
On the Importance of Points-To Analysis and Other
Memory Disambiguation Methods For C Programs

Rakesh Ghiya

Intel Corporation
2200 Mission College Blvd

Santa Clara CA, 95052
(408) 765-5807

rakesh.ghiya@intel.com

Daniel Lavery

Intel Corporation
2200 Mission College Blvd

Santa Clara CA, 95052
(408) 765-0884

daniel.m.lavery@intel.com

David Sehr

Intel Corporation
2200 Mission College Blvd

Santa Clara CA, 95052
(408) 765-5372

david.c.sehr@intel.com

ABSTRACT
In this paper, we evaluate the benefits achievable from pointer
analysis and other memory disambiguation techniques for C/C++
programs, using the framework of the production compiler for the
Intel® Itanium™ processor. Most of the prior work on memory
disambiguation has primarily focused on pointer analysis, and
either presents only static estimates of the accuracy of the analysis
(such as average points-to set size), or provides performance data
in the context of certain individual optimizations. In contrast, our
study is based on a complete memory disambiguation framework
that uses a whole set of techniques including pointer analysis.
Further, it presents how various compiler analyses and
optimizations interact with the memory disambiguator, evaluates
how much they benefit from disambiguation, and measures the
eventual impact on the performance of the program. The paper
also analyzes the types of disambiguation queries that are
typically received by the disambiguator, which disambiguation
techniques prove most effective in resolving them, and what type
of queries prove difficult to be resolved. The study is based on
empirical data collected for the SPEC CINT2000 C/C++
programs, running on the Itanium processor.

1. INTRODUCTION
Pointer analysis has recently been an active topic of research. Its
goal is to compute potential targets of pointers in the program,
and enable more accurate disambiguation of pointer-based
indirect memory references. Recent research has led to the
development of efficient pointer analysis techniques that can
effectively analyze very large programs in reasonable time [5,6,7].
Most researchers in this area have used the metric of average
points-to set size to evaluate the effectiveness of the analysis.
While this metric provides a good measure of the static results, it
does not reflect the actual benefits achievable from the analysis
information in terms of program performance. To evaluate pointer
analysis in this context, one requires a framework where points-to
information is used by all compiler analyses and optimizations

that can benefit from it. Previous work has focused on individual
optimizations like parallelization [13], common subexpression
elimination [14], and redundant load removal [15] to evaluate the
benefits of points-to information. Cheng et. al conducted a more
thorough study [16], but for a simulated processor and a different
set of programs. A detailed study of the overall benefits of pointer
analysis has not been undertaken on real hardware. That is the
focus of this paper.

Pointer analysis itself is a component of the memory
disambiguation framework of an optimizing compiler. A memory
disambiguator uses a variety of techniques like symbol table
information, address-taken analysis, base-offset calculations, and
use-def chains, in addition to pointer analysis. Thus, another
interesting data point in evaluating the effectiveness of pointer
analysis is how often the disambiguator needs to use points-to
information, and how crucial are those disambiguation queries.
This would reflect the added benefits of pointer analysis over
simpler heuristics and enable a comparison of its contributions
versus the cost of the analysis.

The memory disambiguation framework implemented in the Intel
Itanium compiler [11,12], provides the required infrastructure for
such a study. All compiler analyses and optimizations that need
to disambiguate memory references query the disambiguator. The
disambiguator, in turn, uses information from pointer analysis,
address-taken analysis, array dependence analysis, language
semantics and other sources to answer the query. It also provides
a mechanism to translate queries for low-level memory references
from optimizations like instruction scheduling and software-
pipelining into corresponding high-level constructs.

The main contributions of this paper include:

1. An optimizing compiler framework that brings together
all the clients and sources of memory disambiguation.

2. A detailed study of the overall benefits of pointer
analysis and its eventual impact on program
performance.

3. A comprehensive analysis of the effectiveness of
various disambiguation techniques, providing insight
into which techniques are most often used.

4. A detailed analysis of the cases that prove difficult to
disambiguate.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PLDI ’01, June 20-22, 2001, Snowbird, Utah.
Copyright 2001 ACM 1-58113-000-0/00/0000…$5.00.

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
PLDI 2001 6/01 Snowbird, Utah USA
© 2001 ACM ISBN 1-58113-414-2/01/06/…$5.00

47

5. Experimental evaluation based on data collected from
the industry standard SPEC CINT2000 benchmarks
running on the Itanium processor.

The rest of this paper is organized as follows. In section 2, we
introduce the overall Itanium compiler framework, presenting the
various compiler analyses and optimizations. In section 3, we
describe in detail our memory disambiguation framework and how
it interfaces with its clients. Section 4 provides details on the
pointer analysis implemented in our compiler. We present the
empirical data on our study in section 5, along with suitable
observations. Section 6 discusses related work, and finally we
draw our conclusions in section 7.

2. INTRODUCTION TO THE INTEL®
ITANIUM™ COMPILER
The Intel Itanium compiler is designed to extract the full potential
of the Itanium architecture [10]. It incorporates a number of
leading edge technologies, including profile guidance, multi-file
interprocedural analysis and procedure integration, global code
scheduling, and a large number of optimizations that make use of
speculation and predication.

One of the key goals of the compiler is to eliminate or hide
memory latency. One part of this is eliminating as many memory
references as possible and taking advantage of the Itanium
processor’s large register files. Another part is scheduling to hide
latency. Register variable promotion and scheduling rely
intimately on the best possible memory disambiguation
technology. Researchers and compiler writers have developed
numerous techniques to prove memory locations independent or
non-overlapping. The Itanium compiler incorporates the best-
known practical techniques for points-to analysis and data
dependence analysis.

Points-to computation is used as an input to disambiguation, but
also performs several other functions. It may convert indirect
function calls to direct function calls, sharpening the analysis and
exposing opportunities for procedure integration. Points-to
information can also be used to build the basis sets for MOD/REF
analysis, which computes the set of locations modified/referenced
by each function in the program. The compiler currently performs
limited forms of MOD/REF analysis, such as for standard library
functions (e.g., strlen).

Disambiguation and optimizations interact in many ways, so an
effective disambiguator needs to incorporate information from a
variety of semantic levels of the intermediate language (IL). For
instance, generating efficient code for the register indirect
addressing requires lowering to base and offset early in the
compilation. Doing so naively may make disambiguation more
difficult by obscuring such simple facts as two scalar variables can
never conflict. Therefore the disambiguator needs to retain "high-
level" information about storage locations. Relying solely on
high-level information, though, may result in missed information
as well. For example, if the program contains pointer arithmetic
such as the following fragment, we need lowered addressing and
constant propagation to prove that we can registerize s.b across
the store whenever i is zero.

struct { int a, b; } s;
int *p = &s.a;
s.b = 0;
*(p + i) = 1;
... = s.b;

The interprocedural optimizer performs inlining and partial
inlining of function bodies into call sites. After either
optimization, post-inlining cleanup performs forward substitution
of variables and indirect to direct reference conversion. This is
particularly important for Fortran and C++ by-reference
parameters that can become direct references after inlining. This
has implications for disambiguation that will become apparent in
later sections.

The clients of the disambiguator are the optimization and code
scheduling modules in the compiler, including partial redundancy
elimination (PRE) [2], partial dead store elimination (PDSE),
dead code elimination, structure copy optimization, the global
code scheduler [3], the local scheduler, and the software pipeliner.

PRE uses the disambiguator to determine if a store kills an
available load, while PDSE wants to know if a load kills a
potentially dead store. Removal of unnecessary loads and stores
also enables many other optimizations that operate on temporaries
(virtual registers), for example copy propagation or recognition of
induction variables. Dead code elimination removes stores to local
variables that are never read again for the remainder of the
function. The local and global schedulers and the software
pipeliner query the disambiguator to determine if a load and store
or two stores can be reordered. The software pipeliner requests
information about both loop-independent and loop-carried
dependences, while the other schedulers query only about loop-
independent dependences.

3. THE DISAMBIGUATOR FRAMEWORK
As described earlier, the disambiguator needs to retain high-level
information about memory references. Many of the optimizations
that rely on memory disambiguation occur in the compiler
backend. Typically, after the program representation is lowered
and optimizations are performed, much of the source-level
information is lost and the code is transformed in ways that make
it more difficult for the compiler to perform memory
disambiguation. To solve this problem, the Itanium compiler
maintains a link from each load or store to a high-level symbolic
representation of the memory reference and other information that
is crucial for disambiguation. We call our disambiguator DISAM,
which stands for DISambiguation using Abstract Memory
locations.

3.1 Abstract Memory Locations
DISAM decomposes the storage space (memory and registers)
into a set of abstract storage locations called LOCs. There are
different types of LOCs representing global variables, local
variables, formal and actual function parameters, functions,
registers, and dynamically allocated objects. Each LOC
represents a storage object that is independent of all other storage
objects. LOCs are part of the symbol table and have links to the
symbol table information about the variables that they represent.
For dynamically allocated objects, the LOC has a link to the call
site in the source where the object was allocated.

48

LOCs can be grouped together in sets called LOC sets. For
example, the set of memory locations that could be accessed
through a pointer is represented using a LOC set. References to
the same memory objects can be detected by intersecting LOC
sets.

3.2 Retention of Source Level Information
Each memory reference is linked to source-level information
through a DISAM token, which provides access to all the
information necessary to perform memory disambiguation. This
information includes a high-level symbolic representation of the
memory reference, type information, and a link to an array data
dependence graph for disambiguation of different elements of the
same array.

For direct memory references, the disam token contains a LOC
representing the memory object that is accessed. For indirect
references, the token contains a LOC representing the pointer, and
a dereference level. The disambiguator must use the results of
points-to analysis to determine the set of locations that could be
accessed by dereferencing the pointer. While the IL representation
of the memory reference and its associated addressing changes
greatly as a result of IL lowering and optimizations, it remains
linked to its DISAM token, and the LOC representation preserves
the high-level source-like representation of the memory reference.
DISAM tokens are created early in the compiler when the high-
level information is still available.

DISAM tokens are part of the memory referencing IL, and as such
are automatically carried along whenever a memory reference is
moved or copied. There is a small amount of DISAM token
maintenance that must be done. For example, if the compiler
creates a memory reference that did not exist in the source
program (e.g. stack locations for parameter passing) a token is
created to represent the memory reference. As described earlier,
forward substitution of address expressions can cause an indirect
reference to become direct. The DISAM tokens are updated after
forward substitution to reflect this. Overall, DISAM token
maintenance is a relatively simple task.

3.3 Performing Memory Disambiguation
Figure 1 shows a block diagram of the various modules involved
in memory disambiguation and the interfaces between them.
Each arrow is labeled with the type of data structure that is used
for the interface. The disambiguator module receives queries from
a client, consults the symbol table, array data dependence graph
and points-to information if necessary, performs memory
disambiguation, and returns a disambiguation result.

The following is an outline of the disambiguation methods
employed. A full description of the details of each method is
beyond the scope of this paper, but this gives the reader the flavor
of what is done and sets up the various categories of
disambiguation methods for the experimental results. The
disambiguator currently applies the methods in the sequence
presented in the subsequent paragraphs. This ordering is
predominantly driven by the compile time cost of the query
portion of the method. For example, determining if the address of
a global variable is taken anywhere in the program requires
sophisticated interprocedural analysis. However the cost to
lookup this information as an attribute on a variable for each

disambiguation query is trivial. In contrast, the cost to intersect
points-to sets or to determine the base and offset for an address
expression is larger. As soon as definite dependence or
independence is determined, disambiguation stops and the result
is returned.

T

L

L

L S

Points-To
Analysis

R

TArray Data
Dependence
Graph

 Disambiguator

 Symbol Table

 Clients

R

T: DISAM token
R: DISAM result
L: LOC set
S: Symbol table object

Figure 1 Disambiguation System

Compiler-generated references can often be easily disambiguated
from all other memory references. For example, references to
read-only storage areas can be disambiguated from all stores.
Registers are spilled to a special area on the stack, so these loads
and stores can easily be disambiguated from each other and from
all memory references that are not spills. The disambiguator can
trivially prove the above types of references independent; hence
they are not considered in the statistics we present later.

If both memory references are direct (note that direct vs. indirect
is easily determined using the dereference level in the DISAM
token), their LOCs are compared to determine whether or not the
same memory object is accessed. If the same object is accessed,
the disambiguator then attempts to determine if overlapping
portions of the object are accessed. For example, the array data
dependence information is used to determine if the same array
element is accessed and structure type information from the
symbol table is used to determine if overlapping fields of a
structure are accessed.

If at least one of the memory references is indirect, the
disambiguator first attempts to prove independence without
knowing where the indirect references point to. For example, an
indirect reference off an unmodified parameter could not possibly
access a stack allocated local variable from the function in which
the two references appear. Also, an indirect dereference cannot
possibly access a local variable that has not had its address taken.
When the compiler is run with interprocedural optimization, it has
the ability to automatically detect that it is seeing the whole
program. That is it can detect whether or not there are calls to
functions that it has not seen and does not know the behavior of.
When the compiler can see the whole program, the disambiguator
knows that an indirect reference cannot possibly access a global
variable that has never had its address taken.

 If simple rules such as those above do not allow the
disambiguator to prove independence of the memory references,

49

the results of points-to analysis are consulted. The compiler
contains two points-to analysis phases: an intraprocedural (local)
analysis and a flow-insensitive interprocedural analysis. The
disambiguator checks the results of the local points-to analysis
first. If that yields a maybe dependent result then the
interprocedural points-to analysis is consulted.

With the exception of the compiler-generated references, the
disambiguation methods discussed above, all make use of high-
level symbol table information and analyses. In cases where the
memory references cannot be disambiguated by the above
methods, the disambiguator resorts to a method that utilizes the
lowered addressing. It analyzes the address expression of each
memory reference and tries to determine a base and offset. If
successful it compares the base and offset for the two memory
references. If they have the same base, the disambiguator can use
the offsets and sizes of the memory references to determine
whether or not they overlap. This simple base and offset analysis
is useful for two memory references off the same pointer (with the
pointer having the value at the two references), references whose
addresses have been modified by adding offsets or performing
pointer arithmetic in an unstructured way, and array accesses with
constant subscripts.

Finally, for ANSI C compliant programs the disambiguator can
perform type-based disambiguation based on the ANSI type
aliasability rules. For example, under the ANSI rules, a reference
to an object of type float cannot overlap with a reference to an
object of type integer. This method is applied last because it is
enabled by a user assertion that the program complies with the
ANSI C standard. Applying the other methods first gives the
compiler the opportunity to detect potential cases where the user
may make the assertion for a program that is not truly compliant.
In these cases it can ignore the assertion, perhaps avoiding a
runtime failure.

4. POINTS-TO ANALYSIS FRAMEWORK
In our compiler framework, we have implemented the flow-
insensitive interprocedural pointer analysis proposed by
Andersen[4], which we call WPT (whole-program interprocedural
points-to analysis). To counter its cubic time complexity, we have
augmented the analysis with off-line variable substitution[5],
which pre-computes pointers with identical points-to sets, and
online cycle elimination[6], which identifies cycles in the points-
to graph and collapses them as the analysis proceeds. All these
approaches have been proposed in the literature.

We differ from published work in our handling of structure fields.
Standard practice is to collapse the entire structure, and let the
structure name represent all its fields. This leads to very imprecise
analysis, as points-to sets of distinct fields of a structure can no
longer be distinguished. In our approach we distinguish between
distinct fields of a structure type, but do not distinguish between
its individual instances. For example, consider the following code
fragment:

struct foo {int *p; int *q;} s1, s2;
int x,y ;
s1.p = &x;
s2.q = &y;

With our approach, we distinguish between fields p and q of
structure type foo, but not between its individual instances, s1 and

s2. So, the points-to information we collect, indicates both s1.p
and s2.p as pointing to x, and s1.q and s2.q to y. With the
structure collapsing approach, we would have both s1.p and s1.q
pointing to x, and similarly both s2.p and s2.q pointing to y.

In our experience with analyzing large programs, our approach
provides substantially more accurate points-to information. This
occurs because pointer analyses typically are not able to
distinguish between different structure instances, because many
structures of a given type tend to be allocated at a given malloc-
site. With the structure collapsing approach, we also lose the
distinction between fields and the points-to sets of the fields. For
example, consider a structure type with one field as a function
pointer, and another as integer pointer. If we collapse them, the
points-to sets get merged, resulting in very imprecise information.
Our approach solves this problem. For correctness in the presence
of type-casting, when we encounter a composite structure
assignment between different structure types, we analyze it as a
sequence of assignments between their corresponding/overlapping
fields. Note that in the case of a structure copy assignment of the
form *a = *b, we only need to look-up the underlying type
signatures of *a and *b, and not their points-to sets, thus reducing
the analysis overhead.

Another added feature of our points-to implementation is
identification of malloc-like functions. Typically, programmers
use a wrapper function, like my_malloc, for dynamically
allocating memory via the library call malloc, to check for
potential errors and for modularity. This is even more evident in
C++ programs, where overloaded new operators are common.
Points-to analysis abstracts each static malloc-site in the program
as a distinct memory location. With the use of wrapper functions,
the analysis sees only one static malloc-site, and is not able to
distinguish between memory locations allocated through different
calls to this function. To solve this problem, we try to identify if
the wrapper function behaves like malloc, in that in each
invocation it returns a fresh memory location.

This is achieved by building the SSA (static single assignment)
representation of the function, and walking back the use-def chain
starting from the return value of the function. If the chain
terminates at an unconditional malloc call, we know the wrapper
function to be malloc-like. We also check that the wrapper
function does not store the address of the allocated memory to any
variable/structure field that can be live out of the function. We
construct the SSA representation and perform the safety checks in
the absence of points-to information, and hence need to be
conservative in the presence of indirect references. Still, we are
able to identify malloc-like functions in several benchmarks. That
substantially improves the accuracy of points-to information and
effectiveness of memory disambiguation.

Our final modification to the points-to analysis is that we analyze
the assignment statements in the program in a particular order. We
build a directed assignment graph of the program, where an
assignment l_loc = r_loc, is represented by adding a directed edge
from the node representing r_loc to the node representing l_loc.
Next, we perform a topological sort on the nodes in the graph.
The analysis then proceeds by visiting the nodes in the topological
order. When a given node representing x_loc is being visited, all
assignments where x_loc appears on the right hand side are

50

analyzed. The analysis continues till all nodes are visited, and
iterates until a fixed-point solution is reached. For example,
consider the analysis of the following set of assignments: {(p = q),
(q = r), (r = &x)}. For this set, the topological order of the nodes
in the assignment graph is (&x, r, q, p), and the assignments will
be analyzed in the following order: {(r = &x), (q = r), (p = q)}.
The analysis of assignments in the original order will require four
iterations, as compared to only two using the sorted order.

In the presence of indirect references, we cannot arrive at the best
topological order of assignments, but can still improve upon the
original sequence. For our benchmark suite, we noticed up to a
50% reduction in the number of iterations with the sorted
assignment sequence. Finally, note that off-line variable
substitution also requires the topologically sorted assignment
graph, so we do not incur any additional overhead for this
improvement.

With the above modifications, we were able to implement a very
efficient and effective points-to analysis in our compiler
framework. We have found that the time spent in points-to
analysis is small compared to the overall compilation time.

4.1 Local Points-to Analysis
To achieve better disambiguation in the absence of
interprocedural analysis, we have implemented an intraprocedural
version of points-to analysis, we term local points-to analysis
(LPT). For LPT, we use the same analysis engine as for WPT.
Since LPT only sees assignments within the analyzed procedure,
we need to make conservative assumptions about the points-to
sets of global variables and formal parameters at procedure entry.
Additionally we need to conservatively incorporate the effect of
function calls on the points-to relationships.

We use the concept of a symbolic location, nloc, which stands for
non-local location. This is used to represent all locations in the
program, excluding the local variables of the analyzed procedure.
All global variables and formal parameters of the procedure are
initialized to be pointing to nloc at the onset of the analysis. This
initialization embodies the assumption that at the entry of the
analyzed procedure, these variables can point to any location in
the program, except the set of locations created after the entry to
the given procedure. This set includes all non-static local
variables, and dynamic memory allocated inside the procedure,
represented by static malloc-sites within the procedure.
Additionally, nloc is initialized to point to itself, because locations
represented by nloc can point to each other.

After this initialization, the analysis proceeds in the same iterative
fashion on the set of assignments in the procedure as for WPT.
On reaching a fixed-point, we mark all local locations accessible
from a global variable or an actual parameter via pointer
indirection, as address-escaped. The address-escaped locations
can be both modified/referenced outside the procedure through
function calls. Thus any location visible outside the analyzed
procedure can point to a location whose address has escaped and
vice versa. To take this into account, we include the symbolic
location, nloc, in the points-to set of each address-escaped
location. Furthermore, nloc is considered to additionally represent
all address-escaped locations.

Since points-to sets have been updated, LPT is performed again.
Identification of address-escaped locations and LPT is iterated
until a fixed-point is reached. Typically, it takes fewer than three
iterations. LPT is performed on the SSA representation of the
procedure. This enables it to achieve limited flow-sensitivity: only
for local pointer variables whose address is not taken and are
replaced with SSA temporaries. In our framework, LPT is
performed even when WPT has been conducted. This is because
LPT can sometimes provide sharper information, as it is
performed after inlining and SSA construction, providing the
benefits of both context- and flow-sensitivity in a limited fashion.

5. EXPERIMENTS
Using the Itanium™ compiler and an Itanium-based system, we
have collected data on the twelve C/C++ programs from the SPEC
CINT2000 benchmark suite. The Itanium processor [9] contains
two integer units, two memory/ALU units, and three branch units.
Integer multiplies and divides can be executed on the processor’s
two floating-point units, adding additional integer throughput for
some programs. The processor has a three-level on-package cache
hierarchy. The highest optimization levels possible are used to
generate the binaries for the experiments in this paper. The SPEC
CINT2000 benchmarks are aggressively compiled using the
switches that are used for a "peak" SPEC build, including all of
the optimizations and analysis described in sections 2-4. The
compiler’s support for data speculation is turned off for these
experiments because the focus of this paper is on traditional
compile-time memory disambiguation without hardware data
speculation support.

We have instrumented the disambiguator to collect data on the
characteristics of the memory references and points-to sets, the
number of queries, and the reason for each disambiguation result.
Switches have been added to turn on and off the individual
disambiguation methods, so that we could see their effect on
performance.

5.1 Memory Reference Characteristics
Table 1 shows for each program, the percentage of static memory
references that are direct references to local variables, global
variables, and indirect references via pointers. The majority of
memory references are either accesses to global variables
(164.gzip, 186.crafty, 256.bzip2), or indirect pointer references
(176.gcc, 181.mcf, 197.parser, 253.perl, and 254.gap). With the
exception of 252.eon and 255.vortex, we do not see many
references to local variables, as only accesses to local arrays and
address-taken local scalars are considered memory references.
Other local variables are promoted to registerizable temporaries.
The address of a local variable is typically taken to effect call-by-
reference semantics. The address-exposure is no longer required if
the given call is inlined and forward substitution is applied
(section 2). This further reduces the number of address-taken local
variables. Forward substitution also eliminates indirect references
off the formal parameters in the inlined copy of the callee
function. This effect is most pronounced for 252.eon (the only
C++ program in the benchmark suite), where indirect references
off the C++ “this” pointer in the inlined callee, become direct
references in the caller.

51

Table 1 Program Memory Reference Characteristics

The column labeled “Avg Set Size” in Table 1 shows the average
size of the points-to sets for the indirect references in each
program as determined by our interprocedural points-to analysis
(WPT). It is reasonably small for the majority of the benchmarks,
with the exception of 252.eon, 253.perl and 254.gap. The loss of
accuracy in the first two benchmarks occurs due to the presence of
indirect calls, with numerous potential target functions (assigned
to an array of function pointers). This forces WPT to consider all
possible assignments between the formals of the numerous target
functions and the actuals at call-sites, resulting in loss of
accuracy. The analysis for 252.eon can be improved by more
accurate handling of virtual function calls.

The benchmark 254.gap primarily uses dynamically allocated
structures. However, the memory allocating routine for this
benchmark, called NewBag, uses free lists and complex pointer
arithmetic, and cannot be automatically identified as a malloc
function. Thus WPT cannot distinguish between different
structures, and provides very inaccurate points-to information.
The use of free lists maintained with global pointers would inhibit
even a flow- and context-sensitive analysis from identifying that
each invocation of the function NewBag returns a disjoint piece of
memory. Thus the loss in accuracy is due to poor basis
information available to the points-to analysis, and not because of
lack of flow- or context-sensitivity.

The last column in Table 1 shows the total number of distinct
disambiguation queries for each benchmark. Throughout this
paper, each pair of memory references is accounted for only once,
irrespective of the number of times the disambiguator is queried
with a given pair of references. The filtering out of repeated
queries is done using a hash table mechanism. Note that we start
accounting for unique memory references after inlining (this is
when the DISAM tokens are created), so the memory references
in different inlined copies of a given function are considered

unique. Compilation of 176.gcc and 253.perl generates the
largest number of unique queries, approximately 1.2 million each.
Thus the compile time cost for each query is
important.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

16
4

17
5

17
6

18
1

18
6

19
7

25
2

25
3

25
4

25
5

25
6

30
0

av
er

ag
e

Benchmark

P
er

ce
n

ta
g

e
o

f
T

o
ta

l Q
u

er
ie

s

Independent Maybe Dependent

Figure 2 Disambiguation Result Summary

5.2 Analyzing the Disambiguation Queries
We now focus on the characteristics of the disambiguation queries
received from various compiler phases, and the effectiveness of
our disambiguation techniques in resolving them. Figure 2 shows,
for each program, the percentage of unique disambiguation
queries for which the disambiguator returns definitely
independent, definitely dependent, and maybe dependent. The
three categories add up to 100%. Over all the queries received for
the same pair of memory references, the best result (definite is
better than maybe) is recorded. For example, the simple base and
offset analysis is used only after the addresses are lowered. Thus
for a pair of references that requires this method to determine
independence, the disambiguator would return a maybe result
before the address-lowering phase, followed by an independent
result thereafter. The definitely dependent results are either
determined by the direct method or by simple base and offset.
The “average” bar on the chart shows that on average, the
disambiguator returns an independent result for more than 85% of
the queries, indicating the effectiveness of our suite of
disambiguation techniques.

5.2.1 Analyzing the Independent Queries
In this section, we study the relative contribution of different
disambiguation methods described in section 3.3, in resolving
disambiguation queries. In Figure 3, the portion of each bar
representing the definitely independent queries in Figure 2, is
expanded and scaled to 100%. For a given bar, each section
represents the percentage contribution of a particular method in
resolving queries. Note that the percentage basis is the total
number of queries proven independent, and not the total number
of queries received. The accounting is done by applying the
methods in a specific order and crediting the first method that
determines independence.

For these experiments, the methods are applied in an order that is
slightly different from that described in section 3.3. We believe
this revised order gives better insight into the real benefits of the
disambiguation methods. The methods are ordered according to

Program Local

%

Global

%

Ind

%

Avg

Set Size

Total

Queries

164.gzip 7 84 9 2.4 26118

175.vpr 16 39 45 1.3 40093

176.gcc 8 31 61 22.1 1237456

181.mcf 8 11 80 1.3 10195

186.crafty 4 87 9 3.7 321026

197.parser 7 39 5 6.9 67642

252.eon 27 40 33 147.7 507662

253.perl 6 36 58 427.3 1192815

254.gap 4 22 74 196.3 286053

255.vortex 34 22 44 39.3 405790

256.bzip2 15 67 18 1.00 13544

300.twolf 2 46 52 3.4 443028

52

two criteria. The first is whether the method is used by default in
the compiler without interprocedural analysis. This gives insight
into the level of disambiguation that can be achieved without user
assertions or interprocedural alias/address analysis. The second
criterion is the complexity of the method. The rationale here is
that the more complex methods should be credited only for
queries where that method is really needed. Thus for example, the
reader can see the additional benefit provided by interprocedural
points-to analysis (WPT) over the simpler methods that would
normally be implemented in a compiler before WPT. Type-based
disambiguation is the exception here. Even though it is simpler
than WPT, it requires a user assertion. We believe it is interesting
to see how much benefit the user assertion provides over what the
compiler analyses can determine on their own. The order of the
methods is as follows:

1. direct: Disambiguation of direct references, either
different memory objects or different parts of the same
memory object (not including array element analysis).

2. sbo_indirect: Simple base and offset analysis, and
simple rules to disambiguate indirect references from
direct references.

3. array: Array data dependence analysis to disambiguate
different elements of the same array.

4. LPT: Intraprocedural points-to analysis.

5. global: Disambiguation of an indirect reference from a
direct reference to a global variable that has not had its
address taken.

6. WPT: Interprocedural flow-insensitive points-to
analysis.

7. type: type-based disambiguation.

Methods 1-4 are enabled at all optimization levels. Methods 5
and 6 are applied only at the highest levels of optimization when
multifile interprocedural analysis is enabled.

We can make several important observations from the data
presented in Figure 3. First, simple techniques like direct and
sbo_indirect, which do not require sophisticated program analysis,
resolve over 60% of the queries determined independent, on
average. The direct technique is especially effective for the
benchmarks 164.gzip, 186.crafty, 252.eon, and 256.bzip2. This is
consistent with the fact that the majority of memory references for
these benchmarks fall into the direct reference category (Table 1).
For all benchmarks except 186.crafty, nearly 100% of the queries
resolved by the direct method are for two references to different
memory objects. The preservation of high-level information
makes resolution of these queries very easy. The LOCs are simply
compared to determine independence. For 186.crafty about 25%
of the queries resolved by the direct method are to different fields
of the same (statically allocated) structure. Structure type
information accessible from the DISAM token is used to
determine the position of the field accessed within the structure.

The sbo_indirect disambiguation technique makes consistent
contributions across all benchmarks. It is useful in disambiguating
accesses to different structure fields with the same base pointer.
This case arises frequently in loops traversing a linked data

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

16
4

17
5

17
6

18
1

18
6

19
7

25
2

25
3

25
4

25
5

25
6

30
0

av
er

ag
e

Benchmark

P
er

ce
n

ta
g

e
o

f
In

d
ep

en
d

en
t

Q
u

er
ie

s

type
wpt
global
array
lpt
sbo_indirect
direct

Figure 3 Breakdown of Independent Queries by Method

53

structure (175.vpr, 176.gcc, and 181.mcf), where the loop body
contains accesses to different fields with respect to the navigating
pointer: for example, the memory references t->item and t->next
in the following code fragment.

while (t != NULL) {
 t->item = t->item + 1;
 t = t->next;
}

Local points-to analysis (LPT) makes visible contributions for
175.vpr, 176.gcc, 197.parser and 254.gap. In the former two
benchmarks, several procedures initialize locally declared pointers
via explicit calls to malloc (as opposed to via wrapper functions).
Indirect references off these pointers are then easily
disambiguated against other memory references, using their local
points-to sets consisting of the distinct malloc-sites. In 197.parser
and 254.gap, local points-to succeeds in disambiguating accesses
to local pointers used to navigate arrays, like pointers p and q in
the code fragment below:

p = &a[i]; q = &b[j];
while (…) {
 *p = *q + 1;
 p++; q++;
}

Array dependence analysis (array) does not make a significant
contribution to independent queries in the static count for the
benchmarks with many arrays like 164.gzip and 256.bzip2.
However, it does prove to be crucial in the runtime performance
context because disambiguation of a few array-based memory
references can enable optimization and scheduling of a critical
loop. Array dependence analysis is important statically for
181.mcf. This benchmark contains loops that go through arrays
of arcs and nodes. The software pipeliner queries the
disambiguator about loop-carried dependences for some of these
loops and the array data dependence analysis is able to determine
that a new array element is accessed for each iteration.

Address-taken analysis for global variables (global) proves
effective across the majority of the benchmarks. In the given
benchmark set, global variables are mostly scalars of integer or
pointer type, and their address is not typically taken as they can be
directly accessed in any section of the program. The technique is
less effective for 181.mcf with only 11% of memory references as
global accesses, and for 253.perl, which has address-taken
attribute set on several global variables.

Interprocedural points-to analysis (WPT) is most effective for the
benchmarks 175.vpr, 181.mcf, and 300.twolf. These benchmarks
use structures with pointer fields, and the different fields point to
dynamically allocated arrays associated with distinct static malloc-
sites. The majority of memory references in these benchmarks
involve indirect accesses to these disjoint arrays, which can be
accurately disambiguated. Both 175.vpr and 300.twolf use
wrapper functions for memory allocation. Our analysis is able to
identify them as malloc functions, leading to accurate points-to
information. Otherwise all pointers would be reported as pointing
to a single malloc site, providing almost no disambiguation. Also
note that our strategy of distinguishing between distinct fields of a

given structure type proves critical to obtaining accurate
disambiguation for this benchmark set. The contribution of WPT
for 176.gcc and 256.bzip2 is also attributable to identification of
dynamically allocated arrays with distinct malloc-sites.

For 252.eon and 254.gap, we have very inaccurate points-to
information with average points-to set size over 100, and
subsequently little contribution from WPT. However, for
253.perl, even with an average set-size of 427, WPT is
responsible for over 20% of independent queries. The majority of
these queries involve disambiguation of address-taken global
variables against indirect pointer references. On the contrary, for
197.parser, even though the set-size is small (6.92), the WPT-
based disambiguation is ineffective because the majority of
pointers in the program have the same points-to set. Thus average
points-to set size is not always a reliable indicator of the
usefulness of points-to information.

Finally, note that simpler techniques like LPT and address-taken
analysis for globals (global), steal a significant number of
independent queries that would otherwise be attributed to WPT.
Thus, disambiguation frameworks that do not use the simpler
techniques, may overstate the added benefits of using
interprocedural points-to analysis[14, 16].

Type-based disambiguation makes significant contributions for
181.mcf and 254.gap. The two benchmarks require frequent
disambiguation of pointers against objects of types long and short,
respectively. The technique also pays off for 176.gcc, 197.parser,
and 253.perl. Again the contribution comes from queries
disambiguating pointers against scalar objects of types integer and
float.

Overall, one can notice that each disambiguation technique pays
off for one or another benchmark. The technique that proves most
effective depends on the memory reference mix of the program,
and the type of queries posed by the various optimizations in the
compiler. This depends on the regions of the program considered
more important by the optimizations based on program structure
and profile information. Thus, our strategy of employing a suite of
disambiguation techniques is a viable approach to the problem.

5.2.2 Analyzing the Maybe Dependent Queries
In this section, we analyze in detail the cases for which our
disambiguator reports a maybe dependence. In Figure 4, we
highlight the maybe dependent portion of the bars shown in
Figure 2. As opposed to Figure 3, each bar in Figure 4 shows the
percentage of maybe dependent queries with respect to the total
number of queries received by the disambiguator. On an average,
we report 12% of queries as maybe dependent. For 6 out of 12
benchmarks, it is in the range of 5%, indicating very accurate
disambiguation. We have over 20% maybe queries for 197.parser
and 254.gap, with 176.gcc and 253.perl falling in the 15-20%
range. Before presenting a detailed analysis, we first explain the
breakdown of data presented in Figure 4.

The top section of each bar in Figure 4 (labeled direct), represents
the maybe dependent queries which involve two direct memory
references (accesses to global or address-taken local variables).
The bottom section represents maybe dependent queries involving

54

at least one indirect memory reference. The maybe cases for
indirect references are further subdivided into three categories,
intersect, identity, and unknown, explained below:

• intersect: The sets of locations accessible from the two
memory references intersect. Since at least one
reference is an indirect reference, one of the location
sets is obtained from points-to analysis.

• identity: Both memory references are indirect references
off the same pointer, for example the two indirect
references in the statement: {*p = *p + x;}

• unknown: The points-to set for one of the dereferenced
pointers is not known, and the pointer is conservatively
assumed to be able to point to any address-exposed
location in the program. This category includes pointers
initialized via library calls like file pointers, pointers to
i/o buffers, the argv pointer used as a formal argument
to function main, and pointers never initialized in the
program (dereferences to such pointers are guarded by
conditions that always evaluate to false at runtime).

The points-to sets considered above are the ones obtained from
WPT analysis. Each category in the above classification pinpoints
a specific area of potential improvement for points-to analysis.
For example, the unknown queries can be better resolved by more
accurate modeling of pointers, which are not explicitly initialized
in the source program. The requirement is improving the basis
information for points-to analysis, and not necessarily its
propagation strategy. The identity queries can benefit from
program point specific points-to information, which requires
introduction of flow-sensitivity. Finally, the queries in the
intersect category may benefit only from a more sophisticated
points-to analysis. We now focus on the data for individual
benchmarks.

We first consider 197.parser, that reports the highest percentage of
maybe dependent queries (35%). The dominant categories are
unknown and intersect. The unknown queries arise from
dereferences of file pointers and pointers to i/o buffers. Currently
our analysis does not accurately model such pointers, and assumes
them to be possibly pointing to any address-exposed location,
resulting in very conservative disambiguation. Our hand analysis
indicates that with more accurate modeling of these pointers (by

making them point to specific symbolic locations), the unknown
queries can either be disambiguated or identified as identity
queries.

Further, the benchmark 197.parser uses a graph data structure,
with all nodes allocated via a wrapper function called xalloc. This
function uses free lists and pointer arithmetic, and our analysis
cannot recognize it as a malloc function. As a result, queries
involving accesses to disjoint nodes of the graph cannot be
disambiguated, and fall in the intersect category. By explicitly
recognizing xalloc as a malloc function (for experimental
purposes), we see a drop in intersect queries from 15% to 5%.
Most of the added disambiguation is achieved in program regions
where a new node is allocated via xalloc, and inserted in the graph
data structure (all references to the newly allocated node can be
disambiguated).

The benchmark, 254.gap, also uses a memory allocator which is
based on free lists and pointer arithmetic. All data structures in the
program are allocated via calls to this function, and majority of
pointers in the program end up having identical points-to sets as
explained in section 5.1. This results in over 15% queries falling
in the intersect set. The queries in the identity set arise from our
strategy of merging all instances of a given structure field. For
example, the memory references *(p->ptr) and *(q->ptr), are both
considered as the reference *(ptr) by our disambiguation
framework. Such dereferences of structure field pointers
frequently occur in 254.gap.

For the benchmark, 176.gcc, the majority of maybe queries arise
inside loops traversing linked data structures, like a list of
instructions, or a chain of tree nodes. To be able to distinguish
between different nodes of such data structures, we need to
determine the acyclic property of the navigating pointer fields,
which requires sophisticated data structure analysis [18].
However, even advanced data structure analyses need to identify
the statements where new heap nodes are allocated. The complex
user-defined memory management in this benchmark practically
obscures this information from the analysis.

For 253.perl, the points-to information is very inaccurate, and we
get over 10% queries in the intersect category. In the benchmark
256.bzip2, we have several global pointers, which are initialized
only once in the program through malloc, and are used as dynamic
arrays. All identity queries arise from dereferences of a given
global pointer at different program points. Note that since the
pointer points to the same location across the entire program,
flow-sensitive information will not be able to improve
disambiguation.

For other benchmarks, we see noticeable number of maybe
queries in the direct category. These queries mostly involve array
references, subscripted with a pointer reference, a structure field,
or another array reference: cases too complex for the array
dependence analyzer. Other queries require disambiguation of an
array reference outside a loop, with those inside the loop, as
illustrated below. Such a query may be posed by the scheduler
attempting to move the post-loop array load above the loop.

 for (i = 0; i < x; i++) {
 a[i + k] = rhs;
 }

 y = a[m];

0%

5%

10%

15%

20%

25%

30%

35%

40%

16
4

17
5

17
6

18
1

18
6

19
7

25
2

25
3

25
4

25
5

25
6

30
0

av
er

ag
e

Benchmark

P
er

ce
n

ta
g

e
o

f
T

o
ta

l Q
u

er
ie

s

intersect identity unknown direct

Figure 4 Breakdown of Maybe Queries by Method

55

Another source of direct maybe queries we have identified,
involves accesses to elements of an array of (statically allocated)
structures. For two references of the form a[i].fieldA and
a[k].fieldB, our disambiguator returns a maybe dependence. Since
we are dealing with static structures, different fields can be safely
assumed to access disjoint memory locations irrespective of the
array indices. The additional checks required to get this
disambiguation, can be easily implemented. For now, majority of
the direct maybe queries in 186.crafty and 252.eon are attributable
to this reason.

Overall, our maybe analysis indicates that majority of maybe
dependent queries arise in programs using dynamic data
structures, where the user-defined memory allocating routines
cannot be automatically identified by our simple SSA-based
recognizer. Development of more sophisticated techniques for
malloc function recognition, holds the potential to substantially
improve disambiguation for a large number of programs. This is
amply demonstrated by the accurate disambiguation achieved for
175.vpr and 300.twolf, and the improvement we get for 197.parser
on explicitly recognizing the malloc function. Alternatively, the
user can be asked to provide this information via an assertion.

5.3 Performance Analysis
We now focus on the impact of our memory disambiguation
techniques on program performance. Figure 5 shows the
percentage speedup obtained by successively enabling the
disambiguation methods. The 0% speedup line represents the base
performance with no memory disambiguation. The speedup for

each method is computed by dividing the execution time for the
base case by the execution time with that method (and all the
methods to the left) enabled.

Basic disambiguation of direct references is very important for
164.gzip and 252.eon, consistent with the static data presented in
Figure 3. Disambiguation of direct references is not very
important for 256.bzip2 performance, despite the importance of
that method in the static data. The frequently executed loops in
256.bzip2 do not contain direct reads and writes of different
memory objects. Likewise, direct reference disambiguation is not

as important for 186.crafty performance as the static data would
indicate.

The next method turned on is the use of simple base and offset
analysis, and simple rules for indirect references. The simple
rules for indirect references pay off for 252.eon. There are many
queries with a direct reference to a local automatic variable whose
address is taken, but the indirect reference is off an unmodified
parameter. In 255.vortex, there are similar cases. In 175.vpr and
186.crafty, the benefit for this method comes from rules for
indirect references, as well as from simple base and offset
analysis. For 300.twolf, the performance improvement is mostly
from simple base and offset analysis.

Local points-to analysis is able to provide small performance
gains for 175.vpr, 252.eon, and 256.bzip2. Array data
dependence analysis proves to be very important for the
performance of 164.gzip and 256.bzip2, both of which include
references to different elements of the same array in the frequently

-5

0

5

10

15

20

25

30

164 175 176 181 186 197 252 253 254 255 256 300 average

Benchmark

P
er

ce
n

ta
g

e
P

er
fo

rm
an

ce
 Im

p
ro

ve
m

en
t

direct sbo_indirect lpt array global wpt type

Figure 5 Performance Improvement from each Disambiguation Method

56

executed loops. However, static contribution from this analysis is
very small for these benchmarks (Figure 3). This makes sense
because the loops containing these memory references contribute
very little to the static number of memory references, but
contribute greatly to the dynamic number of memory references
and to the execution time.

Disambiguation of indirect references from direct references to
globals that have not had their address taken helps many programs
including 175.vpr, 176.gcc, 254.gap, 256.bzip2, and 300.twolf.
175.vpr, 176.gcc, and 300.twolf all have a healthy mix of indirect
references and direct references to globals. These benchmarks
also show large percentage of static disambiguation queries
resolved by this technique. The frequently executed loops in
256.bzip2 contain indirect writes to an array and direct loads of
global scalar variables for the loop bound and array pointer. This
method allows these scalar references to be hoisted out of the loop
by PRE. This method steals much of the thunder from
interprocedural points-to analysis (WPT). Without this method,
WPT would normally be required to disambiguate these memory
references. Thus it is important to evaluate the performance
contribution of WPT in the context of other disambiguation
techniques.

WPT provides performance gains for 175.vpr, 176.gcc, 252.eon,
253.perl, 256.bzip2, and especially 300.twolf, consistent with the
static query data in Figure 3. The benchmark 181.mcf spends most
of its time accessing memory, so despite the fact that a very large
fraction of the static queries are resolved by WPT, there is no
performance gain.

The final method considered is type-based disambiguation. It
provides small gains for 175.vpr, 176.gcc, 254.gap and a larger
gain for 252.eon. In 252.eon, the type-based technique proves to
be very effective for the routine mrSurfaceList::viewingHit, which
is one of the most frequently executed functions in the
benchmark.

The astute reader will notice a few cases where increasing the
level of disambiguation actually hurts performance slightly,
particularly in 254.gap. It is difficult to pinpoint the slight
performance loss to a particular optimization. The loss is possibly
caused by a complex interaction between different optimizations
and requires further investigation.

6. RELATED WORK
In [1], Novack et. al. present a method for preserving algorithm-
level and source-level semantics information. Their method
defines a hierarchical decomposition of the address space using
implicit assertions that reflect the programming language as
implemented by the compiler and explicit programmer assertions
that reflect the algorithm and the programmer’s use of the
language. Using this hierarchy, the disambiguator can distinguish
between stack and heap, different types, and different variables.

The DISAM approach also preserves source level semantics and
decomposes the address space, but it provides access to a richer
set of information, including full symbol table information about
variables, pointers, types, functions, and memory allocation sites.
In our framework, we use the symbolic representation of memory
references as a way to interface with analyses such as points-to
analysis that are performed while the program is represented at a
high level. We have also extended this framework for function

call MOD/REF analysis. Our implementation of this technique in
a product compiler demonstrates that it is possible with very
reasonable cost to maintain high-level information for use by the
disambiguator at any compilation phase.

The memory disambiguator in the IMPACT compiler is described
in [8]. This compiler performs array data dependence analysis
and points-to analysis [16]. It generates memory dependence
arcs, called sync arcs, to represent all the memory dependences in
the function and maintains these arcs through all of the
optimization phases. This requires that potentially O(N2) arcs be
stored in the worst case where N is the number of memory
references in the function. In practice the pairs of references that
actually have a control flow path between them (and thus require
an arc) is much smaller.

In our method, we maintain information about each memory
reference (O(N)) plus a data dependence graph containing only
arcs for dependences between different elements of the same array
in loops. We must store a points-to graph whereas the IMPACT
compiler can discard the points-to graph once the sync arcs have
been generated. The relative memory usage of the two methods
depends on the relative sizes of the information stored in the
points-to graph and DISAM tokens verses the sync arcs. We
believe that the DISAM approach has a memory usage advantage
at lower optimization levels where points-to information is not
available, as the number of conservative sync arcs will be higher
due to the absence of accurate information. In the DISAM
approach, on average, each query is relatively expensive
compared to looking up a sync arc. While the compile-time cost
of the queries has not been an issue thus far, the results of the
most time-consuming queries could be cached to reduce the cost.
The total number of queries received by the disambiguator is
much larger than the number of unique queries.

The related work on using the results of pointer analysis includes
that of Wilson and Lam[13], Ghiya and Hendren[14], and Diwan
et. al[15]. Wilson and Lam use points-to information for
parallelization of two benchmarks. The speedup is achieved
through better disambiguation between pointer-based arrays.
Ghiya and Hendren study the benefits of a collection of pointer
analyses in the context of three optimizations: loop-invariant
removal, location-invariant removal, and common subexpression
elimination. In our compiler framework, all three optimizations
are subsumed within the PRE and PDSE optimizations. Diwan et.
al present the results on redundant load elimination (RLE) for a
set of Modula programs, based on information from a type-based
alias analysis. Our PRE optimization also subsumes RLE. Pioli
and Hind[17] present a thorough study of the efficiency and
precision of six context-insensitive pointer analyses, using the
metric of average points-to set size at indirect references. Our
experimental data indicates that this metric is not always a reliable
indicator of the effectiveness of points-to information in resolving
disambiguation queries.

Cheng et. al[16] perform a very thorough study of the impact of
memory disambiguation on the SPEC CINT92 and CINT95
programs in the context of redundant load/store elimination, loop-
invariant location promotion, and load/store scheduling. The
memory optimizations are subsumed by our PRE and PDSE
transformations, and we also include acyclic scheduling, software
pipelining, and other optimizations in our study. Cheng et. al
individually show the benefits of disambiguation for scheduling

57

vs. load/store optimization. Their performance improvements are
higher than those reported in this paper. Their study uses a
different set of programs and a wider simulated processor. Our
base case includes modeling of side effects for library function
calls and disambiguation of compiler generated references such as
spill code. Their base case does not use any disambiguation or
side-effect analysis.

7. CONCLUSION
In this paper, we have described a memory disambiguation
framework that brings together all the clients and sources of
memory disambiguation. We have evaluated the framework
using standard benchmarks on an Itanium™-based system. The
experimental results show that a broad range of disambiguation
methods is necessary to handle the varying characteristics of
different programs and provide the highest overall performance.
The results also show that it is important to evaluate the
performance of additional memory disambiguation techniques
such as points-to analysis within a hierarchical framework that
implements the simpler disambiguation methods, because these
methods steal some of the thunder of the more complex methods.
Further, we demonstrated that there is no direct correlation
between the effectiveness of memory disambiguation as per the
static metrics, and its contribution to overall program
performance. This also applies to individual disambiguation
methods, when considered in isolation. Finally, we noted that in
many cases, loss in accuracy of points-to information occurs due
to certain features inherent to the analyzed program, like arbitrary
type-casting and user-managed memory allocation, which cannot
always be overcome by even applying more sophisticated points-
to analyses.

8. ACKNOWLEDGMENTS
We thank the members of the Intel Itanium™ compiler team for
their contributions to the compiler technology described in this
paper, and the reviewers, whose comments significantly improved
the quality of this paper.

9. REFERENCES
[1] Novak, S., Hummel, J., and Nicolau, A. A Simple

Mechanism for Improving the Accuracy and Efficiency of
Instruction-Level Disambiguation. 8th International
Workshop on Languages and Compilers for Parallel
Computing, Springer-Verlag, August 1995, 289-303.

[2] Chow, F., Chan, S., Kennedy, R., Liu, S., Lo, R., and Tu, P.
A New Algorithm for Partial Redundancy Elimination Based
on SSA form. Proceedings of the ACM SIGPLAN '97
Conference on Programming Language Design and
Implementation, June 1997, 273-286.

[3] Bharadwaj, J., Menezes, K., and McKinsey, C. Wavefront
Scheduling: Path Based Data Representation and Scheduling
of Subgraphs. Proceedings of the 32nd Annual ACM/IEEE
International Symposium on Microarchitecture, 1999, 262-
271.

[4] Andersen, L. O. Program Analysis and Specialization for the
C Programming Language. PhD thesis, DIKU, University of
Copenhagen, May 1994. (DIKU report 94/19)

[5] Rountev, A., and Chandra, S. Off-line Variable Substitution
for Scaling Points-to Analysis. Proceedings of ACM
SIGPLAN Conference on Programming Language Design
and Implementation, June 2000, 47-56.

[6] Fahndrich, M., Foster, J., Su, Z., and Aiken. A. Partial
Online Cycle Elimination in Inclusion Constraint Graphs.
Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation, June
1998, 85-96.

[7] Das, M. Unification-based Pointer Analysis with Directional
Assignments. Proceedings of ACM SIGPLAN Conference
on Programming Language Design and Implementation, June
2000, 35-46.

[8] Hwu, W., Hank, R., Gallagher, D., Mahlke, S., Lavery, D.,
Haab, G., Gyllenhaal, J., and August, D. Compiler
Technology for Future Microprocessors, Proceedings of the
IEEE, December 1995, pp. 1625-1640.

[9] Sharangpani, H., and Arora, K. Itanium Processor Micro-
architecture. IEEE Micro, Vol 20, No 5, Sept 2000, 24-43.

[10] Huck, J., Morris, D., Ross, J., Knies, A., Mulder, H., and
Zahir, R. Introducing the IA-64 Architecture. IEEE Micro,
Vol 20, No 5, Sept/Oct 2000, 12-23.

[11] Bharadwaj, J., Chen, W., Chuang, W., Hoflehner, G.,
Menezes, K., Muthukumar, K., and Pierce, J. The Intel IA-
64 Compiler Code Generator. IEEE Micro, Vol 20, No 5,
Sept/Oct 2000, 44-53.

[12] Krishnaiyer, R., Kulkarni, D., Lavery, D., Li, W., Lim, C.,
Ng, J., and Sehr, D. An Advanced Optimizer for the IA-64
Architecture. IEEE Micro, Vol 20, No 6, Nov 2000, 60-68.

[13] Wilson, R. P., and Lam, M. S. Efficient Context-Sensitive
Pointer Analysis for C Programs. Proceedings of ACM
SIGPLAN Conference on Programming Language Design
and Implementation, June 1995, 1-12.

[14] Ghiya, R., and Hendren, L. Putting Pointer Analysis to
Work. Proceedings of ACM SIGPLAN/SIGACT
Conference on Principles of Programming Languages, Jan
1998, 121-133.

[15] Diwan, A., McKinley K., and Moss, J. Type-based Alias
Analysis. Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation, June
1998, 106-117.

[16] Cheng, B., and Hwu, W., Modular Interprocedural Pointer
Analysis using Access Paths: Design, Implementation, and
Evaluation. Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation, June
2000, 57-69.

[17] Pioli, A., and Hind, M. Evaluating the Effectiveness of
Pointer Alias Analyses. Science of Computer Programming,
Vol. 39 (1) (2001), 31-55.

[18] Ghiya, R., and Hendren, L. Is it a Tree, DAG, or a Cyclic
Graph? A Shape Analysis for Heap-directed Pointers in C.
Proceedings of ACM SIGPLAN/SIGACT Conference on
Principles of Programming Languages, Jan 1996, 1-15.

58

