide the line y =
y0 into ⌈n/s⌉ intervals such that each interval contains at most s intersection
points. For each interval Ii = [xi, xi+1], we perform the two-shot reporting
query at (xi, y0) and (xi+1, y0). The reported forest F is constructed from
edges whose weight is less than y0 both at x = xi and x = xi+1. If the forest
has more than s+ 1 connected components, it is impossible that wSBE(t) ≤ y0
for a t ∈ Ii. Otherwise, we dynamically maintain the spanning tree, where we
contract nodes into at most s + 1 super nodes each of which associate with a
connected component of the forest F . Our graph has only s edges, and hence
the update can be done O(

√
s) time per intersection.

Hence, total time complexity becomes
Õ(n

√
s+ (n/s)[n/(m/k)1/2 + k] +m).

If we optimize this, we have Õ(n8/7k1/7 + nk1/3). This is an improvement over
O(nk1/2), since n ≤ k(k + 1)/2.
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The minimum of wSBE(x) can be analogously computed. Hence, we have
the following theorem:

Theorem 4.3 For a given interval I of the parameter value x, we can compute
both the maximum and the minimum of wSBE(x) for x ∈ I in Õ(n8/7k1/7 +
nk1/3) time.

We can generalize the above theorem for the truncated matroid of the graphic
matroid to obtain the following proposition (we omit the proof):

Proposition 4.4 For a constant c, let wSBE−c(x) be the minimum value of
w such that the set of edges in G(x) with weights less than or equal to w has
at most c connected components. We can compute both the maximum and the
minimum of wSBE−c(x) in Õ(n8/7k1/7 + nk1/3) time.

4.3 Computing all local peaks for SBE

It is desired to apply the method of computing all peaks in the k-level to SBE
in a parametric graph. It is known that there are at most k maximal peaks in
y = wSBE(x). Unfortunately, we have no good method to know the number of
peaks within an interval I = [x0, x1] exactly, since we do not have a property
that is a counterpart of Lemma 3. The only known method for the authors is to
compute the minimum spanning trees T (x0) and T (x1) explicitly, and compute
the difference d(I) between the number of edges whose weight functions are
positive slopes. For any disjoint set of intervals, the sum of d(I) over the intervals
is at most k, and d(I) gives an upper bound of maximal peaks of y = wSBE(x)
within I. However, it is often an overestimate, since d(I) gives the number of
maximal peaks of k trajectories of weights of all edges (not only maximum one)
in the parametric minimum spanning tree, where we only include peaks where
an edge in the spanning tree is replaced by an edge outside the spanning tree.

By using the above observation, we have an Õ(kf(n, k)) time algorithm
if we have an algorithm to compute T (x0) for a given x0 in O(f(n, k)) time.
Unfortunately, we only have f(n, k) = O(n), which leads to an Õ(kn) time
algorithm, which is inferior to a known algorithm to compute all transitions of
the parametric minimum spanning tree. We can compute τ largest peaks in
transitions of edge weights in MST in Õ(τn) time, if we include all peaks of all
edges in MST; however, the number of peaks appeared at the transitions of the
longest edge among them may be much smaller than τ .

Although the above method is not attractive for the minimum spanning tree,
the method is applicable to any parametric matroid, and hence it is useful if
we do not have a dynamic algorithm to maintain a minimum weight base. The
current O(kn log n) time algorithm to compute the transitions of parametric
minimum spanning tree needs O(k2/3) time method (indeed, it can be done
in O(k1/2) time) to update a minimum spanning tree. Thus, the analogue of
the algorithm needs Õ(k1/3nq + kn) time to compute all the transitions of a
parametric matroid of rank k, where q is the time complexity to update its
minimum weight base.
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5 Concluding remarks

The number of maximal peaks in a k-level is known to be at most kCd (number
of combinations choosing d elements from k elements) if we have d dimensions
[10]. Hence, this is much smaller than the complexity of whole arrangement,
especially if k is much smaller than n. However, to the author’s knowledge, the
problem of computing peaks in the k-level for a higher dimensional arrangement
is open. Although the algorithm of Roos and Widmayer can be applied to 3-
dimensional case, it needs Õ(n2) time to compute the largest peak (i.e. global
maximum) if we naively implement it. One necessary constituent is to develop a
counterpart of Lemma 3: Given an arrangement of n hyperplanes in the three-
dimensional space, preprocess it, and for any given three points A, B, and C
in the plane z = 0, decide whether the triangle ABC contains (a projection)
of a peak in the k-level or not efficiently. For the purpose, we probably need a
counterpart of Lemma 3: Give a criterion of the existence of a peak from the
information of the set of hyperplanes below k-level at each of A, B, and C.
In two-dimensional space, the lines are classified into positive slope lines and
negative slope lines, while this kind of natural discrete classification of planes in
the space does not exist. Moreover, it is difficult to find a counterpart of concave
chain decomposition for three dimensional k-level [22]. These lacks make the
problem difficult, although the authors think it is quite attractive.

Another interesting problem is an an extension of parametric SBE problem
to the c-edge-connectedness for c ≥ 2. Here, we hope we can develop efficient
solutions by combining geomertic methods and graph theoretical methods[14,
16].
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