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ABSTRACT 
In this paper, we evaluate the benefits achievable from pointer 
analysis and other memory disambiguation techniques for C/C++ 
programs, using the framework of the production compiler for the 
Intel® Itanium™ processor. Most of the prior work on memory 
disambiguation has primarily focused on pointer analysis, and 
either presents only static estimates of the accuracy of the analysis 
(such as average points-to set size), or provides performance data 
in the context of certain individual optimizations. In contrast, our 
study is based on a complete memory disambiguation framework 
that uses a whole set of techniques including pointer analysis. 
Further, it presents how various compiler analyses and 
optimizations interact with the memory disambiguator, evaluates 
how much they benefit from disambiguation, and measures the 
eventual impact on the performance of the program. The paper 
also analyzes the types of disambiguation queries that are 
typically received by the disambiguator, which disambiguation 
techniques prove most effective in resolving them, and what type 
of queries prove difficult to be resolved. The study is based on 
empirical data collected for the SPEC CINT2000 C/C++ 
programs, running on the Itanium processor. 
 

1. INTRODUCTION 
Pointer analysis has recently been an active topic of research. Its 
goal is to compute potential targets of pointers in the program, 
and enable more accurate disambiguation of pointer-based 
indirect memory references. Recent research has led to the 
development of efficient pointer analysis techniques that can 
effectively analyze very large programs in reasonable time [5,6,7]. 
Most researchers in this area have used the metric of average 
points-to set size to evaluate the effectiveness of the analysis. 
While this metric provides a good measure of the static results, it 
does not reflect the actual benefits achievable from the analysis 
information in terms of program performance. To evaluate pointer 
analysis in this context, one requires a framework where points-to 
information is used by all compiler analyses and optimizations 

that can benefit from it. Previous work has focused on individual 
optimizations like parallelization [13], common subexpression 
elimination [14], and redundant load removal [15] to evaluate the 
benefits of points-to information. Cheng et. al conducted a more 
thorough study [16], but for a simulated processor and a different 
set of programs. A detailed study of the overall benefits of pointer 
analysis has not been undertaken on real hardware. That is the 
focus of this paper. 
 
Pointer analysis itself is a component of the memory 
disambiguation framework of an optimizing compiler. A memory 
disambiguator uses a variety of techniques like symbol table 
information, address-taken analysis, base-offset calculations, and 
use-def chains, in addition to pointer analysis. Thus, another 
interesting data point in evaluating the effectiveness of pointer 
analysis is how often the disambiguator needs to use points-to 
information, and how crucial are those disambiguation queries. 
This would reflect the added benefits of pointer analysis over 
simpler heuristics and enable a comparison of its contributions 
versus the cost of  the analysis. 
 
The memory disambiguation framework implemented in the Intel 
Itanium compiler [11,12], provides the required infrastructure for 
such a study.  All compiler analyses and optimizations that need 
to disambiguate memory references query the disambiguator. The 
disambiguator, in turn, uses information from pointer analysis, 
address-taken analysis, array dependence analysis, language 
semantics and other sources to answer the query. It also provides 
a mechanism to translate queries for low-level memory references 
from optimizations like instruction scheduling and software-
pipelining into corresponding high-level constructs. 
 
The main contributions of this paper include: 
 

1. An optimizing compiler framework that brings together 
all the clients and sources of memory disambiguation. 

2. A detailed study of the overall benefits of pointer 
analysis and its eventual impact on program 
performance. 

3. A comprehensive analysis of the effectiveness of 
various disambiguation techniques, providing insight 
into which techniques are most often used. 

4. A detailed analysis of the cases that prove difficult to 
disambiguate. 
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5. Experimental evaluation based on data collected from 
the industry standard SPEC CINT2000 benchmarks 
running on the Itanium processor. 

 
The rest of this paper is organized as follows. In section 2, we 
introduce the overall Itanium compiler framework, presenting the 
various compiler analyses and optimizations. In section 3, we 
describe in detail our memory disambiguation framework and how  
it interfaces with its clients. Section 4 provides details on the 
pointer analysis implemented in our compiler. We present the 
empirical data on our study in section 5, along with suitable 
observations. Section 6 discusses related work, and finally we 
draw our conclusions in section 7. 
 

2. INTRODUCTION TO THE INTEL® 
ITANIUM™ COMPILER 
The Intel Itanium compiler is designed to extract the full potential 
of the Itanium architecture [10].  It incorporates a number of 
leading edge technologies, including profile guidance, multi-file 
interprocedural analysis and procedure integration, global code 
scheduling, and a large number of optimizations that make use of 
speculation and predication.   

One of the key goals of the compiler is to eliminate or hide 
memory latency.  One part of this is eliminating as many memory 
references as possible and taking advantage of the Itanium 
processor’s large register files.  Another part is scheduling to hide 
latency. Register variable promotion and scheduling rely 
intimately on the best possible memory disambiguation 
technology.  Researchers and compiler writers have developed 
numerous techniques to prove memory locations independent or 
non-overlapping.  The Itanium compiler incorporates the best-
known practical techniques for points-to analysis and data 
dependence analysis.  

Points-to computation is used as an input to disambiguation, but 
also performs several other functions.  It may convert indirect 
function calls to direct function calls, sharpening the analysis and 
exposing opportunities for procedure integration.  Points-to 
information can also be used to build the basis sets for MOD/REF 
analysis, which computes the set of locations modified/referenced 
by each function in the program.  The compiler currently performs 
limited forms of MOD/REF analysis, such as for standard library 
functions (e.g., strlen).  

Disambiguation and optimizations interact in many ways, so an 
effective disambiguator needs to incorporate information from a 
variety of semantic levels of the intermediate language (IL).   For 
instance, generating efficient code for the register indirect 
addressing requires lowering to base and offset early in the 
compilation.  Doing so naively may make disambiguation more 
difficult by obscuring such simple facts as two scalar variables can 
never conflict.  Therefore the disambiguator needs to retain "high-
level" information about storage locations.  Relying solely on 
high-level information, though, may result in missed information 
as well.  For example, if the program contains pointer arithmetic 
such as the following fragment, we need lowered addressing and 
constant propagation to prove that we can registerize s.b across 
the store whenever i is zero.   

 

struct { int a, b; } s; 
int *p = &s.a; 
s.b = 0; 
*(p + i) = 1; 
... = s.b; 

 
The interprocedural optimizer performs inlining and partial 
inlining of function bodies into call sites.  After either 
optimization, post-inlining cleanup performs forward substitution 
of variables and indirect to direct reference conversion.  This is 
particularly important for Fortran and C++ by-reference 
parameters that can become direct references after inlining.  This 
has implications for disambiguation that will become apparent in 
later sections. 

The clients of the disambiguator are the  optimization and code 
scheduling modules in the compiler, including partial redundancy 
elimination (PRE) [2], partial dead store elimination (PDSE), 
dead code elimination, structure copy optimization, the global 
code scheduler [3], the local scheduler, and the software pipeliner.    

PRE uses the disambiguator to determine if a store kills an 
available load, while  PDSE wants to know if a load kills a 
potentially dead store.  Removal of unnecessary loads and stores 
also enables many other optimizations that operate on temporaries 
(virtual registers), for example copy propagation or recognition of 
induction variables. Dead code elimination removes stores to local 
variables that are never read again for the remainder of the 
function.  The local and global schedulers and the software 
pipeliner query the disambiguator to determine if a load and store 
or two stores can be reordered.   The software pipeliner requests 
information about both loop-independent and loop-carried 
dependences, while the other schedulers query only about loop-
independent dependences. 

3. THE DISAMBIGUATOR FRAMEWORK 
As described earlier, the disambiguator needs to retain high-level 
information about memory references.  Many of the optimizations 
that rely on memory disambiguation occur in the compiler 
backend.  Typically, after the program representation is lowered 
and optimizations are performed, much of the source-level 
information is lost and the code is transformed in ways that make 
it more difficult for the compiler to perform memory 
disambiguation.   To solve this problem, the Itanium compiler 
maintains a link from each load or store to a high-level symbolic 
representation of the memory reference and other information that 
is crucial for disambiguation.  We call our disambiguator DISAM, 
which stands for DISambiguation using Abstract Memory 
locations. 

3.1 Abstract Memory Locations 
DISAM decomposes the storage space (memory and registers) 
into a set of abstract storage locations called LOCs.  There are  
different types of LOCs representing global variables, local 
variables, formal and actual function parameters, functions, 
registers, and dynamically allocated objects.  Each LOC 
represents a storage object that is independent of all other storage 
objects.  LOCs are part of the symbol table and have links to the 
symbol table information about the variables that they represent.  
For dynamically allocated objects, the LOC has a link to the call 
site in the source where the object was allocated. 
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LOCs can be grouped together in sets called LOC sets.  For 
example, the set of memory locations that could be accessed 
through a pointer is represented using a LOC set.  References to 
the same memory objects can be detected by intersecting LOC 
sets. 

3.2 Retention of Source Level Information 
Each memory reference is linked to source-level information 
through a DISAM token, which provides access to all the 
information necessary to perform memory disambiguation. This 
information includes a high-level symbolic representation of the 
memory reference, type information, and a link to an array data 
dependence graph for disambiguation of different elements of the 
same array. 

For direct memory references, the disam token contains a LOC 
representing the memory object that is accessed.  For indirect 
references, the token contains a LOC representing the pointer, and 
a dereference level. The disambiguator must use the results of 
points-to analysis to determine the set of locations that could be 
accessed by dereferencing the pointer. While the IL representation 
of the memory reference and its associated addressing changes 
greatly as a result of IL lowering and optimizations, it remains 
linked to its DISAM token, and the LOC representation preserves 
the high-level source-like representation of the memory reference.  
DISAM tokens are created early in the compiler when the high-
level information is still available.   

DISAM tokens are part of the memory referencing IL, and as such 
are automatically carried along whenever a memory reference is 
moved or copied.   There is a small amount of DISAM token 
maintenance that must be done.  For example, if the compiler 
creates a memory reference that did not exist in the source 
program (e.g. stack locations for parameter passing) a token is 
created to represent the memory reference.  As described earlier, 
forward substitution of address expressions can cause an indirect 
reference to become direct.  The DISAM tokens are updated after 
forward substitution to reflect this.  Overall, DISAM token 
maintenance is a relatively simple task. 

3.3 Performing Memory Disambiguation 
Figure 1 shows a block diagram of the various modules involved 
in memory disambiguation and the interfaces between them.   
Each arrow is labeled with the type of data structure that is used 
for the interface. The disambiguator module receives queries from 
a client, consults the symbol table, array data dependence graph 
and points-to information if necessary, performs memory 
disambiguation, and returns a disambiguation result.      

The following is an outline of the disambiguation methods 
employed.  A full description of the details of each method is 
beyond the scope of this paper, but this gives the reader the flavor 
of what is done and sets up the various categories of 
disambiguation methods for the experimental results.  The 
disambiguator currently applies the methods in the sequence 
presented in the subsequent paragraphs.  This ordering is 
predominantly driven by the compile time cost of the query 
portion of the method.  For example, determining if the address of 
a global variable is taken anywhere in the program requires 
sophisticated interprocedural analysis.  However the cost to 
lookup this information as an attribute on a variable for each 

disambiguation query is trivial.  In contrast, the cost to intersect 
points-to sets or to determine the base and offset for an address 
expression is larger. As soon as definite dependence or 
independence is determined, disambiguation stops and the result 
is returned. 
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Figure 1  Disambiguation System 

Compiler-generated references can often be easily disambiguated 
from all other memory references.  For example, references to 
read-only storage areas can be disambiguated from all stores.  
Registers are spilled to a special area on the stack, so these loads 
and stores can easily be disambiguated from each other and from 
all memory references that are not spills.  The disambiguator can 
trivially prove the above types of references independent; hence 
they are not considered in the statistics we present later. 

If both memory references are direct (note that direct vs. indirect 
is easily determined using the dereference level in the DISAM 
token), their LOCs are compared to determine whether or not the 
same memory object is accessed.  If the same object is accessed, 
the disambiguator then attempts to determine if overlapping 
portions of the object are accessed.  For example, the array data 
dependence information is used to determine if the same array 
element is accessed and structure type information from the 
symbol table is used to determine if overlapping fields of a 
structure are accessed. 

If at least one of the memory references is indirect, the 
disambiguator first attempts to prove independence without 
knowing where the indirect references point to.  For example, an 
indirect reference off an unmodified parameter could not possibly 
access a stack allocated local variable from the function in which 
the two references appear.  Also, an indirect dereference cannot 
possibly access a local variable that has not had its address taken. 
When the compiler is run with interprocedural optimization, it has 
the ability to automatically detect that it is seeing the whole 
program.  That is it can detect whether or not there are calls to 
functions that it has not seen and does not know the behavior of.  
When the compiler can see the whole program, the disambiguator 
knows that an indirect reference cannot possibly access a global 
variable that has never had its address taken. 

 If simple rules such as those above do not allow the 
disambiguator to prove independence of the memory references, 
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the results of points-to analysis are consulted.  The compiler 
contains two points-to analysis phases: an intraprocedural (local) 
analysis and a flow-insensitive interprocedural analysis. The 
disambiguator checks the results of the local points-to analysis 
first.  If that yields a maybe dependent result then the 
interprocedural points-to analysis is consulted.   

With the exception of the compiler-generated references, the 
disambiguation methods discussed above, all make use of high-
level symbol table information and analyses.   In cases where the 
memory references cannot be disambiguated by the above 
methods, the disambiguator resorts to a method that utilizes the 
lowered addressing. It analyzes the address expression of each 
memory reference and tries to determine a base and offset.  If 
successful it compares the base and offset for the two memory 
references.  If they have the same base, the disambiguator can use 
the offsets and sizes of the memory references to determine 
whether or not they overlap.   This simple base and offset analysis 
is useful for two memory references off the same pointer (with the 
pointer having the value at the two references), references whose 
addresses have been modified by adding offsets or performing 
pointer arithmetic in an unstructured way, and array accesses with 
constant subscripts. 

Finally, for ANSI C compliant programs the disambiguator can 
perform type-based disambiguation based on the ANSI type 
aliasability rules.  For example, under the ANSI rules, a reference 
to an object of type float cannot overlap with a reference to an 
object of type integer.  This method is applied last because it is 
enabled by a user assertion that the program complies with the 
ANSI C standard.  Applying the other methods first gives the 
compiler the opportunity to detect potential cases where the user 
may make the assertion for a program that is not truly compliant.  
In these cases it can ignore the assertion, perhaps avoiding a 
runtime failure. 

4. POINTS-TO ANALYSIS FRAMEWORK 
In our compiler framework, we have implemented the flow-
insensitive interprocedural pointer analysis proposed by 
Andersen[4], which we call WPT (whole-program interprocedural 
points-to analysis). To counter its cubic time complexity, we have 
augmented the analysis with off-line variable substitution[5], 
which pre-computes pointers with identical points-to sets, and  
online cycle elimination[6], which identifies cycles in the points-
to graph and collapses them as the analysis proceeds. All these 
approaches have been proposed in the literature. 
 
We differ from published work in our handling of structure fields. 
Standard practice is to collapse the entire structure, and let the 
structure name represent all its fields. This leads to very imprecise 
analysis, as points-to sets of distinct fields of a structure can no 
longer be distinguished. In our approach we distinguish between 
distinct fields of a structure type, but do not distinguish between 
its individual instances. For example, consider the following code 
fragment: 

struct foo {int *p; int *q;} s1, s2; 
int x,y ; 
s1.p = &x; 
s2.q = &y; 

 
With our approach, we distinguish between fields p and q of 
structure type foo, but not between its individual instances, s1 and 

s2. So, the points-to information we collect, indicates both s1.p 
and s2.p as pointing to x, and s1.q and s2.q to y. With the 
structure collapsing approach, we would have both s1.p and s1.q 
pointing to x, and similarly both s2.p and s2.q pointing to y.  
 
In our experience with analyzing large programs, our approach 
provides substantially more accurate points-to information. This 
occurs because pointer analyses typically are not able to 
distinguish between different structure instances, because many 
structures of a given type tend to be allocated at a given malloc-
site. With the structure collapsing approach, we also lose the 
distinction between fields and the points-to sets of the fields. For 
example, consider a structure type with one field as a function 
pointer, and another as integer pointer. If we collapse them, the 
points-to sets get merged, resulting in very imprecise information. 
Our approach solves this problem. For correctness in the presence 
of type-casting, when we encounter a composite structure 
assignment between different structure types, we analyze it as a 
sequence of assignments between their corresponding/overlapping 
fields. Note that in the case of a structure copy assignment of the 
form *a = *b, we only need to look-up the underlying type 
signatures of *a and *b, and not their points-to sets, thus reducing 
the analysis overhead. 
 
Another added feature of our points-to implementation is 
identification of malloc-like functions. Typically, programmers 
use a wrapper function, like my_malloc, for dynamically 
allocating memory via the library call malloc, to check for 
potential errors and for modularity. This is even more evident in 
C++ programs, where overloaded new operators are common.  
Points-to analysis abstracts each static malloc-site in the program 
as a distinct memory location. With the use of wrapper functions, 
the analysis sees only one static malloc-site, and is not able to 
distinguish between memory locations allocated through different 
calls to this function. To solve this problem, we try to identify if 
the wrapper function behaves like malloc, in that in each 
invocation it returns a fresh memory location. 
 
This is achieved by building the SSA (static single assignment) 
representation of the function, and walking back the use-def chain 
starting from the return value of the function. If the chain 
terminates at an unconditional malloc call, we know the wrapper 
function to be malloc-like. We also check that the wrapper 
function does not store the address of the allocated memory to any 
variable/structure field that can be live out of the function. We 
construct the SSA representation and perform the safety checks in 
the absence of points-to information, and hence need to be 
conservative in the presence of indirect references. Still, we are 
able to identify malloc-like functions in several benchmarks. That 
substantially improves the accuracy of points-to information and 
effectiveness of memory disambiguation. 

Our final modification to the points-to analysis is that we analyze 
the assignment statements in the program in a particular order. We 
build a directed assignment graph of the program, where an 
assignment l_loc = r_loc, is represented by adding a directed edge 
from the node representing r_loc to the node representing l_loc. 
Next, we perform a topological sort on the nodes in the graph. 
The analysis then proceeds by visiting the nodes in the topological 
order. When a given node representing x_loc is being visited, all 
assignments where x_loc appears on the right hand side are 
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analyzed. The analysis continues till all nodes are visited, and 
iterates until a fixed-point solution is reached. For example, 
consider the analysis of the following set of assignments: {(p = q), 
(q = r), (r = &x)}. For this set, the topological order of the nodes 
in the assignment graph is (&x,  r, q, p), and the assignments will 
be analyzed in the following order: {(r = &x), (q = r), (p = q)}. 
The analysis of assignments in the original order will require four 
iterations, as compared to only two using the sorted order. 

 
In the presence of indirect references, we cannot arrive at the best 
topological order of assignments, but can still improve upon the 
original sequence. For our benchmark suite, we noticed up to a 
50% reduction in the number of iterations with the sorted 
assignment sequence. Finally, note that off-line variable 
substitution also requires the topologically sorted assignment 
graph, so we do not incur any additional overhead for this 
improvement.  
 
With the above modifications, we were able to implement a very 
efficient and effective points-to analysis in our compiler 
framework. We have found that the time spent in points-to 
analysis is small compared to the overall compilation time. 
 

4.1 Local Points-to Analysis 
To achieve better disambiguation in the absence of 
interprocedural analysis, we have implemented an intraprocedural 
version of points-to analysis, we term local points-to analysis 
(LPT). For LPT, we use the same analysis engine as for WPT. 
Since LPT only sees assignments within the analyzed procedure, 
we need to make conservative assumptions about the points-to 
sets of global variables and formal parameters at procedure entry. 
Additionally we need to conservatively incorporate the effect of 
function calls on the points-to relationships. 
 
We use the concept of a symbolic location, nloc, which stands for 
non-local location. This is used to represent all locations in the 
program, excluding the local variables of the analyzed procedure. 
All global variables and formal parameters of the procedure are 
initialized to be pointing to nloc at the onset of the analysis. This 
initialization embodies the assumption that at the entry of the 
analyzed procedure, these variables can point to any location in 
the program, except the set of locations created after the entry to 
the given procedure. This set includes all non-static local 
variables, and dynamic memory allocated inside the procedure, 
represented by static malloc-sites within the procedure. 
Additionally, nloc is initialized to point to itself, because locations 
represented by nloc can point to each other. 
 
After this initialization, the analysis proceeds in the same iterative 
fashion on the set of assignments in the procedure as for WPT.  
On reaching a fixed-point, we mark all local locations accessible 
from a global variable or an actual parameter via pointer 
indirection, as address-escaped. The address-escaped locations 
can be both modified/referenced outside the procedure through 
function calls. Thus any location visible outside the analyzed 
procedure can point to a location whose address has escaped and 
vice versa.  To take this into account, we include the symbolic 
location, nloc, in the points-to set of each address-escaped 
location. Furthermore, nloc is considered to additionally represent 
all address-escaped locations.  

Since points-to sets have been updated, LPT is performed again. 
Identification of address-escaped locations and LPT is iterated 
until a fixed-point is reached. Typically, it takes fewer than three 
iterations.  LPT is performed on the SSA representation of the 
procedure. This enables it to achieve limited flow-sensitivity: only 
for local pointer variables whose address is not taken and are 
replaced with SSA temporaries.  In our framework, LPT is 
performed even when WPT has been conducted. This is because 
LPT can sometimes provide sharper information, as it is 
performed after inlining and SSA construction, providing the 
benefits of both context- and flow-sensitivity in a limited fashion. 
 

5. EXPERIMENTS 
Using the Itanium™ compiler and an Itanium-based system, we 
have collected data on the twelve C/C++ programs from the SPEC 
CINT2000  benchmark suite.  The Itanium processor [9] contains 
two integer units, two memory/ALU units, and three branch units.  
Integer multiplies and divides can be executed on the processor’s 
two floating-point units, adding additional integer throughput for 
some programs.  The processor has a three-level on-package cache 
hierarchy. The highest optimization levels possible are used to 
generate the binaries for the experiments in this paper.  The SPEC 
CINT2000 benchmarks are aggressively compiled using the 
switches that are used for a "peak" SPEC build, including all of 
the optimizations and analysis described in sections 2-4.   The 
compiler’s support for data speculation is turned off for these 
experiments because the focus of this paper is on traditional 
compile-time memory disambiguation without hardware data 
speculation support.  

We have instrumented the disambiguator to collect data on the 
characteristics of the memory references and points-to sets, the 
number of queries, and the reason for each disambiguation result.  
Switches have been added to turn on and off the individual 
disambiguation methods, so that we could see their effect on 
performance. 

5.1 Memory Reference Characteristics 
Table 1 shows for each program, the percentage of static memory 
references that are direct references to local variables, global 
variables, and indirect references via pointers. The majority of 
memory references are either accesses to global variables 
(164.gzip, 186.crafty, 256.bzip2), or indirect pointer references 
(176.gcc, 181.mcf, 197.parser, 253.perl, and 254.gap). With the 
exception of 252.eon and 255.vortex, we do not see many 
references to local variables, as only accesses to local arrays and 
address-taken local scalars are considered memory references. 
Other local variables are promoted to registerizable temporaries. 
The address of a local variable is typically taken to effect call-by-
reference semantics. The address-exposure is no longer required if 
the given call is inlined and forward substitution is applied 
(section 2). This further reduces the number of address-taken local 
variables. Forward substitution also eliminates indirect references 
off the formal parameters in the inlined copy of the callee 
function. This effect is most pronounced for 252.eon (the only 
C++ program in the benchmark suite), where indirect references 
off the C++ “this” pointer in the inlined callee, become direct 
references in the caller. 
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Table 1  Program Memory Reference Characteristics 

 

The column labeled “Avg Set Size” in Table 1 shows the average 
size of the points-to sets for the indirect references in each 
program as determined by our interprocedural points-to analysis 
(WPT). It is reasonably small for the majority of the benchmarks, 
with the exception of 252.eon, 253.perl and 254.gap. The loss of 
accuracy in the first two benchmarks occurs due to the presence of 
indirect calls, with numerous potential target functions (assigned 
to an array of function pointers). This forces WPT to consider all 
possible assignments between the formals of the numerous target 
functions and the actuals at call-sites, resulting in loss of 
accuracy. The analysis for 252.eon can be improved by more 
accurate handling of virtual function calls.  

The benchmark 254.gap primarily uses dynamically allocated 
structures. However, the memory allocating routine for this 
benchmark, called NewBag, uses free lists and complex pointer 
arithmetic, and cannot be automatically identified as a malloc 
function. Thus WPT cannot distinguish between different 
structures, and provides very inaccurate points-to information. 
The use of free lists maintained with global pointers would inhibit 
even a flow- and context-sensitive analysis from identifying that 
each invocation of the function NewBag returns a disjoint piece of 
memory. Thus the loss in accuracy is due to poor basis 
information available to the points-to analysis, and not because of 
lack of flow- or context-sensitivity. 

The last column in Table 1 shows the total number of distinct 
disambiguation queries for each benchmark.   Throughout this 
paper, each pair of memory references is accounted for only once, 
irrespective of the number of times the disambiguator is queried 
with a given pair of references.  The filtering out of repeated 
queries is done using a hash table mechanism.    Note that we start 
accounting for unique memory references after inlining (this is 
when the DISAM tokens are created), so the memory references 
in different inlined copies of a given function are considered 

unique.  Compilation of 176.gcc and 253.perl generates the 
largest number of unique queries, approximately 1.2 million each.  
Thus the compile time cost for each query is 
important.
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Figure 2  Disambiguation Result Summary 

5.2 Analyzing the Disambiguation Queries 
We now focus on the characteristics of the disambiguation queries 
received from various compiler phases, and the effectiveness of 
our disambiguation techniques in resolving them. Figure 2 shows, 
for each program, the percentage of unique disambiguation 
queries for which the disambiguator returns definitely 
independent, definitely dependent, and maybe dependent. The 
three categories add up to 100%.  Over all the queries received for 
the same pair of memory references, the best result (definite is 
better than maybe) is recorded.  For example, the simple base and 
offset analysis is used only after the addresses are lowered.  Thus 
for a pair of references that requires this method to determine 
independence, the disambiguator would return a maybe result 
before the address-lowering phase, followed by an independent 
result thereafter.  The definitely dependent results are either 
determined by the direct method or by simple base and offset.  
The “average” bar on the chart shows that on average, the 
disambiguator returns an independent result for more than 85% of 
the queries, indicating the effectiveness of our suite of 
disambiguation techniques.   

5.2.1 Analyzing the Independent Queries 
In this section, we study the relative contribution of different 
disambiguation methods described in section 3.3, in resolving 
disambiguation queries. In Figure 3, the portion of each bar 
representing the definitely independent queries in Figure 2, is 
expanded and scaled to 100%. For a given bar, each section 
represents the percentage contribution of a particular method in 
resolving queries. Note that the percentage basis is the total 
number of queries proven independent, and not the total number 
of queries received.   The accounting is done by applying the 
methods in a specific order and crediting the first method that 
determines independence. 

For these experiments, the methods are applied in an order that is 
slightly different from that described in section 3.3.  We believe 
this revised order gives better insight into the real benefits of the 
disambiguation methods.  The methods are ordered according to 

Program Local 

% 

Global 

% 

Ind 

% 

Avg 

Set Size 

Total 

Queries 

164.gzip 7 84 9 2.4 26118 

175.vpr 16 39 45 1.3 40093 

176.gcc 8 31 61 22.1 1237456 

181.mcf 8 11 80 1.3 10195 

186.crafty 4 87 9 3.7 321026 

197.parser 7 39 5 6.9 67642 

252.eon 27 40 33 147.7 507662 

253.perl 6 36 58 427.3 1192815 

254.gap 4 22 74 196.3 286053 

255.vortex 34 22 44 39.3 405790 

256.bzip2 15 67 18 1.00 13544 

300.twolf 2 46 52 3.4 443028 
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two criteria.  The first is whether the method is used by default in 
the compiler without interprocedural analysis.  This gives insight 
into the level of disambiguation that can be achieved without user 
assertions or interprocedural alias/address analysis.  The second 
criterion is the complexity of the method.  The rationale here is 
that the more complex methods should be credited only for 
queries where that method is really needed.  Thus for example, the 
reader can see the additional benefit provided by interprocedural 
points-to analysis (WPT) over the simpler methods that would 
normally be implemented in a compiler before WPT.  Type-based 
disambiguation is the exception here.  Even though it is simpler 
than WPT, it requires a user assertion.  We believe it is interesting 
to see how much benefit the user assertion provides over what the 
compiler analyses can determine on their own.  The order of the 
methods is as follows: 

1. direct: Disambiguation of direct references, either 
different memory objects or different parts of the same 
memory object (not including array element analysis). 

2. sbo_indirect:   Simple base and offset analysis, and 
simple rules to disambiguate indirect references from 
direct references. 

3. array:  Array data dependence analysis to disambiguate 
different elements of the same array. 

4. LPT: Intraprocedural points-to analysis. 

5. global:  Disambiguation of an indirect reference from a 
direct reference to a global variable that has not had its 
address taken. 

6. WPT: Interprocedural flow-insensitive points-to 
analysis. 

7. type:   type-based disambiguation. 

Methods 1-4 are enabled at all optimization levels.  Methods 5 
and 6 are applied only at the highest levels of optimization when 
multifile interprocedural analysis is enabled.     

We can make several important observations from the data 
presented in Figure 3. First, simple techniques like direct and 
sbo_indirect, which do not require sophisticated program analysis, 
resolve over 60% of the queries determined independent, on 
average. The direct technique is especially effective for   the 
benchmarks 164.gzip, 186.crafty, 252.eon,  and 256.bzip2. This is 
consistent with the fact that the majority of memory references for 
these benchmarks fall into the direct reference category  (Table 1). 
For all benchmarks except 186.crafty, nearly 100% of the queries 
resolved by the direct method are for two references to different 
memory objects. The preservation of high-level information 
makes resolution of these queries very easy. The LOCs are simply 
compared to determine independence.  For 186.crafty about 25% 
of the queries resolved by the direct method are to different fields 
of the same (statically allocated) structure.  Structure type 
information accessible from the DISAM token is used to 
determine the position of the field accessed within the structure. 
 
The sbo_indirect disambiguation technique makes consistent 
contributions across all benchmarks. It is useful in disambiguating 
accesses to different structure fields with the same base pointer. 
This case arises frequently in loops traversing a linked data 
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structure (175.vpr, 176.gcc, and 181.mcf), where the loop body 
contains accesses to different fields with respect to the navigating 
pointer: for example, the memory references t->item and t->next 
in the following code fragment.   
 

while (t != NULL) { 
   t->item = t->item + 1; 
   t = t->next; 
} 
 

Local points-to analysis (LPT) makes visible contributions for 
175.vpr, 176.gcc, 197.parser and 254.gap. In the former two 
benchmarks, several procedures initialize locally declared pointers 
via explicit calls to malloc (as opposed to via wrapper functions).  
Indirect references off these pointers are then easily 
disambiguated against other memory references, using their local 
points-to sets consisting of the distinct malloc-sites. In 197.parser 
and 254.gap, local points-to succeeds in disambiguating accesses 
to local pointers used to navigate arrays, like pointers p and q in 
the code fragment below: 

  
p = &a[i]; q = &b[j]; 
while (…) { 
    *p = *q + 1; 
     p++; q++; 
} 

 
 
Array dependence analysis (array) does not make a significant 
contribution to independent queries in the static count for the 
benchmarks with many arrays like 164.gzip and 256.bzip2. 
However, it does prove to be crucial in the runtime performance 
context because disambiguation of a few array-based memory 
references can enable optimization and scheduling of a critical 
loop. Array dependence analysis is important statically for 
181.mcf.  This benchmark contains loops that go through arrays 
of arcs and nodes.  The software pipeliner queries the 
disambiguator about loop-carried dependences for some of these 
loops and the array data dependence analysis is able to determine 
that a new array element is accessed for each iteration. 
 
Address-taken analysis for global variables (global) proves 
effective across the majority of the benchmarks. In the given 
benchmark set, global variables are mostly scalars of integer or 
pointer type, and their address is not typically taken as they can be 
directly accessed in any section of the program. The technique is 
less effective for 181.mcf with only 11% of memory references as 
global accesses, and for 253.perl, which has address-taken 
attribute set on several global variables. 
 
Interprocedural points-to analysis (WPT) is most effective for the 
benchmarks 175.vpr, 181.mcf, and 300.twolf. These benchmarks 
use structures with pointer fields, and the different fields point to 
dynamically allocated arrays associated with distinct static malloc-
sites. The majority of memory references in these benchmarks 
involve indirect accesses to these disjoint arrays, which can be 
accurately disambiguated. Both 175.vpr and 300.twolf use 
wrapper functions for memory allocation. Our analysis is able to 
identify them as malloc functions, leading to accurate points-to 
information. Otherwise all pointers would be reported as pointing 
to a single malloc site, providing almost no disambiguation. Also 
note that our strategy of distinguishing between distinct fields of a 

given structure type proves critical to obtaining accurate 
disambiguation for this benchmark set. The contribution of WPT 
for 176.gcc and 256.bzip2 is also attributable to identification of 
dynamically allocated arrays with distinct malloc-sites. 
   
For 252.eon and 254.gap, we have very inaccurate points-to 
information with average points-to set size over 100, and 
subsequently little contribution from WPT. However, for 
253.perl, even with an average set-size of 427, WPT is 
responsible for over 20% of independent queries.  The majority of 
these queries involve disambiguation of address-taken global 
variables against indirect pointer references. On the contrary, for 
197.parser, even though the set-size is small (6.92), the WPT-
based disambiguation is ineffective because the majority of 
pointers in the program have the same points-to set.  Thus average 
points-to set size is not always a reliable indicator of the 
usefulness of points-to information. 
 
Finally, note that simpler techniques like LPT and address-taken 
analysis for globals (global), steal a significant number of 
independent queries that would otherwise be attributed to WPT. 
Thus, disambiguation frameworks that do not use the simpler 
techniques, may overstate the added benefits of using 
interprocedural points-to analysis[14, 16]. 
 
Type-based disambiguation makes significant contributions for 
181.mcf and 254.gap. The two benchmarks require frequent 
disambiguation of pointers against objects of types long and short, 
respectively. The technique also pays off for 176.gcc, 197.parser, 
and 253.perl. Again the contribution comes from queries 
disambiguating pointers against scalar objects of types integer and 
float. 
 

Overall, one can notice that each disambiguation technique pays 
off for one or another benchmark. The technique that proves most 
effective depends on the memory reference mix of the program, 
and the type of queries posed by the various optimizations in the 
compiler. This depends on the regions of the program considered 
more important by the optimizations based on program structure 
and profile information. Thus, our strategy of employing a suite of 
disambiguation techniques is a viable approach to the problem.  
 

5.2.2 Analyzing the Maybe Dependent Queries 
In this section, we analyze in detail the cases for which our 
disambiguator reports a maybe dependence. In Figure 4, we 
highlight the maybe dependent portion of the bars shown in 
Figure 2. As opposed to Figure 3, each bar in Figure 4 shows the 
percentage of maybe dependent queries with respect to the total 
number of queries received by the disambiguator. On an average, 
we report 12% of queries as maybe dependent. For 6 out of 12 
benchmarks, it is in the range of 5%, indicating very accurate 
disambiguation. We have over 20% maybe queries for 197.parser 
and 254.gap, with 176.gcc and 253.perl falling in the 15-20% 
range. Before presenting a detailed analysis, we first explain the 
breakdown of data presented in Figure 4. 
 
The top section of each bar in Figure 4 (labeled direct), represents 
the maybe dependent queries which involve two direct memory 
references (accesses to global or address-taken local variables). 
The bottom section represents maybe dependent queries involving 
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at least one indirect memory reference. The maybe cases for 
indirect references are further subdivided into three categories, 
intersect, identity, and unknown, explained below:  

• intersect: The sets of locations accessible from the two 
memory references intersect. Since at least one 
reference is an indirect reference, one of the location 
sets is obtained from points-to analysis. 

• identity: Both memory references are indirect references 
off the same pointer, for example the two indirect 
references in the statement: {*p = *p + x;} 

• unknown: The points-to set for one of the dereferenced 
pointers is not known, and the pointer is conservatively 
assumed to be able to point to any address-exposed 
location in the program. This category includes pointers 
initialized via library calls like file pointers, pointers to 
i/o buffers, the argv pointer used as a formal argument 
to function main, and pointers never initialized in the 
program (dereferences to such pointers are guarded by 
conditions that always evaluate to false at runtime). 

 
The points-to sets considered above are the ones obtained from 
WPT analysis.  Each category in the above classification pinpoints 
a specific area of potential improvement for points-to analysis. 
For example, the unknown queries can be better resolved by more 
accurate modeling of pointers, which are not explicitly initialized 
in the source program. The requirement is improving the basis 
information for points-to analysis, and not necessarily its 
propagation strategy. The identity queries can benefit from 
program point specific points-to information, which requires 
introduction of flow-sensitivity. Finally, the queries in the 
intersect category may benefit only from a more sophisticated 
points-to analysis. We now focus on the data for individual 
benchmarks.  
 
We first consider 197.parser, that reports the highest percentage of 
maybe dependent queries (35%). The dominant categories are 
unknown and intersect. The unknown queries arise from 
dereferences of file pointers and pointers to i/o buffers.  Currently 
our analysis does not accurately model such pointers, and assumes 
them to be possibly pointing to any address-exposed location, 
resulting in very conservative disambiguation. Our hand analysis 
indicates that with more accurate modeling of these pointers (by 

making them point to specific symbolic locations), the unknown 
queries can either be disambiguated or identified as identity 
queries.  

Further, the benchmark 197.parser uses a graph data structure, 
with all nodes allocated via a wrapper function called xalloc. This 
function uses free lists and pointer arithmetic, and our analysis 
cannot recognize it as a malloc function. As a result, queries 
involving accesses to disjoint nodes of the graph cannot be 
disambiguated, and fall in the intersect category. By explicitly 
recognizing xalloc as a malloc function (for experimental 
purposes), we see a drop in intersect queries from 15% to 5%. 
Most of the added disambiguation is achieved in program regions 
where a new node is allocated via xalloc, and inserted in the graph 
data structure (all references to the newly allocated node can be 
disambiguated). 
 
The benchmark, 254.gap, also uses a memory allocator which is 
based on free lists and pointer arithmetic. All data structures in the 
program are allocated via calls to this function, and majority of 
pointers in the program end up having identical points-to sets as 
explained in section 5.1. This results in over 15% queries falling 
in the intersect set. The queries in the identity set arise from our 
strategy of merging all instances of a given structure field. For 
example, the memory references *(p->ptr) and *(q->ptr), are both 
considered as the reference *(ptr) by our disambiguation 
framework. Such dereferences of structure field pointers  
frequently occur in 254.gap. 
 
For the benchmark, 176.gcc, the majority of maybe queries arise 
inside loops traversing linked data structures, like a list of 
instructions, or a chain of tree nodes. To be able to distinguish 
between different nodes of such data structures, we need to 
determine the acyclic property of the navigating pointer fields, 
which requires sophisticated data structure analysis [18]. 
However, even advanced data structure analyses need to identify 
the statements where new heap nodes are allocated.  The complex 
user-defined memory management in this benchmark practically 
obscures this information from the analysis. 

For 253.perl, the points-to information is very inaccurate, and we 
get over 10% queries in the intersect category. In the benchmark 
256.bzip2, we have several global pointers, which are initialized 
only once in the program through malloc, and are used as dynamic 
arrays. All identity queries arise from dereferences of a given 
global pointer at different program points. Note that since the 
pointer points to the same location across the entire program, 
flow-sensitive information will not be able to improve 
disambiguation.  

For other benchmarks, we see noticeable number of maybe 
queries in the direct category. These queries mostly involve array 
references, subscripted with a pointer reference, a structure field, 
or another array reference: cases too complex for the array 
dependence analyzer. Other queries require disambiguation of an 
array reference outside a loop, with those inside the loop, as 
illustrated below. Such a query may be posed by the scheduler 
attempting to move the post-loop array load above the loop.  

  for (i = 0; i < x; i++) { 
      a[i + k] = rhs; 
  } 

         y = a[m]; 
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Another source of direct maybe queries we have identified, 
involves accesses to elements of an array of (statically allocated) 
structures. For two references of the form a[i].fieldA and 
a[k].fieldB, our disambiguator returns a maybe dependence. Since 
we are dealing with static structures, different fields can be safely 
assumed to access disjoint memory locations irrespective of the 
array indices. The additional checks required to get this 
disambiguation, can be easily implemented. For now, majority of 
the direct maybe queries in 186.crafty and 252.eon are attributable 
to this reason. 
 

Overall, our maybe analysis indicates that majority of maybe 
dependent queries arise in programs using dynamic data 
structures, where the user-defined memory allocating routines 
cannot be automatically identified by our simple SSA-based 
recognizer. Development of more sophisticated techniques for 
malloc function recognition, holds the potential to substantially 
improve disambiguation for a large number of programs. This is 
amply demonstrated by the accurate disambiguation achieved for 
175.vpr and 300.twolf, and the improvement we get for 197.parser 
on explicitly recognizing the malloc function. Alternatively, the 
user can be asked to provide this information via an assertion. 

5.3 Performance Analysis 
We now focus on the impact of our memory disambiguation 
techniques on program performance. Figure 5 shows the  
percentage speedup obtained by successively enabling the 
disambiguation methods. The 0% speedup line represents the base 
performance with no memory disambiguation. The speedup for 

each method is computed by dividing the execution time for the 
base case by the execution time with that method (and all the 
methods to the left) enabled.  

Basic disambiguation of direct references is very important for 
164.gzip and 252.eon, consistent with the static data presented in 
Figure 3.  Disambiguation of direct references is not very 
important for 256.bzip2 performance, despite the importance of 
that method in the static data.  The frequently executed loops in 
256.bzip2 do not contain direct reads and writes of different 
memory objects.  Likewise, direct reference disambiguation is not 

as important for 186.crafty performance as the static data would 
indicate.  

The next method turned on is the use of simple base and offset 
analysis, and simple rules for indirect references.  The simple 
rules for indirect references pay off for 252.eon.    There are many 
queries with a direct reference to a local automatic variable whose 
address is taken, but the indirect reference is off an unmodified 
parameter. In 255.vortex, there are similar cases. In 175.vpr and 
186.crafty, the benefit for this method comes from rules for 
indirect references, as well as from simple base and offset 
analysis. For 300.twolf, the performance improvement is mostly 
from simple base and offset analysis.  

Local points-to analysis is able to provide small performance 
gains for 175.vpr, 252.eon, and 256.bzip2.  Array data 
dependence analysis proves to be very important for the 
performance of 164.gzip and 256.bzip2, both of which include 
references to different elements of the same array in the frequently 
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executed loops. However, static contribution from this analysis is 
very small for these benchmarks (Figure 3). This makes sense 
because the loops containing these memory references contribute 
very little to the static number of memory references, but 
contribute greatly to the dynamic number of memory references 
and to the execution time.  

Disambiguation of indirect references from direct references to 
globals that have not had their address taken helps many programs 
including 175.vpr, 176.gcc, 254.gap, 256.bzip2, and 300.twolf.  
175.vpr, 176.gcc, and 300.twolf all have a healthy mix of indirect 
references and direct references to globals.  These benchmarks 
also show large percentage of static disambiguation queries 
resolved by this technique. The frequently executed loops in 
256.bzip2 contain indirect writes to an array and direct loads of 
global scalar variables for the loop bound and array pointer.  This 
method allows these scalar references to be hoisted out of the loop 
by PRE.  This method steals much of the thunder from 
interprocedural points-to analysis (WPT).  Without this method, 
WPT would normally be required to disambiguate these memory 
references.  Thus it is important to evaluate the performance 
contribution of WPT in the context of other disambiguation 
techniques. 

WPT provides performance gains for 175.vpr, 176.gcc, 252.eon, 
253.perl, 256.bzip2, and especially 300.twolf, consistent with the 
static query data in Figure 3. The benchmark 181.mcf spends most 
of its time accessing memory, so despite the fact that a very large 
fraction of the static queries are resolved by WPT, there is no 
performance gain.  

The final method considered is type-based disambiguation.  It 
provides small gains for 175.vpr, 176.gcc, 254.gap and a larger 
gain for 252.eon.  In 252.eon, the type-based technique proves to 
be very effective for the routine mrSurfaceList::viewingHit, which 
is one of the most frequently executed functions in the 
benchmark. 

The astute reader will notice a few cases where increasing the 
level of disambiguation actually hurts performance slightly, 
particularly in 254.gap. It is difficult to pinpoint the slight 
performance loss to a particular optimization. The loss is possibly 
caused by a complex interaction between different optimizations 
and requires further investigation. 

6. RELATED WORK 
In [1], Novack et. al. present a method for preserving algorithm-
level and source-level semantics information.  Their method 
defines a hierarchical decomposition of the address space using 
implicit assertions that reflect the programming language as 
implemented by the compiler and explicit programmer assertions 
that reflect the algorithm and the programmer’s use of the 
language.  Using this hierarchy, the disambiguator can distinguish 
between stack and heap, different types, and different variables. 

The DISAM approach also preserves source level semantics and 
decomposes the address space, but it provides access to a richer 
set of information, including full symbol table information about 
variables, pointers, types, functions, and memory allocation sites.   
In our framework, we  use the symbolic representation of memory 
references as a way to interface with analyses such as points-to 
analysis that are performed while the program is represented at a 
high level.  We have also extended this framework for function 

call MOD/REF analysis. Our implementation of this technique in 
a product compiler demonstrates that it is possible with very 
reasonable cost to maintain high-level information for use by the 
disambiguator at any compilation phase.   

The memory disambiguator in the IMPACT compiler is described 
in [8].  This compiler performs array data dependence analysis 
and points-to analysis [16].  It generates memory dependence 
arcs, called sync arcs, to represent all the memory dependences in 
the function and maintains these arcs through all of the 
optimization phases.   This requires that potentially O(N2) arcs be 
stored in the worst case where N is the number of memory 
references in the function.  In practice the pairs of references that 
actually have a control flow path between them (and thus require 
an arc) is much smaller.   

In our method, we maintain information about each memory 
reference (O(N)) plus a data dependence graph containing only 
arcs for dependences between different elements of the same array 
in loops.  We must store a points-to graph whereas the IMPACT 
compiler can discard the points-to graph once the sync arcs have 
been generated.  The relative memory usage of the two methods 
depends on the relative sizes of the information stored in the 
points-to graph and DISAM tokens verses the sync arcs.  We 
believe that the DISAM approach has a memory usage advantage 
at lower optimization levels where points-to information is not 
available, as the number of conservative sync arcs will be higher 
due to the absence of accurate information.  In the DISAM 
approach, on average, each query is relatively expensive 
compared to looking up a sync arc.  While the compile-time cost 
of the queries has not been an issue thus far, the results of the 
most time-consuming queries could be cached to reduce the cost.  
The total number of queries received by the disambiguator is 
much larger than the number of unique queries. 

The related work on using the results of pointer analysis includes 
that of Wilson and Lam[13], Ghiya and Hendren[14], and Diwan 
et. al[15]. Wilson and Lam use points-to information for 
parallelization of two benchmarks. The speedup is achieved 
through better disambiguation between pointer-based arrays. 
Ghiya and Hendren study the benefits of a collection of pointer 
analyses in the context of three optimizations: loop-invariant 
removal, location-invariant removal, and common subexpression 
elimination. In our compiler framework, all three optimizations 
are subsumed within the PRE  and PDSE optimizations. Diwan et. 
al present the results on redundant load elimination (RLE) for a 
set of Modula programs, based on information from a type-based 
alias analysis. Our PRE optimization also subsumes RLE.  Pioli 
and Hind[17] present a thorough study of the efficiency and 
precision of six context-insensitive pointer analyses, using the 
metric of average points-to set size at indirect references. Our 
experimental data indicates that this metric is not always a reliable 
indicator of the effectiveness of points-to information in resolving 
disambiguation queries. 

Cheng et. al[16] perform a very thorough study of the impact of 
memory disambiguation on the SPEC CINT92 and CINT95 
programs in the context of redundant load/store elimination, loop-
invariant location promotion, and load/store scheduling. The 
memory optimizations are subsumed by our PRE and PDSE 
transformations, and we also include acyclic scheduling, software 
pipelining, and other optimizations in our study.  Cheng et. al 
individually show the benefits of disambiguation for scheduling 
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vs. load/store optimization.  Their performance improvements are 
higher than those reported in this paper. Their study uses a 
different set of programs and a wider simulated processor.  Our 
base case includes modeling of side effects for library function 
calls and disambiguation of compiler generated references such as 
spill code.  Their base case does not use any disambiguation or 
side-effect analysis. 

7. CONCLUSION 
In this paper, we have described a memory disambiguation 
framework that brings together all the clients and sources of 
memory disambiguation.   We have evaluated the framework 
using standard benchmarks on an Itanium™-based system. The 
experimental results show that a broad range of disambiguation 
methods is necessary to handle the varying characteristics of 
different programs and provide the highest overall performance.  
The results also show that it  is important to evaluate the 
performance of additional memory disambiguation techniques 
such as points-to analysis within a hierarchical framework that 
implements the simpler disambiguation methods, because these 
methods steal some of the thunder of the more complex methods.   
Further, we demonstrated that there is no direct correlation 
between the effectiveness of memory disambiguation as per the 
static metrics, and its contribution to overall program 
performance. This also applies to individual disambiguation 
methods, when considered in isolation. Finally, we noted that in 
many cases, loss in accuracy of points-to information occurs due 
to certain features inherent to the analyzed program, like arbitrary 
type-casting and user-managed memory allocation, which cannot 
always be overcome by even applying more sophisticated points-
to analyses. 
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