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ABSTRACT: LOVER incorporates a novel approach 
to combinational logic verification and obtains good 
results when compared to existing techniques. In this 
paper we describe a new verification algorithm, 
LOVER-PODEM, whose enumeration phase is based 
on PODEM. A variant of LOVER-PODEM, called 
PLOVER, is presented. We have developed, for the 
first time, parallel logic verification schemes. Issues in 
efficiently parallelizing. both general and specific 
LOVER-based approaches to logic verification over a 
large number of processors are addressed. We discuss 
parallelism inherent in the LOVER framework 
regardless of what enumeration and simulation algo- 
rithms are used. Since the enumeration phase is the 
efficiency bottleneck in parallelizing LOVER-based 
approaches, we have developed parallel versions of 
PODEM-based enumeration algorithms. Experimental 
results are presented to show that high processor 
utilization can be achieved when these parallelisms 
are exploited. Speed-up factors of over 7.8 have been 
achieved with 8 processor configurations. 

1. INTRODUCTION 

Logic verification tools compare the logic design 
of integrated circuits at different levels to make sure 
that, in the synthesis process, no logic errors have 
been introduced. For example, in a silicon compiler 
environment where a design is translated (syn- 
thesized) into a lower level from a higher level 
description, logic verification is usually performed 
between functional level (before logic synthesis) and 
gate level (after logic synthesis), as well as between 
gate level (before layout generation) and layout level 
(after layout generation). 

Some formal techniques[Rot80,Rot73,Rot77] 
[Don76,0da86,Bry851 were proposed in the past but 
only a few have been applied due to their complexity 
and computational requirements. In 
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PROTEUS[Wei86] a number of efficient techniques for 
combinational logic verification has been developed 
and implemented. The PROTEUS system includes 
four basic approaches: vetication by justification, 
verification by cube comparison, verification by 
exhaustive simulation, and verification by cover gen- 
eration and simulation. The last approach, called 

LOVER (Logic VERiGcation) in PROTEUS, is novel 
and has given some good results compared to existing 
techniques. Most logic verification algorithms suffer 
from the problem of multiplicative blow-up. LOVER 
was developed with the specific goal of eliminating 
this problem. 

In this paper, we present new LOVER-based 
approaches for verifying the boolean equivalence of 
two combinational logic circuits. These approaches 
compare favorably to other LOVER-based approaches. 

Large complex logic circuits require significant 
amounts of cpu time to verify. Parallel logic 
verification algorithms are therefore extremely attrac- 
tive. However, to date no logic veriEcation technique 
has been efficiently parallelized. 

ParaUel logic verification algorithms based on the 
LOVER approach are presented. This approach can be 
extended to other verification techniques. These paral- 
lel algorithms can be implemented on a large number 
of processors while maintaining high overall eficiency. 

This paper is organized as follows: In Section 2 
we review the LOVER approach to logic verification. 
In Section 3 we describe embellishments to the basic 
LOVER approach and introduce new verification algo- 
rithms. The paraLbAism inherent in the general 
LOVER approach and a multi-processor implementa- 
tion exploiting this parallelism is described in Section 
4. In the same section a highly parallel version of a 
specific LOVER-based algorithm, which features a 
novel paraL!& enumeration algorithm based on 
PODEM, is described. Experimental results are 
presented to show that large speed-up can be achieved 
when either of these parallelisms are exploited. 

24th ACM/IEEE Design Automation Conference 

0 1987 ACM 0738-100x/87/0600-0283$00.75 

Paper 16.4 

283 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F37888.37931&domain=pdf&date_stamp=1987-10-01


2PFuzLIMrNARIEs 

This section d.escribes the LOVER approach to 
verifying the equivalence of two logic circuits. 
LOVER incorporates a two-set/two-phase approach 
which avoids the multiplicative blow-up problem in 
traditional logic verification methods and has 
achieved good results in comparison to existing 
approaches [Wei861. 

Let A and B be the two circuits whose 
equivalence has to be verified. A cube c from 
CAON[Bra84] (the ON-set cover of circuit A ) is 
enumerated and sided on B to check if B pro- 
duces a 1 at its output. If so, the 
enumeration/simulation process continues with 
another cube from CxN. If, on the contrary, a 0 
appears, the verific.ation is completed with the conclu- 
sion that A and 61 are not Boolean equivalent. If an 
n (unknown) appears, c is split (cube-split) into 
smaller cubes and re-simulated until a known value 
appears at the output of B. Cube-splitting and sirnu- 
lation are implicitly exhaustive. The process continues 
until all cubes from CfN have been simulated. A 
similar process for C, OFF (the OFF-set cover of circuit 
A) is then carried out. 

This method is called a two-set/two-phase 
approach because there are two sets (the ON-set CoN 
and the OFF-set C°FF > that are to be explicitly 
verified; and two Iphases (the enumeration phase and 
the simulation phase) that are to be performed for 
each set verification. It is important to note that -this 
framework does not specify which enumeration or 
simulation algorithm to use. This gives a large degree 
of freedom in the LOVER approach to verification - 
many different kinds of simulation and enumeration 
algorithms can be used. Since simulation is a rela- 
tively well understood and developed ares, the 
emphasis is generally placed on developing efficient 
enumeration algorithms. 

using LOVER., there are Only ( noNp +noF,P > 
cube enumeration and simulation passes to be per- 
formed where norJp and noFF A are the number of 
cubes in CfN and. CzFF, respectively. Though both 

nONA and ~OFFJ. can be exponentially related to ni 
(the number of inputs to the vetied circuits) in the 
worst case, the overall complexity is additive rather 
than multiplicative. So the problem of multiplicative 
blow-up is avoided. 

In [Wei86], it is indicated that the performance 
of the LOVER algorithms vary mostly because of the 
different enumeration algorithms that are used. Vari- 
ous methods can be used in LOVER for enumeration - 
justification algorithms as seen in most test pattern 
generation algorithms are also enumeration 
algorithms after :;uitable modifications to the termi- 
nation condition. 

In LOVER, the enumeration phase is followed by 
the cube simulation phase, ‘hence the interaction 
between these two processors s.hould be considered Lo 
achieve better performance of the overall algorithm. 
Although it is generally desirable that the number bf 
cubes enumerated should be as small as possible, the 
possibility of cube-splitting deserves attention. An 
efficient enumeration algorithm may enumerate CoN 
or C°FF very efficiently with only a few cubes, but!if 
most of these cubes need to be split several times 
during simulation, the overall verification time 
suffers. 

For ease of reference, in the remainder of the 
paper, a LOVER algorithm using a spec@c 
just.ification algorithm X is referred to as LOVER-X. 
Among all the approaches presented in PROTEUS, it 
was found that the LOVER-SDIJUST approach was 
the most efficient[Wei86]. Hence, LOVER-SDIJUST 
has been used as an example for parallelizing the gen- 
eral. LOVER-based approach as described in Section 4. 

3. EFFICIENT ENUMERATION ALGORITHMS 

3.1. LOVER-PODEM 

Enumeration in LOVER can be performed based 
on the decision tree concept in PODEMLGoe811. By 
modifying the termination condition of the implicit 
enumeration algorithm used in PODEM, both the 
ON-set and OFF-set can be implicitly, but exhaus- 
tively, enumerated. A decision tree for LOVER- 
PODEM for verifying two functionally equivalent 
circuits is shown in Fig. 1. In general, two decision 
trees are required: one for the ON-set verification and 
the other for the OFF-set. 

Each node in the decision tree represents a pri- 
mary input (PI) assignment. Initially all primary 
inputs are assigned unknown values. Given an initial 
objective, i.e. to set a primary output line to a 1 or 0, 
a path is traced from the objective line backwards to 
a primary input to obtain a PI assignment. A 1 initial 
objlective corresponds to the enumeration of the ON- 
set and a 0 initial objective corresponds to the OFF- 
set enumeration. After each new PI assignment, the 
circuit is simulated using the current set of PI assign- 
ments to see if the value at the target line has been 
set up. If not, the backtrace process continues. If the 
desired value has been achieved, a cube in the 
corresponding set is found and simulated on the other 
circuit. If the opposite value has been set up, the 
algorithm backtracks to the last PI assignment, tries 
the alternative value and flags the node to indicate 
that both assignment choices have been tried. If the 
alternative has already been tried, the node is 
removed and the backtrack process continues until an 
unflagged node with a possible alternative is reached. 
The backtrack process is also applied when a desired 
value has been set up at the target line. This is 
different from PODEM where the enumeration pro- 
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cess terminates when the desired value is set up at 
the target line. When the decision tree is found to be 
empty in the backtrack process, the total input space 
for the corresponding set has been implicitly, but 
exhaustively, enumerated. 

Fig. I: The Decision Tree of LOVER-PODEM 

3.2 PLOVER: A Variation of LOVER-PODEM 

In the above enumeration process, the ON-set and 
OFF-set are enumerated separately with the initial 
objective being set differently in each case. One can 
observe, however, that in the enumeration process, 
backtracking is performed whenever the value of the 
objective line is set regardless of the value attained. 
In the enumeration of one of the two sets, cubes in 
the other set are actually being generated simultane- 
ously but discarded. This represents a wasted efort in 
the enumeration process. A variation of the LOVER- 
PODEM method, called PLOVER, is therefore pro- 
posed. 

In PLOVER, only one decision tree is used with 
the initial objective set to either a 1 or a 0 for the pri- 
mary output. Cubes in both the ON-set and OFF,set 
are collected whenever the value of the output is set. 
Simulation of cubes from both sets are performed 
together rather than separately. The verifications of 
both sets are interleaved to avoid wasted enumeration 
effort. The choice of the initial objective, either a 1 or 
0, is unimportant in terms of the completeness of the 
ON-set and OFF-set being generated. It only 
influences the size of the sets - the set corresponding 
to the initial objective tends to be more compact, 
Experience has shown that the enumeration process 

can be made more efficient if advanced knowledge of 
the relative sizes of the two sets is available by set- 
ting the initial objective corresponding to the bigger 
set. 

4. SCHEMES FOR PARALLEL LOGIC VERIFICATION 

The LOVER framework supports various 
schemes for parallel logic verification. This section 
describes a static scheduling scheme which can be 
used regardless of the enumeration algorithms used, 
and a highly efficient dynamic scheduling scheme 
using the LOVER-PODEM/PLOVER verification algo- 
rithms. 

4.1. Static Scheduling 

The parallelism inherent in the LOVER frame- 
work regardless of what enumeration and simulation 
algorithms are used can be exploited using a static 
scheduling scheme. In this scheme, each processor 
works largely independent of the others with very 
little inter-processor communication. The enumeration 
algorkhm used has no injluence on the speed-up buz 
only on the absolute cpu time expenditure. The syn- 
chronization overhead for this scheme is minimal and 
the scheme is easily implemented. 

For ease of discussion, the following notations 
will be used. Let A and B be the two circuits that 
need verification. Let ni (n, > denote the number of 
inputs (outputs) to the circuits. Through segmenta- 
tion, each single-output circuit, the cone, can be 
verified individually. The two sets, the ON-set and 
the OFF-set, of the cone circuit can also be verified 
independently. Furthermore, for each set verification, 
the tasks of enumeration and simulation, with proper 
synchronization, can also be performed in parallel by 
two distinct processors. This is possible because the 
two tasks are performed on different data structures: 
the enumeration is performed on circuit A while 
simulation is performed on circuit B. Synchronization 
is necessary because simulation works on a fixed 
number of cubes that are generated by enumeration. 
The two tasks are closely interwoven, with simula- 
tion following enumeration on every increment of a 
fixed number of cubes enumerated. The size of an 
increment is determined by the type of simulation _ ._ _- 
algorithm used. For 32-vector parallel simulation, an 
increment can contain up to 32 enumerated cubes. For 
single-vector serial simulation, an increment is an 
enumerated cube. For 32-vector parallel simulation, 
an increment of more than 32 enumerated cubes is 
also possible with the use of buffers which tem- 
porarily keep the cubes that are pending for simula- 
tion. Buffering is helpful only when the speed of 
simulation is much faster than enumeration. Even in 
this case, it should be noted that because synchroni- 
zation between two tasks must be maintained, the 
two tasks will terminate at about the same time, the 
time determined by the slower task. Improving the 
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speed of the simulation process will not improve the 
overall throughput. Unless the idle time of the pro- 
cessor dedicated to simulation can be utilized IO do 
other things, there is no reason for using buffering. 
So immediately we have 

ntask = n,x2x2= 4n, (4.1) 

tasks that can be performed in parallel. For conveni- 
ence, each task ‘:is denoted as task (type ,i ,j) orhere 
type = “ertu” or ” sim” indicating the task is an 
enumeration or a simulation task; i = 0 or 1 indicating 
it is an OFF-set or an ON-set verification problem; 
and j = 1 ,...,n, indicating which cone circuit is under 
consideration. As an example, taskC”enu” ,0,4) 
represents the task of enumerating the OFF-set of the 
4th single-output cone circuit. It is assumed that 
enumeration tasks are always performed on cone cir- 
cuits of A while simulation tasks are performed on 
cone circuits of .B. The time it takes to complete a 
~peG.6~ task task (type ,i ,j > on a uniprocessor is 
denoted as t (type ,i , j >. The time it takes to complete 
all the tasks on a uniprocessor is denoted as t,, p, 
and can be calculated by 

t tot ,s = ]F, l&J t (“enu” ,i ,j) + t (“sim” ,i ,j) ) (4.2) 
.- ._ 

Let np be the number of processors available for 
parallel processing in a multi-processor computer. Let 
t toT ,p be the time the multi-processor computer takes 
to complete all the tasks. Assuming np is large 
enough so that as many processors as needed are 
available, then n task processors can be used to carry 
out all the nrasii tasks in parallel, each processor 
working on one task. Then t,, ,~ is determined by the 
task which takes the longest time to complete, 
namely the highest among all the t (type ,i ,j 1. Simu- 
lation is in general more efficient than enumeration. 

so ttot ,p is in general determined by the most time 
consuming enumeration task. Let the speedup 
obtained in this case be denoted as nup . We have 

t tot .P = max( t (“em” ,O,j >, t (“em” ,l ,j > > 
j (4.3a) 

nuP = t, g f tt,. ,p (4.3b) 

Because ntaslL is directly proportional to n, , when 
n, is big, the number of processors required can be 
very large. In some cases, the number of available 
processors may not be enough. When this happens, 
we can take advantage of the fact that simulation 
takes much less time than enumeration. For 
3n,< np < 4n,, and for every processor that is 
needed but is not available, task (“sim” ,O,j > and 
task (“sim” ,l ,j > for some j are combined and carried 
out by the same processor. For convenience, the pro- 
cessors which perform simulation (enumeration) 
tasks are referred to as simulation (enumeration) pro- 
cessors. Thus, for every cone circuit, there are three 

dedicated processors, one performing the combibed 
simulation task while the other two are perfor ing 
the enumeration tasks. For the simulation proces or, 
two buffers, one reserved for each enumeration 

% 
‘ro- 

cessor, are used to ensure the synchroniza ion 
between the simulation processor and the 9 wo 
enumeration processors. Since there are two bu4ers 
to examine, the simulation processor is kept mostly 
busy, and thus the utilization of the simulation F)ro- 
cessor is increased. 

Using experimental data over a range of logic cir- 
cuits, it has been determined that among the three 
processors dedicated to a cone circuit, typically on 

Q 
of 

the two enumeration processors represents ,the 
bottleneck and determines the time it takes to corn- 
pletely verify that cone circuit. So ttot ,p is again 
determined by the enumeration task which takes the 
longest time to complete, and nUP remains the same 
as in the case where 4n,, processors were used which 
implies that overall efficiency has increased. 

The above method works until np drops below 
3n:, . When np < 3n,, for every processor that is 
needed but is not available, instead of combining 
task (“sim” ,O, j ) and task (“sim” ,l ,j > as just 
described, we can combine task (“sim” ,i , j > and 
task (“enu” ,i ,j) for some j and some i and let the 
combined task be carried out by a processor. Let 
T&X (i ,j > represent the combined task. The time it 
takes to complete TASK (i ,j > on a uniprocessor can 
be calculated by 

T(i,j) = t(“enu” ,i,j> +t(“sim” ,i,j) (4.4) 

In this case, the speedup may be less than nup if the 
enumeration task contained in this combined task has 
a high complexity, making this combined task the 
bottleneck in the parallel verification process. How- 
ever, this can be avoided using an intelligent grou@tg 
of enumeration and simuhion tasks, using estimates 
on the complexity of both phases based on circuit 
in formation. If relatively simple enumeration tasks 
can be combined with their associated simulation 
ta.sks and assigned to a processor, the time required 
for verification will still be determined by the most 
complex enumeration task and a speed-up of n,, can 
still be obtained. 

When np drops below 2n,, it becomes inevitible 
to allocate more than one cone to a single processor. 
There are 2n, combined tasks TASK (i , j > and only 
np < 2n, processors are available. Let istaken (6 ,j > 
lx: a flag for TASK (i , j ). istaken (i , j >= 1 means 
T.ASK (i , j > has been assigned to a processor and is 
either processed or is being processed; 
is taken (i , j )= 0 means TASK(i ,j ) is not yet 
assigned nor is processed. A processor looks for an 
istaken (i ,j > flag that is 0, grasps the task, sets the 

Paper 16.4 
286 



is_rpken (i ,j ) flag to 1 and starts processing. When 
the task is finished, the same process repeats until all 
istaken (i ,j > flags are set to 1. 

4.1.1. Grouping of cones in Multi-output circuits 

When the number of processors available is small 
compared to the number of outputs, efficient parallel 
verification can be achieved by assigning sets of out- 
puts to the different processors, such that the sum 
tot& of enumeration and simulation tasks to be per- 
formed by each processor are approximately the same. 
If the sets of tasks are exactly identical in complexity 
and cpu time requirements, an ideal 100% overall 
efficiency can be obtained. 

To find a good grouping of cones in multi-output 
circuits, rough estimates of the complexity in 
enumerating the cones are required. These estimates 
can be made by examining the structure of the logic 
network - for example, the number of levels in the 
network, the number of reconvergent farwuts, and the 
relative number of gates at each level. 

4.1.2 Static Scheduling Results 

A parallel LOVER-SDIJUST algorithm has been 
developed and implemented on the Sequent Balance 
8000 multi-processor [Seq85] using the static 
scheduling scheme described. The Balance computer 
available to us is configured with 8 processors. 

A pair of cone circuits can be verified using l-4 
processors as summarized by Table 1. Mode 1 is 
identical to the uni-processor version of the algorithm 
for each cone. Mode 2 uses two processors one verify- 
ing the ON-set and the other the OFF-set. Mode 3 
uses three processors, two enumerating the ON and 
OFF-sets and the third performing simulations. Mode 
4 uses four processors, two each for simulation and 
enumeration. Mode 4 is rarely used since empirical 
evidence shows that simulation is usually about 
twice as fast as enumeration making a fourth proces- 
sor redundant. 

Given the number of processors available and the 
number of cone circuits to be verified against each 
other the algorithm determines which mode of opera- 
tion it will adopt. Mode selection takes into account 
the complexities in verifying each cone circuit in 
order to minimize idling time of processors (proces- 
sors which finish early will idle). If the number of 
outputs is greater than the number of processors, 
mode 1 is selected, and sets of outputs with approxi- 
mately equal verification complexities are found. On 
the other hand, given a two output circuit and 6 pro- 
cessors, mode 3 is automatically adopted. 

Table 2 gives the results obtained on two circuits 
from [Brg85]. Both these circuits are complex and the 
uni-processor verification time on the Sequent is 
about 38 and 17 hours respectively using the 
LOVER-SDIJUST algorithm. Respectable speed-ups 
have been obtained over 8 processor configurations for 

parsllcl in sets and phases (shared simulation phase) 

Table 1: Modes in static schedulii 

Table 2 Results using static scheduling 

both examples. The modes used for different proces- 
sor configurations have also been indicated. The first 
example saturates after 6 processors because verifying 
one output in the circuit is significantly more time 
consuming than any of the others, and a maximum of 
four processors can be used on a single cone given a 
static scheduling scheme. This output thus becomes 
the bottleneck in the parallel verification process. 
Better results are obtained in the second example, 
although it has fewer outputs, because no single out- 
put overwhelms the others in complexity. 

In the following section we describe a dynamic 
scheduling scheme which enables an arbitrary number 
of processors to be used to verify a single cone circuit 
and is such that high processor utilization (and 
overall efficiency) is obtained regardless of the 
number of processors available and the complexity of 
individual cone circuits. 

4.2 Dynamic Scheduling 

In addition to the static scheme, we have also 
devised a dynamic scheduling scheme using the new 
PODEM decision tree based enumeration method 
PLOVER, which achieves high processor utilitization 
on any kind of circuit. In the following section, we 
will describe how the enumeration method can be 
efficiently parallelized using dynamic scheduling. Ini- 
tially, for ease in explanation, a single-output circuit 
will be assumed while describing the parallel algo- 
rithm. Later, we will extend the algorithm to handle 
multiple-output circuits. 

In the LOVER framework as described in Section 
2, the two main tasks performed in the verification 
process are enumeration and simulation. Cubes are 
continuously enumerated on one circuit and simu- 
lated on the other to check any functional discrepan- 
cies between the two. 

The main goal of dynamic scheduling is to distri- 
bute conhdZy equ.aL amounts of work among prmes- 
sors to avoid wasteful idling and achieve high prmes- 
sor utilization. Good processor utilization during 
enumeration can be achieved by repeatedly breaking 
up the enumeration task(s) into smaller ones and 
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assigning them to different processors - an enumera- 
tion algorithm that is tailored for such a parallel 
application has been devised. 

The parallel enumeration algorithm is based on 
the PLOVER algorithm described in Section 3. The 
input space is divided up into disjoint sub-spaces and 
each processor enumerates all possible input patterns 
in an assigned sub-space in parallel. Sub-spaces are 
further broken up, again disjointly, if some proces- 
sors finish their a.ssigned enumeration in the input 
sub-space before the others. Thus, even if the initia.lly 
assigned sub-space.s are very different in enumeral.ive 
complexity, prcrce.ssors which complete their tasks 
early don’t remain idle but help other processors in 
completing their enumeration task. 

Cube simulation on the cone circuit can be per- 
formed by any processor whenever the accumulated 
number of cubes generated by a processor is equal to 
the number of cubes that can be simulated in para.llel 
by a parallel simulation algorithm. By proceeding in 
such fashion, an equal amount of verification wor’k is 
assigned to each available processor and full ultiliza- 
tion of processor time is achieved by continuously 
keeping all proceseiors at work in parallel. 

4.21. A Parallel Knumeration Algorithm 

The enumera.tion algorithm used in PLOVER 
described in Section 3 is well suited to parallel appli- 
cation. Whenever a new PI assignment is made, two 
disjoint input spaces are implicitly developed by the 
decision tree. These two input spaces correspond to 
the 0 and 1 values of the newly assigned input and 
the old values of all the previously assigned inputs. 
Some input values may still be unknown. Since these 
two input spaces are disjoint, they can be enumerated 
by two different processors in parallel with the 
guarantee that the resulting two sets of enumerated 
CL&S will also be disjoint. Thus no redundant 
enumeration work is done using this technique - each 
processor e num.er&es on a different branch of the deci- 
sion tree. 

Disjoint input spaces are continually generated 
by all the processors doing the enumeration every 
time a new PI assignment is made. After a processor 
performs a PI asaiignment, it picks one of the disjoint 
spaces and continues enumeration on that space. As 
soon as a processor completes enumerating its present 
input space, it picks up another branch which 
corresponds to previously generated input spaces by 
other processors which have not yet been enumerated. 
This process continues until the entire input space has 
been enumerated. The selection of a new input space 
by a processor on the completion of its initially 
assigned task (this input space would have been gen- 
erated by some other processor) entails an initializa- 
tion overhead. It is therefore desirable to select the 
largest unenumerated input space available which 
corresponds to the space with the minimum number 
of assigned primary inputs. 

4.2.2. Implementation 

The decision tree is an ordered list of nodes and 
is implemented as a stack. Each processor owns a 
separate stack which corresponds to the input Q spa e 
currently being enumerated by .it. Whenever a new PI 
assignment is made, a new unfIagged node is pushed 
onto the top of the stack. And whenever a backtrack 
step is made, the node on the top of the stack is 
examined. If the node is unflagged, the alternative 
value is assigned to the corresponding input and the 
node is flagged to indicate both choices have been 
tried. If the node is found to be flagged, it is popped 
from the stack. Enumeration of a particular input 
space is completed when t’he stack becomes emptiy. 
The stack is therefore treated as a FILO queue by the 
owning processor. 

The selection of a new input space by a processor 
is d.one by popping nodes from the bottom of the stack 
of another processor and pushing them onto the 
processor’s own stack. This popping and pushing pro- 
cess continues until the first unflagged node is 
reached. This unflagged node is flagged and the 
corresponding input is assigned the alternative value 
crf%ting a new disjoint input space on which the pro- 
cessor enumerates. The popping of nodes begins from 
the bottom of the stack rather than from the top so 
as to obtain the largest unenumerated space to 
minimize initialization overhead. The implementation 
of the parallel enumeration algorithm is illustrated in 
the pseudo-code below. 

4.2.3. Global Verification Scheme 

Circuits with an arbitrary number of outputs can 
be efficiently verified using the dynamic scheduling 
scheme described above by using all the processors to 
verify each output, and verifying the outputs sequen- 
tially. However, greater efficiency is gained by inaor- 
porating the dynamic scheduling strategy into a glo- 
bal verification scheme. Imtially, each processor tries 
to pick and verify an output, enumerating and simu- 
lating over the entire input space. If a processor runs 
out of unverified outputs it then helps the processors 
which have not completed their outputs, via dynamic 
scheduling. Thus the overhead of selecting new input 
sp,aces to enumerate on is minimized. To further 
minimize the initialization overhead incurred in the 
seIection of a new input space by a processor on the 
completion of its initial assigned task during dynamic 
sc!heduling, a feature called a preferred stack mec&n- 
ism is implemented. This feature restricts a processor 
to enumerate on unfinished jnput space of one qone 
circuit before switching to another one by assigning 
different priorities to input spaces of different cone 
circuits during input space selection. This prevents a 
processor from unnecessary switching between 
unfinished input spaces of different cone circuits ,and 
increases overall efficiency. 
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parallel_enumerate() 1 
while (enumeration_notfinished) { 

if (output-is_not>et) { 
find_newqi_assignment(); 
push an unflagged node on top of stack Sl; 

1 
simulate the current set of pi assignments; 

else 1 
if (output is a 1) 

a cube from ON-set is generated; 
else 

a cube from OFF-set is generated; 
while (Sl is not empty 

AND 
node on top of Sl is flagged) { 
pop a node from the top of Sl; 

1 
if (an unflagged node is found) { 

flag node; 
assign alternative value to the primary input; 

1 
simulate the current set of pi assignments; 

else I select: 
select a non empty stack S2 of 

anot her processor: 
while (node at bottom of S2 is flagged 

AND 
S2 is not empty ) { 

pop the node and push on top of Sl; 

1 
assign the pi value corresponding to that node; 

if (an unfIagged node is found) ( 
pop the node and push on top of Sl; 
flag node; 
assign alternative value to the primary input; 

1 
simulate the current set of pi assignments; 

else 
got0 select; 

2 

1) 

4.24. Dynamic Scheduling Results 

Results for five examples using dynamic schedul- 
ing are given in Table 3. In the table h, m and s 
stand for hours, minutes and seconds respectively. 
The first two examples are benchmark circuits from 
LBrg851. The number of outputs for the five examples 
are 3, 26, 2, 1 and 8 respectively. Regardless of the 
number of outputs, the number of processors used 
and the great variations in logic complexities among 
different cones circuits in the benchmarks, in every 
case except example 5, the speed-ups are very close to 
the ideal values. The reason that the speed-up devi- 
ates from the ideal value when the number of proces- 

C432” : only the first three outputs 
Table 3: Results using dynamic scheduling 

sors is large in example 5 is because the verification 
time is so small, circuit read-in time becomes 
significant; it is about 11s and represents over 40% of 
the total run-time in the &processor case. If we 
deduct the circuit reading time from the total run- 
time, the speed-up in the verification phase is again 
close to the ideal value. 

A proEle of the time each processor spent 
enumerating and simulating on the various outputs in 
example C880 is shown in Figure 2 for an 8 processor 
configuration. In the figure, the time profiles for each 
output have been normalized and the absolute 
verification time for each output is indicated to the 
right of the plot. As can be seen, the outputs which 
take a long time to verify have been shared out 
among many processors illustrating the excellent load 
balancing characteristics of the dynamic scheduling 
scheme, which is key to obtaining high overall 
efficiences. 

5. CONCLUSION 

In this paper, we have presented new algorithms 
based on the LOVER approach for combinational logic 
verification. We have developed, for the first time, 
parallel logic verification schemes and achieved high 
overall efficiencies over a large number of processors. 

Parallelism inherent in the LOVER approach can 
be exploited using a static scheduling scheme. The 
advantage with this approach is that it is independent 
of the enumeration and simulation algorithms used. 
High speed-ups have been obtained on benchmark cir- 
cuits. 

A dynamic scheduling scheme using a PODEM- 
based enumeration algorithm has been developed. 
This scheme produces excellent results on all kinds of 
circuits, with arbitrary numbers of available proces- 
sors. Very high processor utilization (more than 95%) 
which translates to speed-ups greater than 7.8 over 8 
processor configurations have been obtained using this 
scheme. 
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