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Abstract 

This paper describes using adjacency lists to 
incrementally generate design rule spacing constraints. 
The algorithm generates the smallest complete set of 
constraints for a design, yielding fast compaction, and is as 
fast or faster than ordinary constraint generation methods 
even when the incremental features are not used. The 
adjacency list data structure allows one to very quiddy 
move, insert or delete objects and generate an updated set 
of constraints. 

Introduction 

Compaction is the translation from a high level 
description of a circuit down to the detailed layout needed 
for fabrication, trying to make as compact a layout as 
possible without violating any design rules. Working at a 
more abstract ievel offers many advantages, including 
freeing the designer from worrying about the design rules 
and making it easier to create new masks when the rules 
change. 

One problem with using a compactor is the long run 
times needed kr large designs. If the resulting layout is 
too big, some of the cells have to be changed and the 
whole circuit recompacted. This design loop time coukJ be 
drastically reduced by an incremental compactor that 
allowed one to edit the schematic and directly see the 
updated layout. 

An incremental compactor needs to incrementally 
generate design rule constraints. Ru!es can be divided into 
two classes. The first dass holds things together, keeping 
the parts of transistors and contacts aligned and wires 
connected to their endpoints. The set of constraints 
needed to enforce these rules is invariant during 
compaction, it is created once using a database describing 
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objects in the current technology. 
The second class of design rules are the spacing 

rules. They provide the margins needed by the fabrication 
process to keep adjacent objects in the layout from 
interfering with each other. The set of constraints needed 
to enforce these rules depend on the x and y coordinates 
of the objects. The compaction process is usually divided 
into two onedimensional problems because of the 
complexity d true twodimensionai optimization. 
Performing a one-dimensional compaction step changes 
the sst of constraints needed by the other dimension. 
Moving a layout level rectangle, a tile, up or down in the y 
direction can change the set of tiles on the its left and right, 
thus changing the set of cunstraints needed for compaction 
in the x direction. Throughout this paper we will describe 
the algorithms for creating and updating the set of x 
direction constraints affected by y direction movements. 
The y-x case is symmetrical. 

After discussing previous methods used to generate 
constraints, this paper describes the new data structure 
and algorithms used to generate and update the spacing 
constraints. We start with a slmpliiied model of the 
problem, single layer designs, and then describe the 
extentions for more general situations. 

Background 
Many algorithms have been used to generate the 

spacing constraints. The simplest one just checks for 
interactions between every pair of tiles. The distance 
between two tiles is taken to be the maximum of the x and 
y distances between their edges. Thus an x direction 
constraint between two tiles is needed only if they are 
seperated by less than the minimum @ai spacing in the y 
direction. This algorithm is easy to code but has the 
drawback that although each comparison is quid<. n2 
comparisons are required. 

The number of comparisons can be reduced by first 
sorting the tiles by their bottom coordinates and then 
comparing each tile with ‘ust the tiles in the horizontal band 
above it. Thii gives O(n Is ) total comparisons for a roughly 
square layout’. These algorithms have another 
disadvantage, for normal layouts they produce O(n’.5) 
constraints when, becauss .of transitivity, on!y O(n) 
constraints are needed. 

A more complex algorithm uses Shadowing. The tile8 
are iexicographicatf-/ sorted on the (x. y) coordinates of 
their lower-left-hand corner. A vertical frontier forms and 
moves to the right as the tiles are processed. The frontier 
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consists of tiles that coukl possibly be seen by a tile to the 
frontier’s right. Constraints are generated from tile(s) in the 
frontier to each tile in turn before that tile is added to and 
shadows part of the frontier. A tile is shadowed when 
constraints from it tlo any possible tile to the rfght 01 the 
frontier are superfluous. This is an elaboration of the basic 
algorithm used in many design rule checkers’. lt can be 
diffiiult maintaining ,this frontier since a tile often shadows 
just part of another tile and a large tile can be cut into 
pieces by the shadows of several small tiles. 

Another idea is to use Intervening Groups. Tiles that 
are rigidly held together are grouped into features. As all 
the pairs of features are compared an approximation of the 
longest path between every pair is created. Constraints 
from previously cornpared features may already require 
two features to be greater than the maximum design rule 
distance apart saving the expense of comparing all the tiles 
in them. One method keeps track of just one longest path’ 
resulting in extra comparisons. Another uses a limited 
depth search and a square bitmap’ to store previous 
results, requiring a great deal of memory. While these are 
still O(n*) algorithms, they are very fast O(n*) algorithms. 

The above algoriihms need to be completely rerun 
whenever anything is moved or changed. One way to 
reduce these recomputations to use the wires to divide the 
layout into regions5. The set of tiles in or on the edge of 
each region is invariant during compaction because the 
wires remain connected to their endpoints. An every-pair 
algorithm can be used separately on each region, when 
tiles are moved only the regions affected need to be 
redone. This algorithm runs slowly with large regions. 

The corner-stitching6 data structure allows more 
general quick changes. While designed for a layout editor, 
the routines used to oheck for design rule errors are similar 
to the ones needed to generate the design rule constraints. 
Comer-stitching uses space tiles in addition to the other 
types of layout tiles, in order to completely cover the plane. 
The tiles are kept in a canonio form of maximal horizontal 
strips by cutting tiles horizontally and recombining them 
giving preference Do width over height. This oanonio form 
is useful in a layout editor since it prevents fragmentation, 
but it has some drawbacks for compaction: it bses x-y 
symmetry and obscures the mapping between higher level 
descriptions and the layout. 

A variant of corner-stitching combined with shadowing 
forms the basis for our algorithm using adjacency lists. 
The algoriihm retains the speed of shadowing and the 
incremental properties of corner-stitching but is tailored to 
generating design trule constraints. 

Adjacency Lists 

This section describes the adjacency lists data 
structure. Each tile has a list of the tiles adjacent to its left 
edge and another list for its right edge. Two tiles are 
adjacent if and only if a spacing constraint is needed to 

keep them apart. The relationship is symmetric; if A is eft 
adjacent to B (in B’s left list) then B is right adjacent to 
A. The adjacency information is stored using threaded Ii 1 ts, 
eadr tile record has left, right, up and down pointers. The 
lists are threaded clockwise, the left (right) pointer point to 
the bwest left (highest right) adjacent tile and the up 
(down) pointers are followed for the rest of the left (ri 

! 

ht) 
adja,oency list (see Figure 1A). The lists are not always nil 
ended, it is possible for a tile to be the last tile in one til ‘s 
adjacency list and the first tile in another’s (see dark til in 
Figure 1B). But the down (up) pointer of a record is alw ys 

i part of the right (left) adjacency list of the tile pointed to by 
that record’s left (right) pointer. 

EF . 
-*Left Adjacency List I I I 
-*Right Adjacency List 

Flguro 1: A. Pointers B. Non-Nil Ended List 

‘P 

Figure 2: A Concave Left Turnaround 

The algorithms often search for a turnaround point 
while transversing the adjacency lists. A turnaround is a 
group of tiles with an empty concave space on their left or 
right. The bwer half of these tiles have nil up pointers and 
the upper half have nil down pointers. In Figure 4 the 
rightmost tile most be found to travel up or down withi+ the 
turnaround. Right pointers tend to go upwards sinoethey 
point to top right adjacencies. So to find a concave lefi 
turnaround from below, one just follows right pointers until 
a non-nil up pointer is found. To find one from above, the 
right and down pointers are followed to find bottom .right 
aojacencies. The turnaround tile is the first tile whose left 
pointer does not point back to the previous bottom right tile. 
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The tiles below the turnaround can become adjacent to 
tiles whose bottoms move down into the turnaround’s 
empty concave space while the tiles above are boked at 
when tops move up. 

Single Color Case 

This section describes the algorfthms used to maintain 
the adjacency lists for the simple case where there is only 
one color (type) of tile and the only design rule is that tiles 
can touch but not overlap. This is equivalent to replacing a 
spacing rule of k with a spacing rule of 0 after bloating all 
the tiles by k/2. The tiles are stored in a single plane with a 
frame of four special tiles to give all the other tiles left and 
right neighbors and to bound searches. The growing and 
shrinking of tiles are the basic operations used to move, 
delete and insert tiles, so they wili be described first. 

Growing Tiles 
Tiles are grown by moving their tops up or bottoms 

down. The cases are symmetric so we will describe 
moving tops up. As a tile grows, its path may cut old 
adjacencies and cause new ones to be added to its lists. 
The main part of this algorithm is a loop, scarring counter- 
clockwise upwards to look for adjacencies that cross the 
path of the growing tile. The scan searches right for a 
turnaround. Then it goes up and then left until a tile is 
found to the left of the growing tile. That is, we scan 
around concave left turnarounds to find all the crossing 
adjacencies, one-byone, working upwards until a crossing 
is found above the final top of the growing tile. 

- 

. . a 

Two cases can occur at the turnaround point: the up 
tile can be to the left or right of the growing tile. If it is to 
the left then the growing tite breaks into the middle of the 
turnaround tile’s left adjacency list, removing the up tile 
from that lit and adding it to its own left adjacency list (see 
Figure 3A). In the other case, the left pointers are followed 
to find a pair of tiles, one to the right and one to the left of 
the growing tile’s path. There are two subcases depending 
on whether or not the right tile is the bottom-most tile in the 
left tile’s right adjacency list. ff ft is, the right and growing 
tiles are made adjacent by just adding them to each other’s 
adjacency lists. tf not, the growing tile breaks into the 
middle of that rigM adjacency list, removing the right tile 
from that lfft and adding it to its own right adjacency list 
(see Figure 38). 

A 

..m , h. 

Tc 
TR 

I 

,.. . 
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Ffgun 4: Before and After Growing a Tile 

Sometimes when a tile is added to the top of a growing 
tile’s adjacency list that tile shadows the previous top 
adjacent tile, causing the old tile to be removed from the 
list. This occurs on the right when the growing tile’s up 
pointer is non-nil and on the left when a tile’s down pointer 
points to the growing tile (tile A in Figure 4). 

After the growing upwards loop is finished there may 
still be one more adjacency to find on each side of the 
grown tile. On the right side the top half of the last 
scanned turnaround is reversed scanned for a tile whose 
bottom is bw enough to be adjacent to the growing tile (tile 
TR in Figure 5). A similar search-til-turnaround is made to 
the left for a new top left adjacent tile (TL). 

Figure 3: A. Breaking a Left List B. Breaking a Right List 
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Figure 5: A Final Search for Top Adjacenciee 

Shrinking Tiles 
Shrinking a tile is the reverse of growing one. We will 

just describe moving bottoms up since the top down case 
is symmetric. As a tile shrinks it may lose some of its 
adjacencies and cause new adjacencies to be stitched 
between tiles on either side of its old position. The 
algorithm is a loop. moving the bottom up, dropping one tile 
at a time from the shrinking tile’s adjacency lists. 

Figure 6: Before and After Shrinking a Tile 

Two searches are done as each tile is dropped. When 
the bottom tile is removed from the right adjacency list a 
search is made to the right of that dropped tile to see if 
there is a tile that should replace it in the shrinking tile’s 
right adjacency list. The search follows right pointers until 
a turnaround is reached or a tile is found whose top is high 
enough to be adjacent to the shrinking tile’s current bottom 
(tile R in Figure 6). A similar search is made to the left of 
the shrinking tile for a new top left adjacency (L) for the 
dropped tile. Removing the bottom left adjacency is 
symmetrii, using left-up and rightdown searches. 

Moving, Deleting and Iuserting Tiles 
To move a tile a short distance it can be grown to 

strech over its new position and then shrunk to it’s proper 
size. To move it a bnger distance it is faster to delete it 
and then add it back, saving cutting and restitching many 
adjacencies. 

To delete a tile it is first shrunk down to zero height so 
that there will be exactly one left and one right adjacent tile. 
The zero height tile is then removed from their adjacency 
lists and a simple check decides it the two tiles are now 
adjacent and need to be added to each other’s adjacency 
lists. 

Inserting a tile is the reverse of deleting one. A zero 
height tile is inserted between two tiles to start its 
adjacency Tits and is then grown to its proper size. 
Locating these two tiles is a two step process. Starting at 
any tile (one cached to hopefully be nearby), up/right or 
down/left pointers are followed to find a tile at the same 
height as the bottom of the new tile. The up (down) 
pointers move qubkty, but if one is nil or jumps over the 
desired height, the right (left) pointers also tend to go up 
(down) since they point to the tops (bottoms) of adjacency 
lists. In Figure 7, starting at tile S, one right and one up 
pointers are folbwed. 

Figure 7: Locating Where to Insert a Tile 

Once a tile is found at the correct height the adjacency 
lists are folbwed to the left or right to find pairs of tiles at 
the correct height until a pair is found with one tile on the 
left and one on the rigM of the new tile’s position. The 
pairs of tiles need not be adjacent to each other; if in an 
adjacency list all the tiles are too hiih and/or low, the 
search is continued up and/or down from the tile(s) just 
below and/or above the wanted height, scanning until a 
turnaround. In Figure 7 the right tile is found by searching 
through a tile below the wanted height. 

Quick Loading 

The data structure of tiles could be loaded, using a 
given inital placement, by just inserting every tile. This 
would use O(n’.5) time for roughly square layouts just 
kcating where to insert all the tiles. Sorting the tiles 
lexicographically on the (y, x) coordinates of their bwer- 
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left-hand corners before insetting them makes the locates 
fast but it creates bng horizontal frontiers which are 
sometimes searched as tiles are 

$ 
rown up to their proper 

heights, giving a faster but still O(n “) time bad. 
It is much better to sort the tiles on (x, y). As they are 

inserted in this order each tile will have nothing to its right 
except the right edge of the frame. Thus a simple, quick 
bad routine can be used. The locate reduces to finding 
the tile in the riiht edge’s left adja6ency list just below the 
new tile’s bottom. The growing loop reduces to replacing 
some of the tiles in that left adjacency list with the new tile 
and using those tiles for the new tile’s left adjacency list. 
The scan-til-turnaround checks still need to be made for a 
final top and bottom left adjacencies. 

Note that this add routine is actually a fast, simple 
shadowing routine. The tiles in the right edge’s left 
adjacency list correspond to the completely unshadowed 
tiles in the shadowing frontier. The partially shadowed tiles 
are found left or left-up from the tiles which shadow them. 

Multiple Colors 

So far we have had just one cobr (type) of tile, one 
spacing rule and one plane for tiles. For a real layout we 
separate the colors that do not interact into different 
planes. For nMOS there is a metal plane and a poly- 
diffusion plane. In a plane with two or more colors it is 
unlikely that using constant bloats for each color will satisfy 
all the spacing rules. Therefore the tiles are stored 
unbloated and when comparing two tiles their colors are 
used as indices into an array of spacing rules to find the 
appropriate bloat. The spacing distances are constrained 
to not bleed through tiles, that is, transkiiity still holds; with 
constraints from P to Q and Q to Ft. none is needed from P 
to R. Rules with very large spacing distances (p to n- 
diffusion in CMOS can bleed across poly) can violate this 
and need to be handled on a different plane. 

Tile’s tops and bottoms are now fuzzy since the 
effective bloat of a tile varies with the color of the tile with 
which it is being compared. This fuzziness causes two 
problems. The first is minor, occuring when a tile has zero 
(bloated) height as it is being inserted or deleted. Care 
must be taken that the original or final left and right 
adjacencies are valid because of possible vertical rule 
bleed-throughs. 

The second problem, the around-thecomer problem, 
is more serious. Our data structure can only model planar 
graphs, that is what makes it possible to have just one up 
and one down pointer per record. But the fuzzy edges 
make it possible for two constraints to diagonally cross. A 
simple case is shown in Figure 8A where four tiles are 
arranged in a t’uht square, a diffusion tile above a poly tile 
on the left and bebw one on the right. The tiles can be 
close enough to generate four pairs of constraints since the 
poiydiffusion spacing rule is smaller than the poly-ploy and 
diffusion-diffusion spacings. Adding another tile in the 
middle of all this would make an up or down pointer need 
to point to two tiles at once (see Figure 8B). 

q 
Flgurm 0: A Complex Around-the-Corner Search 

Searches for around-the-corner adjacencies are now 
needed after growing and while shrinking tiles to avoid 
missing any constraints. In Figure 9 a search is made for 
an adjacency from the left dark tile. These constraints are 
kept in a seperate list since they cannot be included in the 
normal adjacency lists. This lit is chedced when the 
compaction wnstraints are generated to see if the 
constraints are still valid and, if so. if they can now be 
added to the normal lists. There is a simple test that 
eliminates or cuts short most searches by using the fact 
that a problem can only occur when tiles’ top and bottom 
edges are very dose. The test uses a precalculated 
function of the colors’ bloat distances to determine the 
vertical extent of a search. This fudge distance is how far 
the top of a right tile must be above the top of a left tile 
before any tile high enough to be able to slide horizontally 
over the rigM tile will also be able to slide over the left tile. 

Wires 

Figure 8: A. Crossed Constraints B. Up Pointer Conflict 

So far we have discussed one kind of tile, but in 
layouts there two very different kinds of objects: wires and 
fixed-sized points. In our system, wires are connected to 
points, not other wires, at most one wire per side per point. 
A point is made at least as wide as the wire(s) connected 
to it to provide a full connection. When the point is wider, 
the wire has the freedom to slide along it. Wires could be 
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represented as varying-sized tiles but we can take 
advantage of the fact that their ends are protected. A 
horizontal wire never generates any constraints needed for 
compaction in the x direction because it is always 
shadowed by the two endpoints to which it is attached. 
Thus, while points require two tile records, one for each 
dimension, we can get by with just one tile record per wire. 

lf we add two more pointers to each tile record, a wire- 
up and a wire-down. to doubly link wires and their 
endpoints together, we can take advantage of the fact that 
wires stretch when their endpoints move. Wires 
themselves never need to be moved; when an endpoint is 
shrunk away from its wire the wire grows to follow it. Thus 
instead of the usual shrink loop the routine can just see 
how many of the tiles in the endpoint’s adjacency lists need 
to be moved to the wire’s adjacency lists. Similarly for 
endpoints growing towards their wires. The wire-up and 
down pointers also speed up the locates used for 
insertions and they can be used as turnarounds since 
nothing can pass between a wire and its endpoints. 

Figure 10: Wire Adjacencies 

Since a vertical wire is horizontally constrainted by its 
endpoints, it follows, using transitivity, that if a tile is 
adjacent to one or both of a wire’s endpoints it &es not 
need to also bs adjacent to the wire. Thus we can change 
the definition of adjacency for wires to say that a point and 
a wire are adjacent if and only if the point is adjacent only 
to the wire (on that side), and that two wires are never 
adjacent (see Figure 10). Note that now, unlike other tiles, 
a wire’s left and right pointers can be nil and their up and 
down pointers are always nil. 

lt is relatively easy to modify the algorithms to handle 
this definition. A wire is allowed to temporarily become 
adjacent to a growing tile but it is removed before adding 
another tile to that side’s adjacency list or, if needed, after 
the loop. A shrinking point becomes adjacent to a wire 
only when nothing else is available. While doing a locate 
and searching an adjacency list from a wire, if the list is 
empty or its tiles are all too high or all too bw, the search is 
continued from the wire’s endpoints. 

The bad routine is augmented with a bad-wire routine 
which adds a wire as soon as both of its endpoints have 
been added. No locate is needed since the wire can be 

grown from one endpoint to the other. No final searches 
are needed either. The same simpliiiatbns are made for 
wire insertions. To delete a wire one endpoint is grown 
towards the other to zero out the wire. Then the wire is 
removed and the endpoint shrunk back. 

Overlapping Tiles 

In VLSI compaction most of the spacing rules can be 
relaxed between tiles that are electrically connected since 
there is no need to keep them from shorting out. Not 
allowing (bbated) tiles to overlap has the wasteful effect of 
forcing wires to have a minimum length because spacing 
rules keep their endpoints spaced apart. 

Netlists and an array specifying which tile colors are 
allowed to overlap can be used to generate constraints 
allowing overlapping tiles. When a tile is moved up or 
down to overlap another tile the two tiles are forced to be 
adjacent to each other. to each other’s left and right. Any 
wire between the two tiles is now unnecessary and is 
removed and added to a list of wires with negative length. 
After all the movements are done this list is checked to see 
if any of the wires now have positive lengths and should be 
added back to the graph. 

Flguro 11: Constraints Using Netlists 

A more general solution is to not generate any 
constraints at all between overlappable, electrically 
connected tiles, thus allowing them to pass through each 
other. This albws left and right jogs to switch and the 
ordering of taps off of buses to vary. Normally only one set 
of adjacency lists, say the right adjacencies, is needed to 
generate the constraints. When an adjacency between a 
left and a right tile is not used to generate a constraint, a 
routine is recursively called to find which additional tiles 
would bs in the right adjacency list of the left tile if the right 
tile was deleted. A symmetric routine must also be used to 
find additional constraints to the left of the right tile. This 
has the effect of making overlappable, electrically 
connected tiles transparent to each other (see Figure 11). 

While it is easy to generate constraints that allow tiles 
to pass through each other, when they actually do it can 
make updating the adjacency lists more difficult: pointers 
in both dimensions’ data structure have to be adjusted, 
negative length wires can cause wire pointer conflicts and 
left- or rightaf inconsistences can occur. 

When a tile, moved up or down, passes through 
another tile, it creates a problem in the other dimension’s 
data structure. The tile that was on the left is now on the 
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right, a left adjacency pointer now points to a tile on the 
right and visa-versa. Deleting one of those tiles from that 
dimension’s graph and reinserting it will fii the pointers. 

Figure 12: Fixing Negative Length Wires 

ff one endpoint of a wire passes completely through 
the other endpoint, the wire-up and down pointers are 
swapped to give the wire a positive length. This can cause 
an endpoint’s wire-up or down pointer to need to point to 
two wires at once. The pointer pointing to the shorter wire 
is given preference. The longer wire is disconnected from 
that endpoint and attached to the other endpoint of the 
shorter wire (see Figure 12). This recurses until a free 
endpoint is found. A wire or endpoint may have to be 
moved horizontally slightly to make a full connection when 
a vertical wire’s endpoints are changed. 

Results and Conclusions 

Currently this a$orithm is programmed in C and uses 
the Lava compactor to read in descriptions of sticks and 
do the actual compaction. The program quick bads both 
dimensions with an inital spread out solution and during the 
two onedimensional compaction steps ends up moving all 
the tiles down and then to the left and updating both 
graphs. lt takes about twice as bng to move all the tiles as 
it does to do the quick bad. Of course the updates are not 
really necessary for just two compaction steps. Using 
Lava’s sorted every-pair constraint generation on the 
example in Figure 13 it takes, on a VAX 780. 5.7 cpu 
seconds to generate 19161 spacing constraints and 1 
second to do the actual compaction. Using adjacency tits 
it takes 1.5 seconds to generate 847 spacing constraints 
(and update both dimension’s data structures) and 0.18 
seconds for the compaction. 

We have an algorithm which handles multiple colors 
and planes, takes advantage of the special properties of 
wires and allows appropriate, electrically connected tiles to 
pass through each other. In our real-life examples there 
have been few around-the-corner constraints and pass- 
through problems. No more than an average of two 
spacing constraints per tile will ever be generated (that is 
how many adjacency pointers there are). The next step 
will be to use the data structure and algoriihm in a simple 
down-and-left incremental compactor. 

Our method combines the best of shadowing and 
corner-stitching. h is faster than shadowing, uses 
transitivity to generate the minimum number of spacing 
constraints and allows incremental changes without the 
overhead of recalculating all the constraints. 
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