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ABSTRACT 

This paper presents a new logic simulation technique that 
uses software levelixed compiled-code (LCC) for synchronous 
designs. Three approaches are proposed: C source code, tar- 
get machine code and interpreted code, The evaluation 
speed for the software LCC simulator (SSIM) is about 
140,000 (gate) evaluations per second using C source code or 
target machine code, or 50,000 evaluations per second using 
interpreted code. It is about 40 to 100 times slower than the 
AIDA hardware LCC simulator, but is about one order of 
magnitude faster than a traditional software event simulator. 
For a 32-bit multiplier with gate activity more than lOO%, 
experiments indicate that SSIM runs about 250 to 1,000 
times faster than the AIDA event simulator that evaluates 
about 4,500 gates per second. 

hdez Terms - Levelized compiled-code (LCC) simulation, 
Logic simulation, Synchronous design. 

1. INTRODUCTION 

The traditional selective-trace, event-driven simulation 
technique [Breuer 761 has been widely used to simulate digi- 
tal circuits. The major advantages of using this approach 
are its abilities of (1) handling both synchronous and asyn- 
chronous designs, and (2) performing timing as well as func- 
tional analysis during simulation. The problem with this 
approach is that the software simulation speed is very slow, 
typically, at about 1,000 evaluations per second running in a 
one-million-instructions-per-second (l-MIPS) machine [Smith 
861. As designs get larger, it becomes more difficult to rely on 
software event-driven simulation to obtain reasonable perfor- 
mance. 

Hardware accelerators [Blank 841 are commonly used 
to solve this problem. With hardware acceleration, the per- 
formance improvement is, usually, over 100 times. Designers, 
however, must pay a sizable extra cost, usually, in the range 
between $lOOI< to $lM, in order to benefit from this speed. 
Moreover, for complex system designs, gate activity is typi- 
cally very high, often over 100 percent. In this case, even 
with hardware acceleration, event simulation is still very 
time-consuming. 

Today, as the demands for maintainability, testability, 
portability (the ability to implement the design in more than 
one technology) and improved performance (through pipelin- 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct commercial 
advantage, the ACM copyright notice and the title of the publication and 
its date appear, and notice is given that copying is by permission of the 
Association for Computing Machinery. To copy otherwise, or to 
republish. requires a fee and/or specific permission. 

ing) increases, synchronous designs become the preferred 
method for very large-scale integration (VLSI) applications 
[Chiang 861. Wh en combined with an acceleration coproces- 
sor and levelized synchronous design techniques, hardware 
compiled-code simulation [Chiang 86) [Ishiura 851 [Pfister 821 
can easily reach ,millions of gate evaluations per second, per- 
formance that event-driven simulation can hardly obtain. 

Levelized compiled-code (LCC) simulation requires 
logic levelization and code generation for a synchronous 
design before logic simulation can be performed. Logic leveli- 
zation orders gates (primitives) in the design which are all 
one-level deep, two-level deep, etc. from primary inputs and 
data outputs of storage elements. The ordered sequence of 
the gates is then translated into machine-executable code. 
Every gate is evaluated once during each clock cycle, 
independent of the input pattern dynamics. Performance of 
LCC simulation, thus, does not depend on the gate activity 
in the design, and the need for event queue management is 
entirely eliminated. 

This paper will address three co&effective software 
logic simulation techniques using LCC: C source code, target 
machine code and interpreted code. The program executing 
the compiled-code at the software level is called SSIM, a 
software levelized compiled-code simulator. Experiments will 
indicate that the simulation speed can reach 140,000 
(equivalent P-input) gate evaluations per second using target 
machine code compiled from C code, or 50,000 gate evalua- 
tions per second using interpreted code. 

Given a synchronous design, a C program can be gen- 
erated, containing only a set of assignment statements, one 
for each gate in the design. The advantage of using this 
approach is its high portability to any target machine. The 
problems with this approach is that C code must be first 
compiled before it can be used for simulation. 

Target machine code solves the above compilation 
problem by directly generating machine-executable code for 
the target machine (e.g., Motorola 68020, DEC 11/780, or 
IBM 370). The problem with this approach is that different 
code generators must be maintained. Whenever there is a 
change in the code generation process, this change must be 
propagated to all code generators. 

To ease maintainability, interpreted code can be used 
as an alternative to C source code and target machine code. 
During simulation, SSIM will interpret (or emulate) each 
instruction used in the hardware LCC accelerator. Since the 
same code is used for simulation, SSIM using the interpreted 
code approach will be fully independent of all target machine 
codes. The penalty, however, one has to pay is that the 
simulation speed fails to between 25,000 to 50,000 evalua- 
tions per second. 
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2. LCC LOGIC SIMULATION ARCHITECTURE 

Fig. 1 shows an LCC logic simulation architecture for 
synchronous designs. The synchronous design is first com- 
piled by a netlist compiler into a netlist. Levelized 
compiled-code (LCC) can then be generated from the netlist 
either by a sojtwure compiled-code generator (SIMGEN) or 
by a hardware compiled-code generator (COGEN). 

When SIMGEN is used, C source code or target 
machine code can be produced. If C source code is needed, 
SIMGEN will generate the C program and then invoke the C 
compiler to produce machine-executable code. If target 
machine code is needed, SIMGEN will directly generate 
machine-executable code for that target machine. No C pro 
gram will be generated. This target machine code is then 
used in combination with the input test pattern file for simu- 
lation. SSIM is the software LCC simulator that produces 
the output results. 

When COGEN is used, simple RISC (reduced- 
instruction set computer) code is produced. This code can 
then be used either by a hardware accelerator or be inter- 
preted in software. If hardware acceleration is to be used, 
the hardware LCC simulator, CSIM, will coordinate with the 
hardware accelerator and produce output results. If software 
interpretation is desired, the interpretive SSIM (or SSIM 
using interpreted code) will be called to do the task. 

Sof&ware Hardware 
IntelpreuItion Accelaation 
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SSIM 
I 
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Figure 1. An LCC logic simulation architecture. 

The following algorithm describes how the compiled 
code is used in logic simulation. It is very similar to that 
given in [Denneau 821. For every clock cycle, the entire pro- 
gram is executed once. This LCC simulation approach, obvi- 
ously, is very different from logic simulation that uses 
selective-trace, event-driven approach (event simulation) 
[Breuer 761. For designs with lower gate activity (event 
activity), e.g., 10% or less, not much benefit (in terms of 
simulation speed) may be gained compared to that using 
event simulation. For designs with high activity, however, 
LCC simulation becomes highly desirable. 

Experimental results will indicate that among the three 
LCC approaches proposed, (1) in terms of simulation speed, 
the interpretive SSIM runs the slowest, (2) in terms of porta- 
bility and maintainability, SSIM using target machine code is 
the least portable, and (3) in terms of code generation, 
SIMGEN takes the longest to compile the C source code 

Algorithm 1: (LCC logic simulation) 

Repeat n clock cycles 
( 
(1) Take an input pattern that corresponds to the 

clock cycle, 

(2) Execute the entire LCC Simulation once, 

(3) Produce output results, and 

(4) Compare against expected output results ii 
necessary. 

> 

3. LCC CODE GENERATION 

Fig. 2 is a flow diagram of an LCC code generation 
process for synchronous designs. Given a synchronous 
design, LCC is produced by performing logic optimization, 
logic levelization, and code generation. Depending on the 
designer’s request, three types of codes can be generated: C 
source code, target machine code, or hardware COGEN code. 
SIMGEN is used to generate C source code or target machine 
code, whereas COGEN is used to generate hardware COGEN 
code. 

0 Logic 
ClptimizatOll 

Figure 2. Levelized compiled-code generation algorithm 

3.1. Logic Optimization 

SIMGEN and COGEN provide designers with two 
options of logic optimization: NOOPT (no optimization) and 
FULLOPT (full optimization). When no optimization mode 
is selected, the code generated by SIMGEN/COGEN 
represents the actual circuit topology with one statement for 
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each gate. When full optimization mode is chosen, n-mput 
logic gates with m inputs tied high or low are changed into 
n-m input gates. If n-m = 1, the gate is changed into an 
inverter or a buffer. Finally, buffers and inverters are optim- 
ized o& of the network. This mode of operation can Isub- 
stantially increase logic simulation speed. 

3.2. Logic Levelization 

Logic levelization [Breuer 761 is a process of emulating 
the data flow from primary inputs and latch outputs to pri- 
mary outputs and latc’h inputs. If a feedback loop exist#s in 
the design, SIMGEN/COGEN will identify those gates (or 
objects) that cannot be levelized. 

Consider the 2-input XOR gate shown in Fig. 3. The 
circuit contains 2 input, ports (primary inputs), 1 output port 
(primary output) and 5 objects (gates). It has a total of 7 
nets (nodes). When no optimization is used, the objects in 
the circuit will be levelized as numbered in the figure. The 
algorithm used in SIMGEN/COGEN for logic levelization is 
given as follows: 

Algorithm 2: (Logic Ievelization) 

.l) Mark all nets connecting to input ports and latch 
outputs as “available”; 

2) Put the fanout objects connecting to input ports and 
latch outputs into a queue; 

?I While (the queue is not empty) 
{ 
Take an object from the queue; if all of its input 
pins are marked “available” 

{ 
(A) Mark all output nets of the object as 
“available”, 
(B) Generate C source code, target machine 
code, or hardware COGEN code for the object, 
and 
(C) Put into queue those fanout objects that 
connect to the output nets. 
1 

> 

:4) If the number of “available” nets is not equal to the 
total number of nets, then report the error. The cir- 
cuit contains feedback loops on those objects gen- 
erating nets that are not marked “available”. 

3.3. Code Generation 

Levelized compiled-code (LCC), in either instruction or 
assignment statement format, is generated during logic leveli- 
zation. For general-purpose applications, assignment state- 
ments can be generated in C source code. For dedicated 
applications, instruct&s can be generated in target machine 
code. Interpreted code is a special case of target machine 
(COGEN) code that is currently used in the AIDA hardware 
accelerator. This approach permits LCC simulation to run 
on any target machine other than the hardware accelerator. 

3.3.1. C Source Code 

For a given synchronous design, a C program is pro- 
duced consisting of a set of assignment statements that emu- 
lates the behavior of the design, C source code is very easy 
to debug and port to any target machine as long as the tar- 
get machine can compile C programs. The disadvantage 
with this approach. is that overall LCC simulation time is 
degraded due to the need to compile the C program first. If 
fault simulation is required, tremendous effort to generate 
compiled-code for different faults is required. This may not 
be a viable approach for fault simulation. 

+vcc 

Figure 3. 2-input XOR gate for compiled-code generation. 

Consider the 2-input XOR gate shown in Fig. 3, again. 
The C source codes corresponding to NOOPT and FUL- 
LOPT options are given in Tables 1 and 2, respectively. 
When the NOOPT option is used, five assignment state- 
ments, one for each object, are generated, as shown in Table 
1. The n5, n6 and n7 statements contain references to VO 
and Vl, which denote logic state values 0 and 1, respectively. 
The circuit topology is not changed during this mode of 
operation. When the FULLOPT option is used (see Table 2), 
the n4 statement is removed. Instead, the n5 and n6 state- 
ments are evaluated by using the complement value of net n3 
(comp[n3]). The tied high and low inputs to nets n5, n6 and 
n7 are also removed. 

It should be noted that this example is only for illus- 
tration. When tristate gates and other types of objects that 
produce the high-impedance state (VZ) are considered, the 
code generation process will be slightly different. 

To handle the high-impedance state, two schemes can 
be used One scheme is to map states {VO, VZ, VX, Vl} to 
(‘JO, VX, VX, VI}, respectively whenever it is necessary, 
where VX is an unknown state. This mapping is very expen- 
sive since an indirect indexing is required for each net in the 
assigmment statement. 

The other scheme is to use a tag bit, which is called 
VZJASK in our examples. Whenever any object creates a 
VZ state, state VX is stored in the output net state table, 
while a VZJfASK tag is set to indicate that it is actually a 
VZ state. Special conversion on input and output port states 
is also required. Though this scheme looks cumbersome, it is 
much more efficient than the first scheme. This is because in 
a design, in general, only a small portion of nets will exhibit 
VZ states. Thus, the code generation process is based on the 
second scheme. 
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For interested readers, a synchronous circuit consisting 
of a HAM functional model (written in C), a tri-state gate, 
and a bidirectional I/O pin is given in the Appendix. C 
source code and COGEN code are listed. 

Table I. C source code for Fig. 3 using NOOPT mode 

typedef unsigned char byte; 
#define VO 0x00 
#define VZ 0x01 
#define Vx 0x02 
#define Vl 0x03 
byte comp[] = {Vl, Vx, VX, VO}; 

sim-design() 
{ 

byte 471; 

n[3] = n[l] & n[2]; 
n[4] = comp[n[3]]; 
n[sl = Vl & n[l] & n[4]; 
n[6] = n(4] & n(2] & VI; 
n[7] = n[S] ] n[6] ] VO; 

> 

Table 2. C source code for Fig. 3 using FULLOPT mode 

,ypedef unsigned char byte; 
#define VO 0x00 
#define VZ 0x01 
#define VX 0x02 
#define Vl 0x03 

syte camp]] = {Vl, VX, VX, VO}; 

;im-design0 
( 

byte n[7]; 

n[3] = n[l] & n[Z]; 
n[5] = n[l] & comp(n(3]]; 
n[6] = comp[n[3]] & n[2]; 
n171 = nlsl 1 n[61; 

\ 

3.3.2. Target Machine Code 

Instead of generating C source code as the first step to 
simulation, it is possible to generate code directly from the 
design that is executable by a target machine. The code gen- 
erated in this manner is called target machine code. It con- 
sists of a set of machine-executable instructions. 

Target machine code is very efficient to run during 
logic or fault simulation. The high efficiency is partly due to 
the technique used for (machine) code optimization. Since 
register access is usually fester than memory access, target 
machine code can yield very high efficiency if code optimiza- 
tion can take advantage of all data registers available in the 

target machine. It might be more efficient if logic levelization 
can be done so that code optimization can fully utilize the 
long data registers. 

Table 3 shows the COGEN instructions for the circuit 
given in Fig. 3. The function of each instruction will be 
described in the next subsection. These instructions were 
generated by COGEN using FULLOPT mode. It can be seen 
that for the n7 statement only two instructions were gen- 
erated. This is because the state of net n6 resides in the accu- 
mulator 

Table 3. COGEN code for Fig. 3 using FULLOPT mode 

(01) LA nl 
(02) AN 112 
(03) ST n3 
(04) LA nl 
(05) AN,C n3 
(06) ST n5 
(07) LA n2 
(08) AN,C n3 
(09) ST n6 
y; g; n5 

n7 
(12) HA 0 

] Load nl 
] And with n2 
] Generate n3 
] Load nl 
1 And with comp[n3] 
1 Generate n5 
1 Load n2 
] And with comp[n3] 
] Generate n6 
( Or with n5 
( Generate n7 
] Halt simulation 

3.3.3. Interpreted Code 

Although the simulation speed using C source code and 
target machine code is fast, (about 140,000 gate evaluations 
per second for a &MIPS machine), many serious problems 
have been encountered. 

First, when the design is large, e.g., more than 1,600 
primitives, it takes a long time to compile the C source code. 
Although target machine code can be directly generated from 
the design, the task becomes difficult as different machine 
code translations for each type of target processor must be 
done. 

Second, program maintainability and quality assurance 
(QA) are serious concerns. Whenever there is a change in the 
code generation process, this change must be assured to pro- 
pagate through C source code and all target machine codes. 

With these concerns, interpreted code is proposed as 
an alternative to C source code and target machine code. 
Since only COGEN is required for simulation, SSIM using 
the interpreted code approach will be fully independent of all 
target machines. This substantially eases portability, compa- 
tibility, maintainability and quality assurance problems. The 
penalty, however, is that the simulation speed falls to 50,000 
evaluations per second. 

Table 4 lists 16 basic COGEN opcodes currently used 
in the AIDA design system /Aida 861. The first 11 opcodes 
are associated with logic operations. Of the remaining 5 
opcodes, the CO (compare) opcode is hardware-oriented. 
The LS (load-store) opcode, which is associated with D flip- 
flip (DFF) and latch operations, controls whether the present 
state should be stored in the state memory or not. The HA 
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(halt) opcode stops simulation or starts to execute the next 
functional model. 

- 
Table 4. The 16 COGEN instruction opcodes 

= 

[:J E 
Load accumulator 
AND operation 

E NA 
NAND operation 

OR OR operation 

EZ No 
NOR operation 

x0 IExclusive-OR operation 
(07) gJ Exclusive-NOR operation 

[ii; TX 
Tri-state operation 
Transmission gate operation 

1:;; cc 
IDot operation 
‘Weak driver operation 

;:g i% 
Compare operation 
No-op 

I::{ E 
Store accumulator 
ILoad store control register 

(16) HA Halt operation. 

Each opcode takes two operands: an address field and 
a modifier field [Aida 861. Emulation of COGEN code is 
done by simply interpreting COGEN instructions one at a 
time during simulation. In each interpretation, the net state 
associated with the address field is first computed. Under the 
control of the modifier field, the required operation is then 
performed according to the opcode. 

Table 5. 
Logic tables for interpreting COGEN code I 

A. B 
0 0 
0 1 

0 x 
0 z 

10 

1 1 
1 x 
1 z 
x 0 

x 1 
x x 
x z 
z 0 
z 1 
z x 
z z 

LA AN OR X0 TR TX DO WD 
0 0 0 0 z z 0 0 
0 0 1lZ z x 1 
0 0 x x z z x x 
ooxxzzoo 
1 0 1 1 0 0 x 0 
1 1 1 0 1 1 1 1 
1x1xxxxx 
lxlxxzll 
xoxxxxxo 

xx1xxxx1 

x x x x x x x x 
x x x x x x x x 

zoxxxxoo 

ZXlXXXll 
zxxxxxxx 
zxxxxxzz 

To execute the “LA,C M” instruction, (load the com- 
plement of net M to the accumulator), the state of the net is 
first computed. Then, the complement of that state is 
transferred to the accumulator. Interpretation of logic opera- 
tions such as AN, OR, and TR are done by table lookup. 
Table 5 lists some of the tables used to perform logic opera- 
tions, where A is the state in instruction operand, and B is 
the value in the accum,ulator. 

The interpreted code approach entirely eliminates the 
use of an LCC hardware accelerator. It is very effective for 
small designs. The problem with this approach is that the 
simulation speed is much slower (usually; two orders of mag- 
nitude) compared to the hardware accelerator. Thus, for 
larger designs, the running time may be prohibitively long. 
In these cases, a hardware accelerator is recommended. 

4. PERFORMANCE 

Table 6 shows some statistics and experimental results 
about six benchmarked circuits running on an Apollo 
DN570-T 32-bit workstation (with instruction cache). The 
machine has 16 megabytes of physical memory and uses a 
Motorola 68020 CPU running at 20 MHz. Peak performance 
is about 3 to 4 MIPS. “alu4” and “alu32”. are 4-bit and 32- 
bit combinational ALUs, respectively. “mpy32” is a 32-bit 
multiplier implemented with a Bdimensional, iterative full- 
adder array. “achipl” is a real chip design containing a 72- 

stage random number generator, a 32-bit ALU, a 64-stage 
signature analyzer, and some other logic. “achip2” is 
another real chip design including about 1,700 D flip-flops, 
6,800 transmission gates and 3,100 dot gates. These dot 
gates are not counted as equivalent gates. “alul02k” is a 
large combinational circuit containing 102,100 equivalent 2- 
input gates. 

The simulation time for the first two circuits is mostly 
dominated by the time needed for setting input patterns. 
Not much time difference was observed between LCC and 
event simulations. For the last four circuits, time to set 
input patterns had been reduced to a minimum. Results 
indicated that the interpretive SSIM is about 3 to 4 times 
slower than SSIM using (compiled) C source code, and is 
about 50 to 140 times slower than CSIM, the AIDA hardware 
LCC simulator. If C code compile time is considered, then 
SSIM using C source code loses attractiveness, since the C 
compiler takes a long time to compile. In the case of using 
target machine code, however, SSlM remains attractive since 
time to compile a design is very close to the COGEN time. 

It is interesting to note that for one particular circuit 
“mpy32”, SSIM runs about 250 to 1,000 times faster than 
ESIM, the AIDA event simulator. The reason for this 
significant improvement is because “mpy32” has very high 
gate activity (see Table 7). The result is not surprising since 
in event simulation, an object may have to be evaluated 
more than once during each clock cycle. This strongly 
demonstrates that LCC simulation is highly desirable for 
such designs. 

Table 7 lists simulation performance calculated from 
the results in Table 6. It indicates that the interpretive 
SSIM and SSIM using C source code reach the execution 
speeds of 50,000 and 140,000 gate evaluations per second, 
respectively. 

5. SUMMARY AND CONCLUSIONS 

A logic simulation technique using levelized compiled- 
code (LCC) for synchronous designs is presented. This tech- 
nique allows designers to run logic simulation in machines 
(such as CAE workstations or computers) without a 
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hardware accelerator. It requires an LCC generator to level- 
ize the design a.nd generate machine-executable code. 

The first approach produces C source code that 
represents the design. This code is quite portable. The prob- 
lem is that the C compiler must be used before the code can 
be used for simulation. Target machine code eliminates the 
time-consuming compilation process, however, it introduces 
maintainability and portability problems. 

By using an interpretive approach, the software LCC 
logic simulator, SSIM, reaches 50,000 evaluations per second. 
Although the speed is much slower than 10 MIPS (or 5M 
gates per second) running on the AIDA hardware accelerator, 
SSIM allows designers to run LCC on any target machine 
without portability, maintainability, and incompatability 
probIems. In addition, it expands the simulation capabilities 
to user-defined functional models, where a functional model 
is a C program that describes the behavior of a macro, such 
as aRAM 0rALU. 

Experiments indicate that SSIM runs much faster than 
a traditional event simulator that runs at about 1,000 
evaluations per second. In some cases, it outperforms those 
event-driven logic simulation programs that use hardware 
accelerators to improve performance. 
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APPENDIX 

This appendix describes a code generation process for 
circuits containing functional models, tri-state gates and 
bidirectional I/O pins, where a functional model is a C pro- 
gram that describes the behavior of a macro, such as an 
ALU, a RAM or a multiplier. 

Fig. 4 shows a 16-by-1 RAM cell (functional model) 
with read/write control logic. Net n6 acts as an ENABLE 
pin. When n6 is in the active-high (Vl) state, the data com- 
ing out from the RAM (operated in read mode) will appear at 
the output port n15. When n6 is in the active-low (VO) 
state, data at n7 will appear at n15, and be stored in the 
RAM if the RAM is in write mode (or the n5 state is VO). 

Table 6. 
Experimental simulation results (time in seconds) 

circuit primi- equiv. instruc- patterns total SIMGEN COGEN SSIM SSIM CSIM ESIM 
tives gates tions’ evaIs.’ time3 time time4 time5 time time 

alu4 52 82 201 16,384 6G9,931 13 1 85 47 70 185 
ah32 502 984 1,717 448 123,258 52 2 20 20 10 36 
achipl 1,643 3,184 4,645 1,000 2,223$X9 213 5 84 23 1 504 
mu32 12,681 14,634 41,829 1,000 700,118,451 1,482 30 590 152 10 161,762 
achip 19,208 16,344 52,956 1,006 * *e 51 923 * 7 L 

alulO2k 54,227 102,100 136,450 2,688 * *O 111 5748 * 50 l 

’ For CSIM and Interpretive SSIM 
2 From Event Simulation 

s Including C code compile time 
’ Interpretive SSIM 
’ SSIM using compiled C source code 

’ C compiler time too long, not C code generation 
* Test case too larne to run 
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Tab!e 8 lists the C source code generated for the cir- 
cuit with the corresponding COGEN code given in Table 9. 
To handle such a circu:lt, a pseudobuffer (nl0) and a d.ot 
gate (314) have been created. It can be seen that C source 
code generated by SIMGEN is not as efficient as hardware 
COGEN code. This is because in SIMGEN, the high- 
impedance state is given special treatment, i.e., a VZJAASK 
tag bit is used to handle tri-state gates. 

0[1:4] 015 
05 

06 

07 

Figure 4. Circuit containing a RAM functional model. 

Table 9. COGEN code for Figure 4 using NOOPT mode- 

(01) LA,c II@] 
(02) ST n[8] 

(06) ST njlo] 
(07) ST n(ll] 

[ Execute functional model 

(12) DO n[lO] 
(13) ST 11[14] 
(14) ST 11[15] 

(15) HA 0 1 Halt simulation 
- 

Table 8. C source code for Fig. 5 using NOOPT mode 

typedef unsigned char byte; 
#define VO 0x00 
#define VZ 0x0 1 
#define VX OX02 
#define Vl 0x0:3 

byte comp[] = {Vl, Vx, VX, VO}; 
byte dot,table[4][4] = {{VO, VO, VX, VX}, 

{VO, vz, vx, Vl), 

Px vx =, =I, 
{lx, Vl, vx, Vl}}; 

byte tr_table[4][4] = {{VZ, VX, VX, VO}, 
{W m, vx =q, 
{VZ, Jm w VW, 
{VZ, vx:, vx, Vl}}; 

#define VZMASK 0x01 
#define z(k,state) ((mssk[(k)] & VZJ4ASK) ? VZ : state) 
#define set&k) {mask[(k)] [= VZJIASK; n[(k)] = VX; 
#define reset&k) mask[(k)] &= - VZXSK; 

;im-design0 
( 

byte n[15]; 

n[8] = comp[n[6]]; 
n[9] = tr_table(2(7,n[7])][n[S]]; 
if (n[9] == VZ) set-z(g) else reset_2(9) 
n[lOl = 2(94$]); 
if (n[lO] == VZ) setd10) else reseLz(10) 
n[ll] = z(lO,n[lO]); 
if (n[ll] == VZ) set-z(ll) else reset_z(ll) 
(void) simfunct(0); 
n[13] = tr-table[z( 12,n[ 12])][z(6,n[6])]; 
if (n[l3] == VZ) set_z(13) else reseLz(13) 
n[14] = dot,table[z(l3,n[l3])][z(lO,n[lO])]; 
if (n[l4] == VZ) setz(l4) else reseLz(l4) 
n[l5] = z(14,n[14]); 
if (n[l5) == VZ) setdl5) else reset_z(l5) 

1 

Table 7. 
Simulation performance calculated from the results in Table 6 

alu4 lG,Ooo 29,000 19,000 3,300 72% 
alu32 22,000 22,000 44,000 3,400 54% 

achipl 38,000 138,000 3,184,OoO 4,400 135% 
mpy32 25,000 96,000 1,463,OOO 4,300 5,521% 

achip 17,800 * 2,349,ooo * * 

alu 102k 47.750 * 5.489.000 * * 

1 Interpretive SSIM 
* SSIM using Compiled C source code 
’ For Event Simulation 
* 7’l-d. too la.r!ze 
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