
SSIM: A SOFTWARE LEVELIZED COMPILED-CODE SIMULATOR

Laung-Terng Wang, Nathan E. Hoover, Edwin H. Porter, and John J. Zasio

Research & Development Department
AID.A Corporation

5155 Old Ironsides Drive
Santa Clara, CA 95054

ABSTRACT

This paper presents a new logic simulation technique that
uses software levelixed compiled-code (LCC) for synchronous
designs. Three approaches are proposed: C source code, tar-
get machine code and interpreted code, The evaluation
speed for the software LCC simulator (SSIM) is about
140,000 (gate) evaluations per second using C source code or
target machine code, or 50,000 evaluations per second using
interpreted code. It is about 40 to 100 times slower than the
AIDA hardware LCC simulator, but is about one order of
magnitude faster than a traditional software event simulator.
For a 32-bit multiplier with gate activity more than lOO%,
experiments indicate that SSIM runs about 250 to 1,000
times faster than the AIDA event simulator that evaluates
about 4,500 gates per second.

hdez Terms - Levelized compiled-code (LCC) simulation,
Logic simulation, Synchronous design.

1. INTRODUCTION

The traditional selective-trace, event-driven simulation
technique [Breuer 761 has been widely used to simulate digi-
tal circuits. The major advantages of using this approach
are its abilities of (1) handling both synchronous and asyn-
chronous designs, and (2) performing timing as well as func-
tional analysis during simulation. The problem with this
approach is that the software simulation speed is very slow,
typically, at about 1,000 evaluations per second running in a
one-million-instructions-per-second (l-MIPS) machine [Smith
861. As designs get larger, it becomes more difficult to rely on
software event-driven simulation to obtain reasonable perfor-
mance.

Hardware accelerators [Blank 841 are commonly used
to solve this problem. With hardware acceleration, the per-
formance improvement is, usually, over 100 times. Designers,
however, must pay a sizable extra cost, usually, in the range
between $lOOI< to $lM, in order to benefit from this speed.
Moreover, for complex system designs, gate activity is typi-
cally very high, often over 100 percent. In this case, even
with hardware acceleration, event simulation is still very
time-consuming.

Today, as the demands for maintainability, testability,
portability (the ability to implement the design in more than
one technology) and improved performance (through pipelin-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

ing) increases, synchronous designs become the preferred
method for very large-scale integration (VLSI) applications
[Chiang 861. Wh en combined with an acceleration coproces-
sor and levelized synchronous design techniques, hardware
compiled-code simulation [Chiang 86) [Ishiura 851 [Pfister 821
can easily reach ,millions of gate evaluations per second, per-
formance that event-driven simulation can hardly obtain.

Levelized compiled-code (LCC) simulation requires
logic levelization and code generation for a synchronous
design before logic simulation can be performed. Logic leveli-
zation orders gates (primitives) in the design which are all
one-level deep, two-level deep, etc. from primary inputs and
data outputs of storage elements. The ordered sequence of
the gates is then translated into machine-executable code.
Every gate is evaluated once during each clock cycle,
independent of the input pattern dynamics. Performance of
LCC simulation, thus, does not depend on the gate activity
in the design, and the need for event queue management is
entirely eliminated.

This paper will address three co&effective software
logic simulation techniques using LCC: C source code, target
machine code and interpreted code. The program executing
the compiled-code at the software level is called SSIM, a
software levelized compiled-code simulator. Experiments will
indicate that the simulation speed can reach 140,000
(equivalent P-input) gate evaluations per second using target
machine code compiled from C code, or 50,000 gate evalua-
tions per second using interpreted code.

Given a synchronous design, a C program can be gen-
erated, containing only a set of assignment statements, one
for each gate in the design. The advantage of using this
approach is its high portability to any target machine. The
problems with this approach is that C code must be first
compiled before it can be used for simulation.

Target machine code solves the above compilation
problem by directly generating machine-executable code for
the target machine (e.g., Motorola 68020, DEC 11/780, or
IBM 370). The problem with this approach is that different
code generators must be maintained. Whenever there is a
change in the code generation process, this change must be
propagated to all code generators.

To ease maintainability, interpreted code can be used
as an alternative to C source code and target machine code.
During simulation, SSIM will interpret (or emulate) each
instruction used in the hardware LCC accelerator. Since the
same code is used for simulation, SSIM using the interpreted
code approach will be fully independent of all target machine
codes. The penalty, however, one has to pay is that the
simulation speed fails to between 25,000 to 50,000 evalua-
tions per second.

Paper 2. I

2

24th ACM/IEEE Design Automation Conference

0 I987 ACM 0738- I OOW87/0600-0002$00.75

http://crossmark.crossref.org/dialog/?doi=10.1145%2F37888.37889&domain=pdf&date_stamp=1987-10-01

2. LCC LOGIC SIMULATION ARCHITECTURE

Fig. 1 shows an LCC logic simulation architecture for
synchronous designs. The synchronous design is first com-
piled by a netlist compiler into a netlist. Levelized
compiled-code (LCC) can then be generated from the netlist
either by a sojtwure compiled-code generator (SIMGEN) or
by a hardware compiled-code generator (COGEN).

When SIMGEN is used, C source code or target
machine code can be produced. If C source code is needed,
SIMGEN will generate the C program and then invoke the C
compiler to produce machine-executable code. If target
machine code is needed, SIMGEN will directly generate
machine-executable code for that target machine. No C pro
gram will be generated. This target machine code is then
used in combination with the input test pattern file for simu-
lation. SSIM is the software LCC simulator that produces
the output results.

When COGEN is used, simple RISC (reduced-
instruction set computer) code is produced. This code can
then be used either by a hardware accelerator or be inter-
preted in software. If hardware acceleration is to be used,
the hardware LCC simulator, CSIM, will coordinate with the
hardware accelerator and produce output results. If software
interpretation is desired, the interpretive SSIM (or SSIM
using interpreted code) will be called to do the task.

Sof&ware Hardware
IntelpreuItion Accelaation

c t w

SSIM
I

SSJM cm4

Figure 1. An LCC logic simulation architecture.

The following algorithm describes how the compiled
code is used in logic simulation. It is very similar to that
given in [Denneau 821. For every clock cycle, the entire pro-
gram is executed once. This LCC simulation approach, obvi-
ously, is very different from logic simulation that uses
selective-trace, event-driven approach (event simulation)
[Breuer 761. For designs with lower gate activity (event
activity), e.g., 10% or less, not much benefit (in terms of
simulation speed) may be gained compared to that using
event simulation. For designs with high activity, however,
LCC simulation becomes highly desirable.

Experimental results will indicate that among the three
LCC approaches proposed, (1) in terms of simulation speed,
the interpretive SSIM runs the slowest, (2) in terms of porta-
bility and maintainability, SSIM using target machine code is
the least portable, and (3) in terms of code generation,
SIMGEN takes the longest to compile the C source code

Algorithm 1: (LCC logic simulation)

Repeat n clock cycles
(
(1) Take an input pattern that corresponds to the

clock cycle,

(2) Execute the entire LCC Simulation once,

(3) Produce output results, and

(4) Compare against expected output results ii
necessary.

>

3. LCC CODE GENERATION

Fig. 2 is a flow diagram of an LCC code generation
process for synchronous designs. Given a synchronous
design, LCC is produced by performing logic optimization,
logic levelization, and code generation. Depending on the
designer’s request, three types of codes can be generated: C
source code, target machine code, or hardware COGEN code.
SIMGEN is used to generate C source code or target machine
code, whereas COGEN is used to generate hardware COGEN
code.

0 Logic
ClptimizatOll

Figure 2. Levelized compiled-code generation algorithm

3.1. Logic Optimization

SIMGEN and COGEN provide designers with two
options of logic optimization: NOOPT (no optimization) and
FULLOPT (full optimization). When no optimization mode
is selected, the code generated by SIMGEN/COGEN
represents the actual circuit topology with one statement for

Paper 2. I
3

each gate. When full optimization mode is chosen, n-mput
logic gates with m inputs tied high or low are changed into
n-m input gates. If n-m = 1, the gate is changed into an
inverter or a buffer. Finally, buffers and inverters are optim-
ized o& of the network. This mode of operation can Isub-
stantially increase logic simulation speed.

3.2. Logic Levelization

Logic levelization [Breuer 761 is a process of emulating
the data flow from primary inputs and latch outputs to pri-
mary outputs and latc’h inputs. If a feedback loop exist#s in
the design, SIMGEN/COGEN will identify those gates (or
objects) that cannot be levelized.

Consider the 2-input XOR gate shown in Fig. 3. The
circuit contains 2 input, ports (primary inputs), 1 output port
(primary output) and 5 objects (gates). It has a total of 7
nets (nodes). When no optimization is used, the objects in
the circuit will be levelized as numbered in the figure. The
algorithm used in SIMGEN/COGEN for logic levelization is
given as follows:

Algorithm 2: (Logic Ievelization)

.l) Mark all nets connecting to input ports and latch
outputs as “available”;

2) Put the fanout objects connecting to input ports and
latch outputs into a queue;

?I While (the queue is not empty)
{
Take an object from the queue; if all of its input
pins are marked “available”

{
(A) Mark all output nets of the object as
“available”,
(B) Generate C source code, target machine
code, or hardware COGEN code for the object,
and
(C) Put into queue those fanout objects that
connect to the output nets.
1

>

:4) If the number of “available” nets is not equal to the
total number of nets, then report the error. The cir-
cuit contains feedback loops on those objects gen-
erating nets that are not marked “available”.

3.3. Code Generation

Levelized compiled-code (LCC), in either instruction or
assignment statement format, is generated during logic leveli-
zation. For general-purpose applications, assignment state-
ments can be generated in C source code. For dedicated
applications, instruct&s can be generated in target machine
code. Interpreted code is a special case of target machine
(COGEN) code that is currently used in the AIDA hardware
accelerator. This approach permits LCC simulation to run
on any target machine other than the hardware accelerator.

3.3.1. C Source Code

For a given synchronous design, a C program is pro-
duced consisting of a set of assignment statements that emu-
lates the behavior of the design, C source code is very easy
to debug and port to any target machine as long as the tar-
get machine can compile C programs. The disadvantage
with this approach. is that overall LCC simulation time is
degraded due to the need to compile the C program first. If
fault simulation is required, tremendous effort to generate
compiled-code for different faults is required. This may not
be a viable approach for fault simulation.

+vcc

Figure 3. 2-input XOR gate for compiled-code generation.

Consider the 2-input XOR gate shown in Fig. 3, again.
The C source codes corresponding to NOOPT and FUL-
LOPT options are given in Tables 1 and 2, respectively.
When the NOOPT option is used, five assignment state-
ments, one for each object, are generated, as shown in Table
1. The n5, n6 and n7 statements contain references to VO
and Vl, which denote logic state values 0 and 1, respectively.
The circuit topology is not changed during this mode of
operation. When the FULLOPT option is used (see Table 2),
the n4 statement is removed. Instead, the n5 and n6 state-
ments are evaluated by using the complement value of net n3
(comp[n3]). The tied high and low inputs to nets n5, n6 and
n7 are also removed.

It should be noted that this example is only for illus-
tration. When tristate gates and other types of objects that
produce the high-impedance state (VZ) are considered, the
code generation process will be slightly different.

To handle the high-impedance state, two schemes can
be used One scheme is to map states {VO, VZ, VX, Vl} to
(‘JO, VX, VX, VI}, respectively whenever it is necessary,
where VX is an unknown state. This mapping is very expen-
sive since an indirect indexing is required for each net in the
assigmment statement.

The other scheme is to use a tag bit, which is called
VZJASK in our examples. Whenever any object creates a
VZ state, state VX is stored in the output net state table,
while a VZJfASK tag is set to indicate that it is actually a
VZ state. Special conversion on input and output port states
is also required. Though this scheme looks cumbersome, it is
much more efficient than the first scheme. This is because in
a design, in general, only a small portion of nets will exhibit
VZ states. Thus, the code generation process is based on the
second scheme.

Paper 2. I
4

For interested readers, a synchronous circuit consisting
of a HAM functional model (written in C), a tri-state gate,
and a bidirectional I/O pin is given in the Appendix. C
source code and COGEN code are listed.

Table I. C source code for Fig. 3 using NOOPT mode

typedef unsigned char byte;
#define VO 0x00
#define VZ 0x01
#define Vx 0x02
#define Vl 0x03
byte comp[] = {Vl, Vx, VX, VO};

sim-design()
{

byte 471;

n[3] = n[l] & n[2];
n[4] = comp[n[3]];
n[sl = Vl & n[l] & n[4];
n[6] = n(4] & n(2] & VI;
n[7] = n[S]] n[6]] VO;

>

Table 2. C source code for Fig. 3 using FULLOPT mode

,ypedef unsigned char byte;
#define VO 0x00
#define VZ 0x01
#define VX 0x02
#define Vl 0x03

syte camp]] = {Vl, VX, VX, VO};

;im-design0
(

byte n[7];

n[3] = n[l] & n[Z];
n[5] = n[l] & comp(n(3]];
n[6] = comp[n[3]] & n[2];
n171 = nlsl 1 n[61;

\

3.3.2. Target Machine Code

Instead of generating C source code as the first step to
simulation, it is possible to generate code directly from the
design that is executable by a target machine. The code gen-
erated in this manner is called target machine code. It con-
sists of a set of machine-executable instructions.

Target machine code is very efficient to run during
logic or fault simulation. The high efficiency is partly due to
the technique used for (machine) code optimization. Since
register access is usually fester than memory access, target
machine code can yield very high efficiency if code optimiza-
tion can take advantage of all data registers available in the

target machine. It might be more efficient if logic levelization
can be done so that code optimization can fully utilize the
long data registers.

Table 3 shows the COGEN instructions for the circuit
given in Fig. 3. The function of each instruction will be
described in the next subsection. These instructions were
generated by COGEN using FULLOPT mode. It can be seen
that for the n7 statement only two instructions were gen-
erated. This is because the state of net n6 resides in the accu-
mulator

Table 3. COGEN code for Fig. 3 using FULLOPT mode

(01) LA nl
(02) AN 112
(03) ST n3
(04) LA nl
(05) AN,C n3
(06) ST n5
(07) LA n2
(08) AN,C n3
(09) ST n6
y; g; n5

n7
(12) HA 0

] Load nl
] And with n2
] Generate n3
] Load nl
1 And with comp[n3]
1 Generate n5
1 Load n2
] And with comp[n3]
] Generate n6
(Or with n5
(Generate n7
] Halt simulation

3.3.3. Interpreted Code

Although the simulation speed using C source code and
target machine code is fast, (about 140,000 gate evaluations
per second for a &MIPS machine), many serious problems
have been encountered.

First, when the design is large, e.g., more than 1,600
primitives, it takes a long time to compile the C source code.
Although target machine code can be directly generated from
the design, the task becomes difficult as different machine
code translations for each type of target processor must be
done.

Second, program maintainability and quality assurance
(QA) are serious concerns. Whenever there is a change in the
code generation process, this change must be assured to pro-
pagate through C source code and all target machine codes.

With these concerns, interpreted code is proposed as
an alternative to C source code and target machine code.
Since only COGEN is required for simulation, SSIM using
the interpreted code approach will be fully independent of all
target machines. This substantially eases portability, compa-
tibility, maintainability and quality assurance problems. The
penalty, however, is that the simulation speed falls to 50,000
evaluations per second.

Table 4 lists 16 basic COGEN opcodes currently used
in the AIDA design system /Aida 861. The first 11 opcodes
are associated with logic operations. Of the remaining 5
opcodes, the CO (compare) opcode is hardware-oriented.
The LS (load-store) opcode, which is associated with D flip-
flip (DFF) and latch operations, controls whether the present
state should be stored in the state memory or not. The HA

Paper 2. I

5

(halt) opcode stops simulation or starts to execute the next
functional model.

-
Table 4. The 16 COGEN instruction opcodes

=

[:J E
Load accumulator
AND operation

E NA
NAND operation

OR OR operation

EZ No
NOR operation

x0 IExclusive-OR operation
(07) gJ Exclusive-NOR operation

[ii; TX
Tri-state operation
Transmission gate operation

1:;; cc
IDot operation
‘Weak driver operation

;:g i%
Compare operation
No-op

I::{ E
Store accumulator
ILoad store control register

(16) HA Halt operation.

Each opcode takes two operands: an address field and
a modifier field [Aida 861. Emulation of COGEN code is
done by simply interpreting COGEN instructions one at a
time during simulation. In each interpretation, the net state
associated with the address field is first computed. Under the
control of the modifier field, the required operation is then
performed according to the opcode.

Table 5.
Logic tables for interpreting COGEN code I

A. B
0 0
0 1

0 x
0 z

10

1 1
1 x
1 z
x 0

x 1
x x
x z
z 0
z 1
z x
z z

LA AN OR X0 TR TX DO WD
0 0 0 0 z z 0 0
0 0 1lZ z x 1
0 0 x x z z x x
ooxxzzoo
1 0 1 1 0 0 x 0
1 1 1 0 1 1 1 1
1x1xxxxx
lxlxxzll
xoxxxxxo

xx1xxxx1

x x x x x x x x
x x x x x x x x

zoxxxxoo

ZXlXXXll
zxxxxxxx
zxxxxxzz

To execute the “LA,C M” instruction, (load the com-
plement of net M to the accumulator), the state of the net is
first computed. Then, the complement of that state is
transferred to the accumulator. Interpretation of logic opera-
tions such as AN, OR, and TR are done by table lookup.
Table 5 lists some of the tables used to perform logic opera-
tions, where A is the state in instruction operand, and B is
the value in the accum,ulator.

The interpreted code approach entirely eliminates the
use of an LCC hardware accelerator. It is very effective for
small designs. The problem with this approach is that the
simulation speed is much slower (usually; two orders of mag-
nitude) compared to the hardware accelerator. Thus, for
larger designs, the running time may be prohibitively long.
In these cases, a hardware accelerator is recommended.

4. PERFORMANCE

Table 6 shows some statistics and experimental results
about six benchmarked circuits running on an Apollo
DN570-T 32-bit workstation (with instruction cache). The
machine has 16 megabytes of physical memory and uses a
Motorola 68020 CPU running at 20 MHz. Peak performance
is about 3 to 4 MIPS. “alu4” and “alu32”. are 4-bit and 32-
bit combinational ALUs, respectively. “mpy32” is a 32-bit
multiplier implemented with a Bdimensional, iterative full-
adder array. “achipl” is a real chip design containing a 72-

stage random number generator, a 32-bit ALU, a 64-stage
signature analyzer, and some other logic. “achip2” is
another real chip design including about 1,700 D flip-flops,
6,800 transmission gates and 3,100 dot gates. These dot
gates are not counted as equivalent gates. “alul02k” is a
large combinational circuit containing 102,100 equivalent 2-
input gates.

The simulation time for the first two circuits is mostly
dominated by the time needed for setting input patterns.
Not much time difference was observed between LCC and
event simulations. For the last four circuits, time to set
input patterns had been reduced to a minimum. Results
indicated that the interpretive SSIM is about 3 to 4 times
slower than SSIM using (compiled) C source code, and is
about 50 to 140 times slower than CSIM, the AIDA hardware
LCC simulator. If C code compile time is considered, then
SSIM using C source code loses attractiveness, since the C
compiler takes a long time to compile. In the case of using
target machine code, however, SSlM remains attractive since
time to compile a design is very close to the COGEN time.

It is interesting to note that for one particular circuit
“mpy32”, SSIM runs about 250 to 1,000 times faster than
ESIM, the AIDA event simulator. The reason for this
significant improvement is because “mpy32” has very high
gate activity (see Table 7). The result is not surprising since
in event simulation, an object may have to be evaluated
more than once during each clock cycle. This strongly
demonstrates that LCC simulation is highly desirable for
such designs.

Table 7 lists simulation performance calculated from
the results in Table 6. It indicates that the interpretive
SSIM and SSIM using C source code reach the execution
speeds of 50,000 and 140,000 gate evaluations per second,
respectively.

5. SUMMARY AND CONCLUSIONS

A logic simulation technique using levelized compiled-
code (LCC) for synchronous designs is presented. This tech-
nique allows designers to run logic simulation in machines
(such as CAE workstations or computers) without a

Paper 2. I

6

hardware accelerator. It requires an LCC generator to level-
ize the design a.nd generate machine-executable code.

The first approach produces C source code that
represents the design. This code is quite portable. The prob-
lem is that the C compiler must be used before the code can
be used for simulation. Target machine code eliminates the
time-consuming compilation process, however, it introduces
maintainability and portability problems.

By using an interpretive approach, the software LCC
logic simulator, SSIM, reaches 50,000 evaluations per second.
Although the speed is much slower than 10 MIPS (or 5M
gates per second) running on the AIDA hardware accelerator,
SSIM allows designers to run LCC on any target machine
without portability, maintainability, and incompatability
probIems. In addition, it expands the simulation capabilities
to user-defined functional models, where a functional model
is a C program that describes the behavior of a macro, such
as aRAM 0rALU.

Experiments indicate that SSIM runs much faster than
a traditional event simulator that runs at about 1,000
evaluations per second. In some cases, it outperforms those
event-driven logic simulation programs that use hardware
accelerators to improve performance.

ACKNOWLEDGMENTS

(Breuer 761 Breuer, M.A., and A.D. Friedman, Diagnosis and
Reliable Design of Digital Systems, Computer Science Press,
Inc., Woodland Hills, CA, 1976.

[Chiang 861 Chiang, M., and R. Palkovic, “LCC Simulators
Speed Development of Synchronous Hardware,” Computer
Design, pp. 87-91, March 1, 1986.

[Denneau 821 Denneau, M.M., “The Yorktown Simulation
Engine,” Proc. of the ACM/IEEE 19th Design Automation
Conf., pp. 55-59, June 1982.

[Ishiura 851 Ishiura, N., H. Yasuura, T. Kawata, and S.
Yajima, “High-Speed Logic Simulation on a Vector Proces-
sor,” Digest of Papers, IEEE 1985 Int’l Conf. on Computer-
Aided Design (ICCAD-85), pp. 119-121, Santa Clara, CA,
Nov. 18-21, 1985.

(Pfister 821 Pfistkr, G.F., “The Yorktown Simulation Engine:
Introduction,” Proc. of the ACM/IEEE 19th Design Automa-
tion Conf., pp. 51-54, June 1982.

[Smith 861 Smith, R.J., II, “Fundamentals of Parallel Simula-
tion,” Proc. of the ACM/IEEE 23th Design Automation
Conf.> pp. 2-12, June 1986.

The authors wish to thank Professor Edward J. McCluskey,
Darrell R. Parham, Dr. Aamer Mahmood, Edwin B. Forbes,
and G. Patrick Scandalis for their valuable comments and
suggestions. The help from Hua-Ju C. Wang and John Heve-
lin in preparing this manuscript is also deeply appreciated.

REFERENCES

[Aida 861 Aida C orp., Aida Design System, Vols. II and IV,
Aida Corp., Santa Clara, California, 1986.

[Blank 841 Blank, T., “A Survey of Hardware Accelerators
Used in Computer-aided Design,” IEEE Design EI Test of
Computers, Vol. 1, No. 3, pp. 21-39, August 1984.

APPENDIX

This appendix describes a code generation process for
circuits containing functional models, tri-state gates and
bidirectional I/O pins, where a functional model is a C pro-
gram that describes the behavior of a macro, such as an
ALU, a RAM or a multiplier.

Fig. 4 shows a 16-by-1 RAM cell (functional model)
with read/write control logic. Net n6 acts as an ENABLE
pin. When n6 is in the active-high (Vl) state, the data com-
ing out from the RAM (operated in read mode) will appear at
the output port n15. When n6 is in the active-low (VO)
state, data at n7 will appear at n15, and be stored in the
RAM if the RAM is in write mode (or the n5 state is VO).

Table 6.
Experimental simulation results (time in seconds)

circuit primi- equiv. instruc- patterns total SIMGEN COGEN SSIM SSIM CSIM ESIM
tives gates tions’ evaIs.’ time3 time time4 time5 time time

alu4 52 82 201 16,384 6G9,931 13 1 85 47 70 185
ah32 502 984 1,717 448 123,258 52 2 20 20 10 36
achipl 1,643 3,184 4,645 1,000 2,223$X9 213 5 84 23 1 504
mu32 12,681 14,634 41,829 1,000 700,118,451 1,482 30 590 152 10 161,762
achip 19,208 16,344 52,956 1,006 * *e 51 923 * 7 L

alulO2k 54,227 102,100 136,450 2,688 * *O 111 5748 * 50 l

’ For CSIM and Interpretive SSIM
2 From Event Simulation

s Including C code compile time
’ Interpretive SSIM
’ SSIM using compiled C source code

’ C compiler time too long, not C code generation
* Test case too larne to run

Paper 2. I

7

Tab!e 8 lists the C source code generated for the cir-
cuit with the corresponding COGEN code given in Table 9.
To handle such a circu:lt, a pseudobuffer (nl0) and a d.ot
gate (314) have been created. It can be seen that C source
code generated by SIMGEN is not as efficient as hardware
COGEN code. This is because in SIMGEN, the high-
impedance state is given special treatment, i.e., a VZJAASK
tag bit is used to handle tri-state gates.

0[1:4] 015
05

06

07

Figure 4. Circuit containing a RAM functional model.

Table 9. COGEN code for Figure 4 using NOOPT mode-

(01) LA,c II@]
(02) ST n[8]

(06) ST njlo]
(07) ST n(ll]

[Execute functional model

(12) DO n[lO]
(13) ST 11[14]
(14) ST 11[15]

(15) HA 0 1 Halt simulation
-

Table 8. C source code for Fig. 5 using NOOPT mode

typedef unsigned char byte;
#define VO 0x00
#define VZ 0x0 1
#define VX OX02
#define Vl 0x0:3

byte comp[] = {Vl, Vx, VX, VO};
byte dot,table[4][4] = {{VO, VO, VX, VX},

{VO, vz, vx, Vl),

Px vx =, =I,
{lx, Vl, vx, Vl}};

byte tr_table[4][4] = {{VZ, VX, VX, VO},
{W m, vx =q,
{VZ, Jm w VW,
{VZ, vx:, vx, Vl}};

#define VZMASK 0x01
#define z(k,state) ((mssk[(k)] & VZJ4ASK) ? VZ : state)
#define set&k) {mask[(k)] [= VZJIASK; n[(k)] = VX;
#define reset&k) mask[(k)] &= - VZXSK;

;im-design0
(

byte n[15];

n[8] = comp[n[6]];
n[9] = tr_table(2(7,n[7])][n[S]];
if (n[9] == VZ) set-z(g) else reset_2(9)
n[lOl = 2(94$]);
if (n[lO] == VZ) setd10) else reseLz(10)
n[ll] = z(lO,n[lO]);
if (n[ll] == VZ) set-z(ll) else reset_z(ll)
(void) simfunct(0);
n[13] = tr-table[z(12,n[12])][z(6,n[6])];
if (n[l3] == VZ) set_z(13) else reseLz(13)
n[14] = dot,table[z(l3,n[l3])][z(lO,n[lO])];
if (n[l4] == VZ) setz(l4) else reseLz(l4)
n[l5] = z(14,n[14]);
if (n[l5) == VZ) setdl5) else reset_z(l5)

1

Table 7.
Simulation performance calculated from the results in Table 6

alu4 lG,Ooo 29,000 19,000 3,300 72%
alu32 22,000 22,000 44,000 3,400 54%

achipl 38,000 138,000 3,184,OoO 4,400 135%
mpy32 25,000 96,000 1,463,OOO 4,300 5,521%

achip 17,800 * 2,349,ooo * *

alu 102k 47.750 * 5.489.000 * *

1 Interpretive SSIM
* SSIM using Compiled C source code
’ For Event Simulation
* 7’l-d. too la.r!ze

Paper 2. I

a

