
Generating Incremental VLSI Compaction Spacing Constraints

Clyde W. Carpenter 6 Mark Horowitz

Stanford Unhrerstty, Sanford CA 94305

Abstract

This paper describes using adjacency lists to
incrementally generate design rule spacing constraints.
The algorithm generates the smallest complete set of
constraints for a design, yielding fast compaction, and is as
fast or faster than ordinary constraint generation methods
even when the incremental features are not used. The
adjacency list data structure allows one to very quiddy
move, insert or delete objects and generate an updated set
of constraints.

Introduction

Compaction is the translation from a high level
description of a circuit down to the detailed layout needed
for fabrication, trying to make as compact a layout as
possible without violating any design rules. Working at a
more abstract ievel offers many advantages, including
freeing the designer from worrying about the design rules
and making it easier to create new masks when the rules
change.

One problem with using a compactor is the long run
times needed kr large designs. If the resulting layout is
too big, some of the cells have to be changed and the
whole circuit recompacted. This design loop time coukJ be
drastically reduced by an incremental compactor that
allowed one to edit the schematic and directly see the
updated layout.

An incremental compactor needs to incrementally
generate design rule constraints. Ru!es can be divided into
two classes. The first dass holds things together, keeping
the parts of transistors and contacts aligned and wires
connected to their endpoints. The set of constraints
needed to enforce these rules is invariant during
compaction, it is created once using a database describing

This material is based upon work supported under a N&M Scian3e
Foundation Graduate Fellowship. This work was supported in part by the
National Sciena~ Foundation under Grant DMcB451822, and in part by the
Defense Mvanced Research Pmjects Agancy under contract MDA 903-83~
c-0385.

Permission to copy without fee all or part of this rnaterU ia grwtsd
provided that the copies are not maria UT distributed far direct commercfa!
advantage, the ACM copyright mtice ard the title of the pubficadon and its
date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy olhetwise. or &I republish,
requires a fee ardor speciiic permi8Sion.

objects in the current technology.
The second class of design rules are the spacing

rules. They provide the margins needed by the fabrication
process to keep adjacent objects in the layout from
interfering with each other. The set of constraints needed
to enforce these rules depend on the x and y coordinates
of the objects. The compaction process is usually divided
into two onedimensional problems because of the
complexity d true twodimensionai optimization.
Performing a one-dimensional compaction step changes
the sst of constraints needed by the other dimension.
Moving a layout level rectangle, a tile, up or down in the y
direction can change the set of tiles on the its left and right,
thus changing the set of cunstraints needed for compaction
in the x direction. Throughout this paper we will describe
the algorithms for creating and updating the set of x
direction constraints affected by y direction movements.
The y-x case is symmetrical.

After discussing previous methods used to generate
constraints, this paper describes the new data structure
and algorithms used to generate and update the spacing
constraints. We start with a slmpliiied model of the
problem, single layer designs, and then describe the
extentions for more general situations.

Background
Many algorithms have been used to generate the

spacing constraints. The simplest one just checks for
interactions between every pair of tiles. The distance
between two tiles is taken to be the maximum of the x and
y distances between their edges. Thus an x direction
constraint between two tiles is needed only if they are
seperated by less than the minimum @ai spacing in the y
direction. This algorithm is easy to code but has the
drawback that although each comparison is quid<. n2
comparisons are required.

The number of comparisons can be reduced by first
sorting the tiles by their bottom coordinates and then
comparing each tile with ‘ust the tiles in the horizontal band
above it. Thii gives O(n Is) total comparisons for a roughly
square layout’. These algorithms have another
disadvantage, for normal layouts they produce O(n’.5)
constraints when, becauss .of transitivity, on!y O(n)
constraints are needed.

A more complex algorithm uses Shadowing. The tile8
are iexicographicatf-/ sorted on the (x. y) coordinates of
their lower-left-hand corner. A vertical frontier forms and
moves to the right as the tiles are processed. The frontier

24th ACM/IEEE Design Automation Conference
Paper 17.1

0 I987 ACM 0738- IOOX/87/0600-029 I$OO.75 291

http://crossmark.crossref.org/dialog/?doi=10.1145%2F37888.37932&domain=pdf&date_stamp=1987-10-01

consists of tiles that coukl possibly be seen by a tile to the
frontier’s right. Constraints are generated from tile(s) in the
frontier to each tile in turn before that tile is added to and
shadows part of the frontier. A tile is shadowed when
constraints from it tlo any possible tile to the rfght 01 the
frontier are superfluous. This is an elaboration of the basic
algorithm used in many design rule checkers’. lt can be
diffiiult maintaining ,this frontier since a tile often shadows
just part of another tile and a large tile can be cut into
pieces by the shadows of several small tiles.

Another idea is to use Intervening Groups. Tiles that
are rigidly held together are grouped into features. As all
the pairs of features are compared an approximation of the
longest path between every pair is created. Constraints
from previously cornpared features may already require
two features to be greater than the maximum design rule
distance apart saving the expense of comparing all the tiles
in them. One method keeps track of just one longest path’
resulting in extra comparisons. Another uses a limited
depth search and a square bitmap’ to store previous
results, requiring a great deal of memory. While these are
still O(n*) algorithms, they are very fast O(n*) algorithms.

The above algoriihms need to be completely rerun
whenever anything is moved or changed. One way to
reduce these recomputations to use the wires to divide the
layout into regions5. The set of tiles in or on the edge of
each region is invariant during compaction because the
wires remain connected to their endpoints. An every-pair
algorithm can be used separately on each region, when
tiles are moved only the regions affected need to be
redone. This algorithm runs slowly with large regions.

The corner-stitching6 data structure allows more
general quick changes. While designed for a layout editor,
the routines used to oheck for design rule errors are similar
to the ones needed to generate the design rule constraints.
Comer-stitching uses space tiles in addition to the other
types of layout tiles, in order to completely cover the plane.
The tiles are kept in a canonio form of maximal horizontal
strips by cutting tiles horizontally and recombining them
giving preference Do width over height. This oanonio form
is useful in a layout editor since it prevents fragmentation,
but it has some drawbacks for compaction: it bses x-y
symmetry and obscures the mapping between higher level
descriptions and the layout.

A variant of corner-stitching combined with shadowing
forms the basis for our algorithm using adjacency lists.
The algoriihm retains the speed of shadowing and the
incremental properties of corner-stitching but is tailored to
generating design trule constraints.

Adjacency Lists

This section describes the adjacency lists data
structure. Each tile has a list of the tiles adjacent to its left
edge and another list for its right edge. Two tiles are
adjacent if and only if a spacing constraint is needed to

keep them apart. The relationship is symmetric; if A is eft
adjacent to B (in B’s left list) then B is right adjacent to
A. The adjacency information is stored using threaded Ii 1 ts,
eadr tile record has left, right, up and down pointers. The
lists are threaded clockwise, the left (right) pointer point to
the bwest left (highest right) adjacent tile and the up
(down) pointers are followed for the rest of the left (ri

!

ht)
adja,oency list (see Figure 1A). The lists are not always nil
ended, it is possible for a tile to be the last tile in one til ‘s
adjacency list and the first tile in another’s (see dark til in
Figure 1B). But the down (up) pointer of a record is alw ys

i part of the right (left) adjacency list of the tile pointed to by
that record’s left (right) pointer.

EF .
-*Left Adjacency List I I I
-*Right Adjacency List

Flguro 1: A. Pointers B. Non-Nil Ended List

‘P

Figure 2: A Concave Left Turnaround

The algorithms often search for a turnaround point
while transversing the adjacency lists. A turnaround is a
group of tiles with an empty concave space on their left or
right. The bwer half of these tiles have nil up pointers and
the upper half have nil down pointers. In Figure 4 the
rightmost tile most be found to travel up or down withi+ the
turnaround. Right pointers tend to go upwards sinoethey
point to top right adjacencies. So to find a concave lefi
turnaround from below, one just follows right pointers until
a non-nil up pointer is found. To find one from above, the
right and down pointers are followed to find bottom .right
aojacencies. The turnaround tile is the first tile whose left
pointer does not point back to the previous bottom right tile.

Paper 17.1
292

The tiles below the turnaround can become adjacent to
tiles whose bottoms move down into the turnaround’s
empty concave space while the tiles above are boked at
when tops move up.

Single Color Case

This section describes the algorfthms used to maintain
the adjacency lists for the simple case where there is only
one color (type) of tile and the only design rule is that tiles
can touch but not overlap. This is equivalent to replacing a
spacing rule of k with a spacing rule of 0 after bloating all
the tiles by k/2. The tiles are stored in a single plane with a
frame of four special tiles to give all the other tiles left and
right neighbors and to bound searches. The growing and
shrinking of tiles are the basic operations used to move,
delete and insert tiles, so they wili be described first.

Growing Tiles
Tiles are grown by moving their tops up or bottoms

down. The cases are symmetric so we will describe
moving tops up. As a tile grows, its path may cut old
adjacencies and cause new ones to be added to its lists.
The main part of this algorithm is a loop, scarring counter-
clockwise upwards to look for adjacencies that cross the
path of the growing tile. The scan searches right for a
turnaround. Then it goes up and then left until a tile is
found to the left of the growing tile. That is, we scan
around concave left turnarounds to find all the crossing
adjacencies, one-byone, working upwards until a crossing
is found above the final top of the growing tile.

-

. . a

Two cases can occur at the turnaround point: the up
tile can be to the left or right of the growing tile. If it is to
the left then the growing tite breaks into the middle of the
turnaround tile’s left adjacency list, removing the up tile
from that lit and adding it to its own left adjacency list (see
Figure 3A). In the other case, the left pointers are followed
to find a pair of tiles, one to the right and one to the left of
the growing tile’s path. There are two subcases depending
on whether or not the right tile is the bottom-most tile in the
left tile’s right adjacency list. ff ft is, the right and growing
tiles are made adjacent by just adding them to each other’s
adjacency lists. tf not, the growing tile breaks into the
middle of that rigM adjacency list, removing the right tile
from that lfft and adding it to its own right adjacency list
(see Figure 38).

A

..m , h.

Tc
TR

I

,.. .
a :a

Ffgun 4: Before and After Growing a Tile

Sometimes when a tile is added to the top of a growing
tile’s adjacency list that tile shadows the previous top
adjacent tile, causing the old tile to be removed from the
list. This occurs on the right when the growing tile’s up
pointer is non-nil and on the left when a tile’s down pointer
points to the growing tile (tile A in Figure 4).

After the growing upwards loop is finished there may
still be one more adjacency to find on each side of the
grown tile. On the right side the top half of the last
scanned turnaround is reversed scanned for a tile whose
bottom is bw enough to be adjacent to the growing tile (tile
TR in Figure 5). A similar search-til-turnaround is made to
the left for a new top left adjacent tile (TL).

Figure 3: A. Breaking a Left List B. Breaking a Right List

Paper 17.1
293

. I...:.:.:.:.:.:. ::::::::::;::: :$$$$$.:.:.:.:.:.:. .:.:.:.:.>:.:

0

;:::::::::p g;:;;; >$$$$: :g$;:$$:; ?j$$$

Figure 5: A Final Search for Top Adjacenciee

Shrinking Tiles
Shrinking a tile is the reverse of growing one. We will

just describe moving bottoms up since the top down case
is symmetric. As a tile shrinks it may lose some of its
adjacencies and cause new adjacencies to be stitched
between tiles on either side of its old position. The
algorithm is a loop. moving the bottom up, dropping one tile
at a time from the shrinking tile’s adjacency lists.

Figure 6: Before and After Shrinking a Tile

Two searches are done as each tile is dropped. When
the bottom tile is removed from the right adjacency list a
search is made to the right of that dropped tile to see if
there is a tile that should replace it in the shrinking tile’s
right adjacency list. The search follows right pointers until
a turnaround is reached or a tile is found whose top is high
enough to be adjacent to the shrinking tile’s current bottom
(tile R in Figure 6). A similar search is made to the left of
the shrinking tile for a new top left adjacency (L) for the
dropped tile. Removing the bottom left adjacency is
symmetrii, using left-up and rightdown searches.

Moving, Deleting and Iuserting Tiles
To move a tile a short distance it can be grown to

strech over its new position and then shrunk to it’s proper
size. To move it a bnger distance it is faster to delete it
and then add it back, saving cutting and restitching many
adjacencies.

To delete a tile it is first shrunk down to zero height so
that there will be exactly one left and one right adjacent tile.
The zero height tile is then removed from their adjacency
lists and a simple check decides it the two tiles are now
adjacent and need to be added to each other’s adjacency
lists.

Inserting a tile is the reverse of deleting one. A zero
height tile is inserted between two tiles to start its
adjacency Tits and is then grown to its proper size.
Locating these two tiles is a two step process. Starting at
any tile (one cached to hopefully be nearby), up/right or
down/left pointers are followed to find a tile at the same
height as the bottom of the new tile. The up (down)
pointers move qubkty, but if one is nil or jumps over the
desired height, the right (left) pointers also tend to go up
(down) since they point to the tops (bottoms) of adjacency
lists. In Figure 7, starting at tile S, one right and one up
pointers are folbwed.

Figure 7: Locating Where to Insert a Tile

Once a tile is found at the correct height the adjacency
lists are folbwed to the left or right to find pairs of tiles at
the correct height until a pair is found with one tile on the
left and one on the rigM of the new tile’s position. The
pairs of tiles need not be adjacent to each other; if in an
adjacency list all the tiles are too hiih and/or low, the
search is continued up and/or down from the tile(s) just
below and/or above the wanted height, scanning until a
turnaround. In Figure 7 the right tile is found by searching
through a tile below the wanted height.

Quick Loading

The data structure of tiles could be loaded, using a
given inital placement, by just inserting every tile. This
would use O(n’.5) time for roughly square layouts just
kcating where to insert all the tiles. Sorting the tiles
lexicographically on the (y, x) coordinates of their bwer-

Paper 17. I
294

left-hand corners before insetting them makes the locates
fast but it creates bng horizontal frontiers which are
sometimes searched as tiles are

$
rown up to their proper

heights, giving a faster but still O(n “) time bad.
It is much better to sort the tiles on (x, y). As they are

inserted in this order each tile will have nothing to its right
except the right edge of the frame. Thus a simple, quick
bad routine can be used. The locate reduces to finding
the tile in the riiht edge’s left adja6ency list just below the
new tile’s bottom. The growing loop reduces to replacing
some of the tiles in that left adjacency list with the new tile
and using those tiles for the new tile’s left adjacency list.
The scan-til-turnaround checks still need to be made for a
final top and bottom left adjacencies.

Note that this add routine is actually a fast, simple
shadowing routine. The tiles in the right edge’s left
adjacency list correspond to the completely unshadowed
tiles in the shadowing frontier. The partially shadowed tiles
are found left or left-up from the tiles which shadow them.

Multiple Colors

So far we have had just one cobr (type) of tile, one
spacing rule and one plane for tiles. For a real layout we
separate the colors that do not interact into different
planes. For nMOS there is a metal plane and a poly-
diffusion plane. In a plane with two or more colors it is
unlikely that using constant bloats for each color will satisfy
all the spacing rules. Therefore the tiles are stored
unbloated and when comparing two tiles their colors are
used as indices into an array of spacing rules to find the
appropriate bloat. The spacing distances are constrained
to not bleed through tiles, that is, transkiiity still holds; with
constraints from P to Q and Q to Ft. none is needed from P
to R. Rules with very large spacing distances (p to n-
diffusion in CMOS can bleed across poly) can violate this
and need to be handled on a different plane.

Tile’s tops and bottoms are now fuzzy since the
effective bloat of a tile varies with the color of the tile with
which it is being compared. This fuzziness causes two
problems. The first is minor, occuring when a tile has zero
(bloated) height as it is being inserted or deleted. Care
must be taken that the original or final left and right
adjacencies are valid because of possible vertical rule
bleed-throughs.

The second problem, the around-thecomer problem,
is more serious. Our data structure can only model planar
graphs, that is what makes it possible to have just one up
and one down pointer per record. But the fuzzy edges
make it possible for two constraints to diagonally cross. A
simple case is shown in Figure 8A where four tiles are
arranged in a t’uht square, a diffusion tile above a poly tile
on the left and bebw one on the right. The tiles can be
close enough to generate four pairs of constraints since the
poiydiffusion spacing rule is smaller than the poly-ploy and
diffusion-diffusion spacings. Adding another tile in the
middle of all this would make an up or down pointer need
to point to two tiles at once (see Figure 8B).

q
Flgurm 0: A Complex Around-the-Corner Search

Searches for around-the-corner adjacencies are now
needed after growing and while shrinking tiles to avoid
missing any constraints. In Figure 9 a search is made for
an adjacency from the left dark tile. These constraints are
kept in a seperate list since they cannot be included in the
normal adjacency lists. This lit is chedced when the
compaction wnstraints are generated to see if the
constraints are still valid and, if so. if they can now be
added to the normal lists. There is a simple test that
eliminates or cuts short most searches by using the fact
that a problem can only occur when tiles’ top and bottom
edges are very dose. The test uses a precalculated
function of the colors’ bloat distances to determine the
vertical extent of a search. This fudge distance is how far
the top of a right tile must be above the top of a left tile
before any tile high enough to be able to slide horizontally
over the rigM tile will also be able to slide over the left tile.

Wires

Figure 8: A. Crossed Constraints B. Up Pointer Conflict

So far we have discussed one kind of tile, but in
layouts there two very different kinds of objects: wires and
fixed-sized points. In our system, wires are connected to
points, not other wires, at most one wire per side per point.
A point is made at least as wide as the wire(s) connected
to it to provide a full connection. When the point is wider,
the wire has the freedom to slide along it. Wires could be

Paper 17.1
295

represented as varying-sized tiles but we can take
advantage of the fact that their ends are protected. A
horizontal wire never generates any constraints needed for
compaction in the x direction because it is always
shadowed by the two endpoints to which it is attached.
Thus, while points require two tile records, one for each
dimension, we can get by with just one tile record per wire.

lf we add two more pointers to each tile record, a wire-
up and a wire-down. to doubly link wires and their
endpoints together, we can take advantage of the fact that
wires stretch when their endpoints move. Wires
themselves never need to be moved; when an endpoint is
shrunk away from its wire the wire grows to follow it. Thus
instead of the usual shrink loop the routine can just see
how many of the tiles in the endpoint’s adjacency lists need
to be moved to the wire’s adjacency lists. Similarly for
endpoints growing towards their wires. The wire-up and
down pointers also speed up the locates used for
insertions and they can be used as turnarounds since
nothing can pass between a wire and its endpoints.

Figure 10: Wire Adjacencies

Since a vertical wire is horizontally constrainted by its
endpoints, it follows, using transitivity, that if a tile is
adjacent to one or both of a wire’s endpoints it &es not
need to also bs adjacent to the wire. Thus we can change
the definition of adjacency for wires to say that a point and
a wire are adjacent if and only if the point is adjacent only
to the wire (on that side), and that two wires are never
adjacent (see Figure 10). Note that now, unlike other tiles,
a wire’s left and right pointers can be nil and their up and
down pointers are always nil.

lt is relatively easy to modify the algorithms to handle
this definition. A wire is allowed to temporarily become
adjacent to a growing tile but it is removed before adding
another tile to that side’s adjacency list or, if needed, after
the loop. A shrinking point becomes adjacent to a wire
only when nothing else is available. While doing a locate
and searching an adjacency list from a wire, if the list is
empty or its tiles are all too high or all too bw, the search is
continued from the wire’s endpoints.

The bad routine is augmented with a bad-wire routine
which adds a wire as soon as both of its endpoints have
been added. No locate is needed since the wire can be

grown from one endpoint to the other. No final searches
are needed either. The same simpliiiatbns are made for
wire insertions. To delete a wire one endpoint is grown
towards the other to zero out the wire. Then the wire is
removed and the endpoint shrunk back.

Overlapping Tiles

In VLSI compaction most of the spacing rules can be
relaxed between tiles that are electrically connected since
there is no need to keep them from shorting out. Not
allowing (bbated) tiles to overlap has the wasteful effect of
forcing wires to have a minimum length because spacing
rules keep their endpoints spaced apart.

Netlists and an array specifying which tile colors are
allowed to overlap can be used to generate constraints
allowing overlapping tiles. When a tile is moved up or
down to overlap another tile the two tiles are forced to be
adjacent to each other. to each other’s left and right. Any
wire between the two tiles is now unnecessary and is
removed and added to a list of wires with negative length.
After all the movements are done this list is checked to see
if any of the wires now have positive lengths and should be
added back to the graph.

Flguro 11: Constraints Using Netlists

A more general solution is to not generate any
constraints at all between overlappable, electrically
connected tiles, thus allowing them to pass through each
other. This albws left and right jogs to switch and the
ordering of taps off of buses to vary. Normally only one set
of adjacency lists, say the right adjacencies, is needed to
generate the constraints. When an adjacency between a
left and a right tile is not used to generate a constraint, a
routine is recursively called to find which additional tiles
would bs in the right adjacency list of the left tile if the right
tile was deleted. A symmetric routine must also be used to
find additional constraints to the left of the right tile. This
has the effect of making overlappable, electrically
connected tiles transparent to each other (see Figure 11).

While it is easy to generate constraints that allow tiles
to pass through each other, when they actually do it can
make updating the adjacency lists more difficult: pointers
in both dimensions’ data structure have to be adjusted,
negative length wires can cause wire pointer conflicts and
left- or rightaf inconsistences can occur.

When a tile, moved up or down, passes through
another tile, it creates a problem in the other dimension’s
data structure. The tile that was on the left is now on the

Paper 17. I
296

right, a left adjacency pointer now points to a tile on the
right and visa-versa. Deleting one of those tiles from that
dimension’s graph and reinserting it will fii the pointers.

Figure 12: Fixing Negative Length Wires

ff one endpoint of a wire passes completely through
the other endpoint, the wire-up and down pointers are
swapped to give the wire a positive length. This can cause
an endpoint’s wire-up or down pointer to need to point to
two wires at once. The pointer pointing to the shorter wire
is given preference. The longer wire is disconnected from
that endpoint and attached to the other endpoint of the
shorter wire (see Figure 12). This recurses until a free
endpoint is found. A wire or endpoint may have to be
moved horizontally slightly to make a full connection when
a vertical wire’s endpoints are changed.

Results and Conclusions

Currently this a$orithm is programmed in C and uses
the Lava compactor to read in descriptions of sticks and
do the actual compaction. The program quick bads both
dimensions with an inital spread out solution and during the
two onedimensional compaction steps ends up moving all
the tiles down and then to the left and updating both
graphs. lt takes about twice as bng to move all the tiles as
it does to do the quick bad. Of course the updates are not
really necessary for just two compaction steps. Using
Lava’s sorted every-pair constraint generation on the
example in Figure 13 it takes, on a VAX 780. 5.7 cpu
seconds to generate 19161 spacing constraints and 1
second to do the actual compaction. Using adjacency tits
it takes 1.5 seconds to generate 847 spacing constraints
(and update both dimension’s data structures) and 0.18
seconds for the compaction.

We have an algorithm which handles multiple colors
and planes, takes advantage of the special properties of
wires and allows appropriate, electrically connected tiles to
pass through each other. In our real-life examples there
have been few around-the-corner constraints and pass-
through problems. No more than an average of two
spacing constraints per tile will ever be generated (that is
how many adjacency pointers there are). The next step
will be to use the data structure and algoriihm in a simple
down-and-left incremental compactor.

Our method combines the best of shadowing and
corner-stitching. h is faster than shadowing, uses
transitivity to generate the minimum number of spacing
constraints and allows incremental changes without the
overhead of recalculating all the constraints.

1.

2.

3.

4.

5.

6.

References

P.Eichenberger. Fast Symbolic Layout Translation
for Custom VLSl integrated Circuits, PhD
dissertation. Stanford University, April 1986.

H.Baird, “Fast Algorithms for LSI Artwork Analysis”,
Proceedings of the 14th Design Automation
Conference, ACM/IEEE, New Orleans, Louisiana,
June 1977, pp. 303-311.

Christopher Kingsley, “A Hiererachical, Error-
Tolerant Compactor’*, Proceedings of the 27st
Des& Automation Conference, ACM/IEEE.
Albuquerque, New Mexico, June 1984, pp.
126-l 32.

Thomas Hedges, William Dawson and Y. Eric Cho.
“Bitmsp Graph Build Algorithm for Compaction”,
Pnxeedings of the International Conference on
Computer-Aided Design, ACM/IEEE, Santa Clara,
California, November 1985, pp. 340-342.

H.Watanabe. IC Layout Generation & Compaction
Using Mathematical Optimization, PhD dissertation,
University of Rochester, 1984.

J.Ousterhout, “Corner Stitching: A Data-Structuring
Technique for VLSI Layout Tools”, lEfE
Transactions on CAD, Vol. CAD-3, No. 1, January,
1984.

Figure 13: An Example With 587 Tiles, 282x54 lambda

Paper 17.1
297

