
Logic Verification Algorithms and their Parallel Implementation

Hi-Keung Tony Ma, Srinivas Devadas and Albert0 Sangiovanni-Vincentelli
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley, CA 94720

Ruey-sing Wei
AT&T Bell Laboratories, Murray Hill, NJ

ABSTRACT: LOVER incorporates a novel approach
to combinational logic verification and obtains good
results when compared to existing techniques. In this
paper we describe a new verification algorithm,
LOVER-PODEM, whose enumeration phase is based
on PODEM. A variant of LOVER-PODEM, called
PLOVER, is presented. We have developed, for the
first time, parallel logic verification schemes. Issues in
efficiently parallelizing. both general and specific
LOVER-based approaches to logic verification over a
large number of processors are addressed. We discuss
parallelism inherent in the LOVER framework
regardless of what enumeration and simulation algo-
rithms are used. Since the enumeration phase is the
efficiency bottleneck in parallelizing LOVER-based
approaches, we have developed parallel versions of
PODEM-based enumeration algorithms. Experimental
results are presented to show that high processor
utilization can be achieved when these parallelisms
are exploited. Speed-up factors of over 7.8 have been
achieved with 8 processor configurations.

1. INTRODUCTION

Logic verification tools compare the logic design
of integrated circuits at different levels to make sure
that, in the synthesis process, no logic errors have
been introduced. For example, in a silicon compiler
environment where a design is translated (syn-
thesized) into a lower level from a higher level
description, logic verification is usually performed
between functional level (before logic synthesis) and
gate level (after logic synthesis), as well as between
gate level (before layout generation) and layout level
(after layout generation).

Some formal techniques[Rot80,Rot73,Rot77]
[Don76,0da86,Bry851 were proposed in the past but
only a few have been applied due to their complexity
and computational requirements. In

Permission to copy without fee ah or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

PROTEUS[Wei86] a number of efficient techniques for
combinational logic verification has been developed
and implemented. The PROTEUS system includes
four basic approaches: vetication by justification,
verification by cube comparison, verification by
exhaustive simulation, and verification by cover gen-
eration and simulation. The last approach, called

LOVER (Logic VERiGcation) in PROTEUS, is novel
and has given some good results compared to existing
techniques. Most logic verification algorithms suffer
from the problem of multiplicative blow-up. LOVER
was developed with the specific goal of eliminating
this problem.

In this paper, we present new LOVER-based
approaches for verifying the boolean equivalence of
two combinational logic circuits. These approaches
compare favorably to other LOVER-based approaches.

Large complex logic circuits require significant
amounts of cpu time to verify. Parallel logic
verification algorithms are therefore extremely attrac-
tive. However, to date no logic veriEcation technique
has been efficiently parallelized.

ParaUel logic verification algorithms based on the
LOVER approach are presented. This approach can be
extended to other verification techniques. These paral-
lel algorithms can be implemented on a large number
of processors while maintaining high overall eficiency.

This paper is organized as follows: In Section 2
we review the LOVER approach to logic verification.
In Section 3 we describe embellishments to the basic
LOVER approach and introduce new verification algo-
rithms. The paraLbAism inherent in the general
LOVER approach and a multi-processor implementa-
tion exploiting this parallelism is described in Section
4. In the same section a highly parallel version of a
specific LOVER-based algorithm, which features a
novel paraL!& enumeration algorithm based on
PODEM, is described. Experimental results are
presented to show that large speed-up can be achieved
when either of these parallelisms are exploited.

24th ACM/IEEE Design Automation Conference

0 1987 ACM 0738-100x/87/0600-0283$00.75

Paper 16.4

283

http://crossmark.crossref.org/dialog/?doi=10.1145%2F37888.37931&domain=pdf&date_stamp=1987-10-01

2PFuzLIMrNARIEs

This section d.escribes the LOVER approach to
verifying the equivalence of two logic circuits.
LOVER incorporates a two-set/two-phase approach
which avoids the multiplicative blow-up problem in
traditional logic verification methods and has
achieved good results in comparison to existing
approaches [Wei861.

Let A and B be the two circuits whose
equivalence has to be verified. A cube c from
CAON[Bra84] (the ON-set cover of circuit A) is
enumerated and sided on B to check if B pro-
duces a 1 at its output. If so, the
enumeration/simulation process continues with
another cube from CxN. If, on the contrary, a 0
appears, the verific.ation is completed with the conclu-
sion that A and 61 are not Boolean equivalent. If an
n (unknown) appears, c is split (cube-split) into
smaller cubes and re-simulated until a known value
appears at the output of B. Cube-splitting and sirnu-
lation are implicitly exhaustive. The process continues
until all cubes from CfN have been simulated. A
similar process for C, OFF (the OFF-set cover of circuit
A) is then carried out.

This method is called a two-set/two-phase
approach because there are two sets (the ON-set CoN
and the OFF-set C°FF > that are to be explicitly
verified; and two Iphases (the enumeration phase and
the simulation phase) that are to be performed for
each set verification. It is important to note that -this
framework does not specify which enumeration or
simulation algorithm to use. This gives a large degree
of freedom in the LOVER approach to verification -
many different kinds of simulation and enumeration
algorithms can be used. Since simulation is a rela-
tively well understood and developed ares, the
emphasis is generally placed on developing efficient
enumeration algorithms.

using LOVER., there are Only (noNp +noF,P >
cube enumeration and simulation passes to be per-
formed where norJp and noFF A are the number of
cubes in CfN and. CzFF, respectively. Though both

nONA and ~OFFJ. can be exponentially related to ni
(the number of inputs to the vetied circuits) in the
worst case, the overall complexity is additive rather
than multiplicative. So the problem of multiplicative
blow-up is avoided.

In [Wei86], it is indicated that the performance
of the LOVER algorithms vary mostly because of the
different enumeration algorithms that are used. Vari-
ous methods can be used in LOVER for enumeration -
justification algorithms as seen in most test pattern
generation algorithms are also enumeration
algorithms after :;uitable modifications to the termi-
nation condition.

In LOVER, the enumeration phase is followed by
the cube simulation phase, ‘hence the interaction
between these two processors s.hould be considered Lo
achieve better performance of the overall algorithm.
Although it is generally desirable that the number bf
cubes enumerated should be as small as possible, the
possibility of cube-splitting deserves attention. An
efficient enumeration algorithm may enumerate CoN
or C°FF very efficiently with only a few cubes, but!if
most of these cubes need to be split several times
during simulation, the overall verification time
suffers.

For ease of reference, in the remainder of the
paper, a LOVER algorithm using a spec@c
just.ification algorithm X is referred to as LOVER-X.
Among all the approaches presented in PROTEUS, it
was found that the LOVER-SDIJUST approach was
the most efficient[Wei86]. Hence, LOVER-SDIJUST
has been used as an example for parallelizing the gen-
eral. LOVER-based approach as described in Section 4.

3. EFFICIENT ENUMERATION ALGORITHMS

3.1. LOVER-PODEM

Enumeration in LOVER can be performed based
on the decision tree concept in PODEMLGoe811. By
modifying the termination condition of the implicit
enumeration algorithm used in PODEM, both the
ON-set and OFF-set can be implicitly, but exhaus-
tively, enumerated. A decision tree for LOVER-
PODEM for verifying two functionally equivalent
circuits is shown in Fig. 1. In general, two decision
trees are required: one for the ON-set verification and
the other for the OFF-set.

Each node in the decision tree represents a pri-
mary input (PI) assignment. Initially all primary
inputs are assigned unknown values. Given an initial
objective, i.e. to set a primary output line to a 1 or 0,
a path is traced from the objective line backwards to
a primary input to obtain a PI assignment. A 1 initial
objlective corresponds to the enumeration of the ON-
set and a 0 initial objective corresponds to the OFF-
set enumeration. After each new PI assignment, the
circuit is simulated using the current set of PI assign-
ments to see if the value at the target line has been
set up. If not, the backtrace process continues. If the
desired value has been achieved, a cube in the
corresponding set is found and simulated on the other
circuit. If the opposite value has been set up, the
algorithm backtracks to the last PI assignment, tries
the alternative value and flags the node to indicate
that both assignment choices have been tried. If the
alternative has already been tried, the node is
removed and the backtrack process continues until an
unflagged node with a possible alternative is reached.
The backtrack process is also applied when a desired
value has been set up at the target line. This is
different from PODEM where the enumeration pro-

Paper 16.4
284

cess terminates when the desired value is set up at
the target line. When the decision tree is found to be
empty in the backtrack process, the total input space
for the corresponding set has been implicitly, but
exhaustively, enumerated.

Fig. I: The Decision Tree of LOVER-PODEM

3.2 PLOVER: A Variation of LOVER-PODEM

In the above enumeration process, the ON-set and
OFF-set are enumerated separately with the initial
objective being set differently in each case. One can
observe, however, that in the enumeration process,
backtracking is performed whenever the value of the
objective line is set regardless of the value attained.
In the enumeration of one of the two sets, cubes in
the other set are actually being generated simultane-
ously but discarded. This represents a wasted efort in
the enumeration process. A variation of the LOVER-
PODEM method, called PLOVER, is therefore pro-
posed.

In PLOVER, only one decision tree is used with
the initial objective set to either a 1 or a 0 for the pri-
mary output. Cubes in both the ON-set and OFF,set
are collected whenever the value of the output is set.
Simulation of cubes from both sets are performed
together rather than separately. The verifications of
both sets are interleaved to avoid wasted enumeration
effort. The choice of the initial objective, either a 1 or
0, is unimportant in terms of the completeness of the
ON-set and OFF-set being generated. It only
influences the size of the sets - the set corresponding
to the initial objective tends to be more compact,
Experience has shown that the enumeration process

can be made more efficient if advanced knowledge of
the relative sizes of the two sets is available by set-
ting the initial objective corresponding to the bigger
set.

4. SCHEMES FOR PARALLEL LOGIC VERIFICATION

The LOVER framework supports various
schemes for parallel logic verification. This section
describes a static scheduling scheme which can be
used regardless of the enumeration algorithms used,
and a highly efficient dynamic scheduling scheme
using the LOVER-PODEM/PLOVER verification algo-
rithms.

4.1. Static Scheduling

The parallelism inherent in the LOVER frame-
work regardless of what enumeration and simulation
algorithms are used can be exploited using a static
scheduling scheme. In this scheme, each processor
works largely independent of the others with very
little inter-processor communication. The enumeration
algorkhm used has no injluence on the speed-up buz
only on the absolute cpu time expenditure. The syn-
chronization overhead for this scheme is minimal and
the scheme is easily implemented.

For ease of discussion, the following notations
will be used. Let A and B be the two circuits that
need verification. Let ni (n, > denote the number of
inputs (outputs) to the circuits. Through segmenta-
tion, each single-output circuit, the cone, can be
verified individually. The two sets, the ON-set and
the OFF-set, of the cone circuit can also be verified
independently. Furthermore, for each set verification,
the tasks of enumeration and simulation, with proper
synchronization, can also be performed in parallel by
two distinct processors. This is possible because the
two tasks are performed on different data structures:
the enumeration is performed on circuit A while
simulation is performed on circuit B. Synchronization
is necessary because simulation works on a fixed
number of cubes that are generated by enumeration.
The two tasks are closely interwoven, with simula-
tion following enumeration on every increment of a
fixed number of cubes enumerated. The size of an
increment is determined by the type of simulation _ ._ _-
algorithm used. For 32-vector parallel simulation, an
increment can contain up to 32 enumerated cubes. For
single-vector serial simulation, an increment is an
enumerated cube. For 32-vector parallel simulation,
an increment of more than 32 enumerated cubes is
also possible with the use of buffers which tem-
porarily keep the cubes that are pending for simula-
tion. Buffering is helpful only when the speed of
simulation is much faster than enumeration. Even in
this case, it should be noted that because synchroni-
zation between two tasks must be maintained, the
two tasks will terminate at about the same time, the
time determined by the slower task. Improving the

Paper 16.4
285

speed of the simulation process will not improve the
overall throughput. Unless the idle time of the pro-
cessor dedicated to simulation can be utilized IO do
other things, there is no reason for using buffering.
So immediately we have

ntask = n,x2x2= 4n, (4.1)

tasks that can be performed in parallel. For conveni-
ence, each task ‘:is denoted as task (type ,i ,j) orhere
type = “ertu” or ” sim” indicating the task is an
enumeration or a simulation task; i = 0 or 1 indicating
it is an OFF-set or an ON-set verification problem;
and j = 1 ,...,n, indicating which cone circuit is under
consideration. As an example, taskC”enu” ,0,4)
represents the task of enumerating the OFF-set of the
4th single-output cone circuit. It is assumed that
enumeration tasks are always performed on cone cir-
cuits of A while simulation tasks are performed on
cone circuits of .B. The time it takes to complete a
~peG.6~ task task (type ,i ,j > on a uniprocessor is
denoted as t (type ,i , j >. The time it takes to complete
all the tasks on a uniprocessor is denoted as t,, p,
and can be calculated by

t tot ,s =]F, l&J t (“enu” ,i ,j) + t (“sim” ,i ,j)) (4.2)
.- ._

Let np be the number of processors available for
parallel processing in a multi-processor computer. Let
t toT ,p be the time the multi-processor computer takes
to complete all the tasks. Assuming np is large
enough so that as many processors as needed are
available, then n task processors can be used to carry
out all the nrasii tasks in parallel, each processor
working on one task. Then t,, ,~ is determined by the
task which takes the longest time to complete,
namely the highest among all the t (type ,i ,j 1. Simu-
lation is in general more efficient than enumeration.

so ttot ,p is in general determined by the most time
consuming enumeration task. Let the speedup
obtained in this case be denoted as nup . We have

t tot .P = max(t (“em” ,O,j >, t (“em” ,l ,j > >
j (4.3a)

nuP = t, g f tt,. ,p (4.3b)

Because ntaslL is directly proportional to n, , when
n, is big, the number of processors required can be
very large. In some cases, the number of available
processors may not be enough. When this happens,
we can take advantage of the fact that simulation
takes much less time than enumeration. For
3n,< np < 4n,, and for every processor that is
needed but is not available, task (“sim” ,O,j > and
task (“sim” ,l ,j > for some j are combined and carried
out by the same processor. For convenience, the pro-
cessors which perform simulation (enumeration)
tasks are referred to as simulation (enumeration) pro-
cessors. Thus, for every cone circuit, there are three

dedicated processors, one performing the combibed
simulation task while the other two are perfor ing
the enumeration tasks. For the simulation proces or,
two buffers, one reserved for each enumeration

%
‘ro-

cessor, are used to ensure the synchroniza ion
between the simulation processor and the 9 wo
enumeration processors. Since there are two bu4ers
to examine, the simulation processor is kept mostly
busy, and thus the utilization of the simulation F)ro-
cessor is increased.

Using experimental data over a range of logic cir-
cuits, it has been determined that among the three
processors dedicated to a cone circuit, typically on

Q
of

the two enumeration processors represents ,the
bottleneck and determines the time it takes to corn-
pletely verify that cone circuit. So ttot ,p is again
determined by the enumeration task which takes the
longest time to complete, and nUP remains the same
as in the case where 4n,, processors were used which
implies that overall efficiency has increased.

The above method works until np drops below
3n:, . When np < 3n,, for every processor that is
needed but is not available, instead of combining
task (“sim” ,O, j) and task (“sim” ,l ,j > as just
described, we can combine task (“sim” ,i , j > and
task (“enu” ,i ,j) for some j and some i and let the
combined task be carried out by a processor. Let
T&X (i ,j > represent the combined task. The time it
takes to complete TASK (i ,j > on a uniprocessor can
be calculated by

T(i,j) = t(“enu” ,i,j> +t(“sim” ,i,j) (4.4)

In this case, the speedup may be less than nup if the
enumeration task contained in this combined task has
a high complexity, making this combined task the
bottleneck in the parallel verification process. How-
ever, this can be avoided using an intelligent grou@tg
of enumeration and simuhion tasks, using estimates
on the complexity of both phases based on circuit
in formation. If relatively simple enumeration tasks
can be combined with their associated simulation
ta.sks and assigned to a processor, the time required
for verification will still be determined by the most
complex enumeration task and a speed-up of n,, can
still be obtained.

When np drops below 2n,, it becomes inevitible
to allocate more than one cone to a single processor.
There are 2n, combined tasks TASK (i , j > and only
np < 2n, processors are available. Let istaken (6 ,j >
lx: a flag for TASK (i , j). istaken (i , j >= 1 means
T.ASK (i , j > has been assigned to a processor and is
either processed or is being processed;
is taken (i , j)= 0 means TASK(i ,j) is not yet
assigned nor is processed. A processor looks for an
istaken (i ,j > flag that is 0, grasps the task, sets the

Paper 16.4
286

is_rpken (i ,j) flag to 1 and starts processing. When
the task is finished, the same process repeats until all
istaken (i ,j > flags are set to 1.

4.1.1. Grouping of cones in Multi-output circuits

When the number of processors available is small
compared to the number of outputs, efficient parallel
verification can be achieved by assigning sets of out-
puts to the different processors, such that the sum
tot& of enumeration and simulation tasks to be per-
formed by each processor are approximately the same.
If the sets of tasks are exactly identical in complexity
and cpu time requirements, an ideal 100% overall
efficiency can be obtained.

To find a good grouping of cones in multi-output
circuits, rough estimates of the complexity in
enumerating the cones are required. These estimates
can be made by examining the structure of the logic
network - for example, the number of levels in the
network, the number of reconvergent farwuts, and the
relative number of gates at each level.

4.1.2 Static Scheduling Results

A parallel LOVER-SDIJUST algorithm has been
developed and implemented on the Sequent Balance
8000 multi-processor [Seq85] using the static
scheduling scheme described. The Balance computer
available to us is configured with 8 processors.

A pair of cone circuits can be verified using l-4
processors as summarized by Table 1. Mode 1 is
identical to the uni-processor version of the algorithm
for each cone. Mode 2 uses two processors one verify-
ing the ON-set and the other the OFF-set. Mode 3
uses three processors, two enumerating the ON and
OFF-sets and the third performing simulations. Mode
4 uses four processors, two each for simulation and
enumeration. Mode 4 is rarely used since empirical
evidence shows that simulation is usually about
twice as fast as enumeration making a fourth proces-
sor redundant.

Given the number of processors available and the
number of cone circuits to be verified against each
other the algorithm determines which mode of opera-
tion it will adopt. Mode selection takes into account
the complexities in verifying each cone circuit in
order to minimize idling time of processors (proces-
sors which finish early will idle). If the number of
outputs is greater than the number of processors,
mode 1 is selected, and sets of outputs with approxi-
mately equal verification complexities are found. On
the other hand, given a two output circuit and 6 pro-
cessors, mode 3 is automatically adopted.

Table 2 gives the results obtained on two circuits
from [Brg85]. Both these circuits are complex and the
uni-processor verification time on the Sequent is
about 38 and 17 hours respectively using the
LOVER-SDIJUST algorithm. Respectable speed-ups
have been obtained over 8 processor configurations for

parsllcl in sets and phases (shared simulation phase)

Table 1: Modes in static schedulii

Table 2 Results using static scheduling

both examples. The modes used for different proces-
sor configurations have also been indicated. The first
example saturates after 6 processors because verifying
one output in the circuit is significantly more time
consuming than any of the others, and a maximum of
four processors can be used on a single cone given a
static scheduling scheme. This output thus becomes
the bottleneck in the parallel verification process.
Better results are obtained in the second example,
although it has fewer outputs, because no single out-
put overwhelms the others in complexity.

In the following section we describe a dynamic
scheduling scheme which enables an arbitrary number
of processors to be used to verify a single cone circuit
and is such that high processor utilization (and
overall efficiency) is obtained regardless of the
number of processors available and the complexity of
individual cone circuits.

4.2 Dynamic Scheduling

In addition to the static scheme, we have also
devised a dynamic scheduling scheme using the new
PODEM decision tree based enumeration method
PLOVER, which achieves high processor utilitization
on any kind of circuit. In the following section, we
will describe how the enumeration method can be
efficiently parallelized using dynamic scheduling. Ini-
tially, for ease in explanation, a single-output circuit
will be assumed while describing the parallel algo-
rithm. Later, we will extend the algorithm to handle
multiple-output circuits.

In the LOVER framework as described in Section
2, the two main tasks performed in the verification
process are enumeration and simulation. Cubes are
continuously enumerated on one circuit and simu-
lated on the other to check any functional discrepan-
cies between the two.

The main goal of dynamic scheduling is to distri-
bute conhdZy equ.aL amounts of work among prmes-
sors to avoid wasteful idling and achieve high prmes-
sor utilization. Good processor utilization during
enumeration can be achieved by repeatedly breaking
up the enumeration task(s) into smaller ones and

Paper 16.4
287

assigning them to different processors - an enumera-
tion algorithm that is tailored for such a parallel
application has been devised.

The parallel enumeration algorithm is based on
the PLOVER algorithm described in Section 3. The
input space is divided up into disjoint sub-spaces and
each processor enumerates all possible input patterns
in an assigned sub-space in parallel. Sub-spaces are
further broken up, again disjointly, if some proces-
sors finish their a.ssigned enumeration in the input
sub-space before the others. Thus, even if the initia.lly
assigned sub-space.s are very different in enumeral.ive
complexity, prcrce.ssors which complete their tasks
early don’t remain idle but help other processors in
completing their enumeration task.

Cube simulation on the cone circuit can be per-
formed by any processor whenever the accumulated
number of cubes generated by a processor is equal to
the number of cubes that can be simulated in para.llel
by a parallel simulation algorithm. By proceeding in
such fashion, an equal amount of verification wor’k is
assigned to each available processor and full ultiliza-
tion of processor time is achieved by continuously
keeping all proceseiors at work in parallel.

4.21. A Parallel Knumeration Algorithm

The enumera.tion algorithm used in PLOVER
described in Section 3 is well suited to parallel appli-
cation. Whenever a new PI assignment is made, two
disjoint input spaces are implicitly developed by the
decision tree. These two input spaces correspond to
the 0 and 1 values of the newly assigned input and
the old values of all the previously assigned inputs.
Some input values may still be unknown. Since these
two input spaces are disjoint, they can be enumerated
by two different processors in parallel with the
guarantee that the resulting two sets of enumerated
CL&S will also be disjoint. Thus no redundant
enumeration work is done using this technique - each
processor e num.er&es on a different branch of the deci-
sion tree.

Disjoint input spaces are continually generated
by all the processors doing the enumeration every
time a new PI assignment is made. After a processor
performs a PI asaiignment, it picks one of the disjoint
spaces and continues enumeration on that space. As
soon as a processor completes enumerating its present
input space, it picks up another branch which
corresponds to previously generated input spaces by
other processors which have not yet been enumerated.
This process continues until the entire input space has
been enumerated. The selection of a new input space
by a processor on the completion of its initially
assigned task (this input space would have been gen-
erated by some other processor) entails an initializa-
tion overhead. It is therefore desirable to select the
largest unenumerated input space available which
corresponds to the space with the minimum number
of assigned primary inputs.

4.2.2. Implementation

The decision tree is an ordered list of nodes and
is implemented as a stack. Each processor owns a
separate stack which corresponds to the input Q spa e
currently being enumerated by .it. Whenever a new PI
assignment is made, a new unfIagged node is pushed
onto the top of the stack. And whenever a backtrack
step is made, the node on the top of the stack is
examined. If the node is unflagged, the alternative
value is assigned to the corresponding input and the
node is flagged to indicate both choices have been
tried. If the node is found to be flagged, it is popped
from the stack. Enumeration of a particular input
space is completed when t’he stack becomes emptiy.
The stack is therefore treated as a FILO queue by the
owning processor.

The selection of a new input space by a processor
is d.one by popping nodes from the bottom of the stack
of another processor and pushing them onto the
processor’s own stack. This popping and pushing pro-
cess continues until the first unflagged node is
reached. This unflagged node is flagged and the
corresponding input is assigned the alternative value
crf%ting a new disjoint input space on which the pro-
cessor enumerates. The popping of nodes begins from
the bottom of the stack rather than from the top so
as to obtain the largest unenumerated space to
minimize initialization overhead. The implementation
of the parallel enumeration algorithm is illustrated in
the pseudo-code below.

4.2.3. Global Verification Scheme

Circuits with an arbitrary number of outputs can
be efficiently verified using the dynamic scheduling
scheme described above by using all the processors to
verify each output, and verifying the outputs sequen-
tially. However, greater efficiency is gained by inaor-
porating the dynamic scheduling strategy into a glo-
bal verification scheme. Imtially, each processor tries
to pick and verify an output, enumerating and simu-
lating over the entire input space. If a processor runs
out of unverified outputs it then helps the processors
which have not completed their outputs, via dynamic
scheduling. Thus the overhead of selecting new input
sp,aces to enumerate on is minimized. To further
minimize the initialization overhead incurred in the
seIection of a new input space by a processor on the
completion of its initial assigned task during dynamic
sc!heduling, a feature called a preferred stack mec&n-
ism is implemented. This feature restricts a processor
to enumerate on unfinished jnput space of one qone
circuit before switching to another one by assigning
different priorities to input spaces of different cone
circuits during input space selection. This prevents a
processor from unnecessary switching between
unfinished input spaces of different cone circuits ,and
increases overall efficiency.

Paper 16.4

288

parallel_enumerate() 1
while (enumeration_notfinished) {

if (output-is_not>et) {
find_newqi_assignment();
push an unflagged node on top of stack Sl;

1
simulate the current set of pi assignments;

else 1
if (output is a 1)

a cube from ON-set is generated;
else

a cube from OFF-set is generated;
while (Sl is not empty

AND
node on top of Sl is flagged) {
pop a node from the top of Sl;

1
if (an unflagged node is found) {

flag node;
assign alternative value to the primary input;

1
simulate the current set of pi assignments;

else I select:
select a non empty stack S2 of

anot her processor:
while (node at bottom of S2 is flagged

AND
S2 is not empty) {

pop the node and push on top of Sl;

1
assign the pi value corresponding to that node;

if (an unfIagged node is found) (
pop the node and push on top of Sl;
flag node;
assign alternative value to the primary input;

1
simulate the current set of pi assignments;

else
got0 select;

2

1)

4.24. Dynamic Scheduling Results

Results for five examples using dynamic schedul-
ing are given in Table 3. In the table h, m and s
stand for hours, minutes and seconds respectively.
The first two examples are benchmark circuits from
LBrg851. The number of outputs for the five examples
are 3, 26, 2, 1 and 8 respectively. Regardless of the
number of outputs, the number of processors used
and the great variations in logic complexities among
different cones circuits in the benchmarks, in every
case except example 5, the speed-ups are very close to
the ideal values. The reason that the speed-up devi-
ates from the ideal value when the number of proces-

C432” : only the first three outputs
Table 3: Results using dynamic scheduling

sors is large in example 5 is because the verification
time is so small, circuit read-in time becomes
significant; it is about 11s and represents over 40% of
the total run-time in the &processor case. If we
deduct the circuit reading time from the total run-
time, the speed-up in the verification phase is again
close to the ideal value.

A proEle of the time each processor spent
enumerating and simulating on the various outputs in
example C880 is shown in Figure 2 for an 8 processor
configuration. In the figure, the time profiles for each
output have been normalized and the absolute
verification time for each output is indicated to the
right of the plot. As can be seen, the outputs which
take a long time to verify have been shared out
among many processors illustrating the excellent load
balancing characteristics of the dynamic scheduling
scheme, which is key to obtaining high overall
efficiences.

5. CONCLUSION

In this paper, we have presented new algorithms
based on the LOVER approach for combinational logic
verification. We have developed, for the first time,
parallel logic verification schemes and achieved high
overall efficiencies over a large number of processors.

Parallelism inherent in the LOVER approach can
be exploited using a static scheduling scheme. The
advantage with this approach is that it is independent
of the enumeration and simulation algorithms used.
High speed-ups have been obtained on benchmark cir-
cuits.

A dynamic scheduling scheme using a PODEM-
based enumeration algorithm has been developed.
This scheme produces excellent results on all kinds of
circuits, with arbitrary numbers of available proces-
sors. Very high processor utilization (more than 95%)
which translates to speed-ups greater than 7.8 over 8
processor configurations have been obtained using this
scheme.

Paper 16.4
289

es
2s

24

29

22

21

0 20
u 10

T 18

P 17

u IS

T 1s

14

N 13
II 12
Y 11

B 10

E 0
R 8

7
0
S
4
3

2

1

-

--

d-

--
II

l-l

ML-

rl

n

n

-

1 2 3 4 5 6 7 8

PROCESSOR NUMBER

5.2lh
10.24h

13*a3h

2.17h

3.7h

5.22~1

lS.22m

21.00m

1.76m

8.b C

0.17# P
o.oFJ* U
o.oas
0.1m T

0.11 I

0.1Ss Y

0.08m E

0.07,
0.078

0.128

0.12m
0.08#

0.07a

0.07m
0.07*

0.08m

Fig. 2 Proczsso r-Output Time Profiles for C&80

6. ACKNOWLEDGEMENTS

This research is supported by the Semiconductor
Research Corporation under grant 442427-52055 and
by a grant from .AT&T Bell Laboratories.

7. REFERENCES

[Bra841
R. K. Brayton, G. D. Hachtel. C. T. McMullen and A. L.
Sangiovanni-Vincentelli. “Logic Minimization Algorithms
for VLSI Synthesis.” Kluwer Academic Publishers, 1984.

bg851
F. Brglez and II. Fujiwara. “A neutral netiist of 10 combi-
national benchmark circuits and a target translator in
FORTRAN.” Special session on ATPG and fault simulation.
Proc. 1985 IEEE Int. Symp. Circuits and Systems, Kyoto.
Japan. June 5-7.1985.

tBry851
R. E. Bryant, “Symbolic Manipulation of Boolean Func-
tions” , Chapel Hill Conference on VLSI. May 1985.

[Don761
W. E. Donath and H. Ofek. “Automatic Identification of
Equivalence Points for Boolean Logic Verification”. IBM
Technical Disclosure Bulletin, vol. 18. No 8. Jan. 1976.

[Goebl]
P. Goel. *An Implicit Enumeration Algorithm To Generate
Tests for Combinational Logic Circuits” , IEEE Transac-
tions on Computers, Vol C-30. Mar. 1981.

[Oda86]
G. Odawara et. al. “A Logic Verifier based on Boolean
Comparison”, Proc. 23rd Design Automation Conf. June
1986.

[Rot731
P. Roth. “VERIFY: An algorithm to verify a computer
design.” IBM Tech. Disclosure Bull. 15, 2646-2648(1973).

[Rot771
P. Roth. “Hardware Verification”. IEEE Transactions on
Computers, Vol C-26, 1977.

[Rot801
P. Roth, “Computer Hardware Testing and Verification”.
Computer Science Press, Potomac. Maryland. 1980.

[Seq851
Sequent Computer Systems. Inc.. “Balance 8000 guide to
parallel programming”. Sequent Computer Systems, Inc.,
July 31 1985.

[Wei86]
R.S. Wei and A. Sangiovanni-Vincentelli. “PROTEUS: A
Logic Verification System for Combinational Logic Cir-
cuits* , Proc. of International Testing Conference, Sept.
1986.

Paper 16.4
290

