
PERFORMANCE OF A PARALLEL ALGORITHM FOR 

STANDARD CELL PLACEMENT ON THE INTEL HYPERCUBE 

Mark Jones and Prithviraj Banerjee 

Computer Systems Group 
Coordinated Science Laboratory 

University of Illinois at Urbana-Champaign 
ABSTRACT 

In this paper, we present a parallel simulated annealing 
algorithm for standard cell placement that is targeted to run on 
the Intel Ilypercube. We present a novel tree broadcasting stra- 
tegy that is used extensively in our algorithm for updating cell 
locations in the parallel environment. Studies on the performance 
of our algorithm on example industrial circuits show that it is 
faster and gives better final placement results than the uniproces- 
SOT simulated annealing algorithms. 

1. INTRODUCTION 

Given a set of standard cells of constant height and variable 
width, and a net list which describes the interconnections among 
the cells, our objective is to place the cells in a VLSI layout so as 
to minimize the total length of wires interconnecting the cells. 
The simulated annealing technique has been proposed and applied 
to the placement problem in a program called TimberWolf which, 
by applying cell displacements and exchanges randomly, avoids 
getting stuck at local minima and thereby achieves near-optimal 
placement 11.21. A major limitation of TimberWolf is that it is 
extremely slow. 

Recently, some researchers have started to investigate speed- 
ing up simulated annealing algorithms by running them on paral- 
lel processor systems. Aarts et al have proposed schemes for 
parallelizing simulated annealing algorithms for several general 
classes of problems and have discussed theoretical convergence 
characteristics [3]. A parallel algorithm for the Traveling Sales- 
man Problem based on simulated annealing has been reported for 
the Hypercube [4]. Parallel algorithms for partitioning and rout- 
ing [51. macro-cell placement [6], and topological optimization of 
multiple level array logic [7] have been proposed by several 
researchers. 

TWO multiprocessor-based simulated annealing algorithms, 
called Move Decomposition and Parallel Moves, for the standard 
cell problem have been reported by Rutenbar and Kravitz [8.9]. 
Last year, Banerjee and Jones had proposed a parallel algorithm 
that is targeted to run on a llypercube computer [IO]. At the 
same time. Rose et al proposed two algorithms, called Ileuristic 
Spanning and Section Annealing, for standard cell placement on a 
shared memory multiprocessoi [ll]. 

There are a number of basic differences in the previous 
approaches. The first approach is a shared memory algorithm 
that is basically simulating a serial simulated annealing environ- 
ment but evaluating each individual move faster. The second 
algorithm is also based on a shared memory environment but 
evaluates multiple moves in parallel but accepts only ?ne move. 

A&nowledgme,,C This research was supported in Part by the National 
Aeronautics and Space Administration under Contract NASA NAG l-613. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct commercial 
advantage, the ACM copyright notice and the title of the publication and 
its date appear, and notice is given that copying is by permission of the 
Association for Computing Machinery. To copy otherwise, or to 
republish, requires a fee and/or specific permission. 

Hence. its convergence characteristics are identical to the unipro- 
cessor algorithm. In the third case proposed by Banerjee and 
Jones, the algorithm is based on a loca I memory message-passing 
architecture: the moves are evaluated in parailel and 
accepted/rejected in parallel on the basis of changes in the cost 
function for each move assuming that the other mOVeS are not 
made. The theoretical considerations of whether the annealing 
properties are still preserved when the cost calculations are based 
on slightly outdated information and when only a restricted set 
of moves are allowed, may be a subject of future research. 
Experimentally. it has been verified that the algorithm works. 
The scheme of Rose et al uses a combination of heuristic methods 
and simulated annealing to gain performance. and hence cannot be 
directly compared with the other approaches that are purely 
based on annealing. 

A hypercube topology consists of 2” processors that are 
interconnected through the topology of a cube in d dimensions. 
Several prototypes of such machines have been built [12.13]; two 
of them are now available commercially from Intel 1141. and 
Ametek [15]. 

In this paper, we present an algorithm using simulated 
annealing on the hypercube that improves upon our earlier work 
presented in [IO]. This enhanced algorithm reduces the communi- 
cation overhead. can handle more features of the placement prob- 
lem, and is more machine-specific (it is targeted to run on the 
Intel Hypercube). The basic idea of allowing parallel exchange 
and displace moves in different dimensions of the hypercube. and 
accepting/rejecting moves on the basis of changes in cost func- 
tions ignoring the effects of other moves remains the same. How- 
ever, several new concepts were utilized that reduced the com- 
munication overhead substantially for the targeted machine. 

In Section 2. we will outline the basic algorithm, describe 
the data structures that are necessary to support various parallel 
move evaluations. and discuss how the subtasks for evaluating 
the acceptability of parallel moves are assigned. We also present 
a novel tree broadcasting strategy for the hypercube that is used 
extensively in our algorithm for updating cell locations in the 
parallel environment. Section 3 describes our implementation of 
the algorithm on an Intel hypercube simulator. We report on the 
performance of our algorithm for several actual standard circuits 
used in industry. We show that the parallel algorithm gives 
about lo-20% better final placements than conventional unipro- 
cessor simulated annealing algorithms. Finally we present some 
accurate estimates of the execution time for the algorithm. 

2. PARALLEL ALGORITHM FOR CELL PLACEMENT 

2.1. Overview of parallel algorithm 

We now describe an algorithm for performing the standard 
cell placement using a variation of the TimberWolf [2] algorithm 
on a hypercube of log(P) dimensions connecting P processors. 
Let US suppose that we are given the problem of placing N stan- 
dard cells where N > > P. 

24th ACM/IEEE Design Automation Conference 
Paper 42.3 

0 1987 ACM 0738-100X/87/0600-0807$00.75 807 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F37888.38015&domain=pdf&date_stamp=1987-10-01


STEP 1. Perform initial cell assignments in P processors. 
STEP 2. Determine initial temperature. 
STEP 3. While “Stopping criteria” : temperature < 0.1 not 
reached 
STEP 4. Generate new temperature 
STEP 5. For inner-loop-count = 1 to NA 
STEP 6. For each dimension i=O to log(P)-1 do 
STEP 7. Randomly select P/2 moves (exchange or displace) in 
parallel among pairs of PEs connected in dimension i. 
STEP 8. Check “range-limiter” function in dimension i. 
STEP 9. Evaluate change in cost for each move between pairs of 
PEs indeuendentlv. 
STEP lb. Acce&/reject 
independently. 

moves using exponential function 

STEP 11. Broadcast new cell locations to all other processors. 
STEP 12. ENDFOR; ENDFOR; ENDWHILE 

In the following subsections, we describe each of the steps in 
more detail. 

2.2. Cell Assignment to Processors 

The technique for mapping a log(P) dimensional hypercube 
onto a two-dimensional area is identical to the one described in 
[lo]. We will briefly mention the scheme here for completeness. 
In a 64-processor hypercube a processor having a binary address 
PsP4 p, p,, is connected to processor p5p4 p, p. via 
a link in dimension i We propose that each processor be assigned 
an approximately equal area portion of the total chip area which 
can be viewed as a virtual 8 X 8 square grid. Each virtual grid 
corresponds to a horizontal portion of a number of rows. The 
cells dre initially assigned randomly to different processors such 
that each processor has an approximately equal number of cells 
assigned to it. The cells within each processor are also randomly 
placed with no regard to area overlaps. Since all cells have con- 
stant height, each processor therefore is assigned a rectangular 
portion of the chip area. The correspondence between processor 
addresses and virtual grid regions on the physical chip area is 
shown in Fig. 1. By choosing such a map, we guarantee that the 
processors that are adjacent in a pre-determined set of four 
dimensions of the hypercube allow for all nearest North-South- 
East-West neighbor displace/exchanger. The other two dimen- 
sions of the hypercubr are used for displace/exchanges across 
larger distances in the area map. This is illustrated in Fig. 1. 

2.3. Distributed Data Structure 

We assume that each processor contains the following infor- 
mation to enable the computation of the cost function in parallel 
among the processors in the hypercube: 
(1) A list of cells currently assigned to this processor along with 
the following information for each cell: 
(2) The width of the cell; 
(3) The (x.y) coordinate location at which the center of the cell is 
currently placed: 
(4) A list of nets to w-hich this cell is connected: 
(5) For each net listed in (4). a list of other cells. to which the net 
is connected. along with the (x,y) pin location(s) within these 
cells: 
(6) A list of (x,y) locations and widths of all cells that are 
assigned to processors that are adjacent in the two dimensions of 
the hypercube corresponding to the East-West nearest neighbors 
in the physical area map is also maintained in each processor. 

The state of any particular cell is composed of the informa- 
tion in (2) through (5) and is packed within a continuous block 
of memory to allow for easy packet transfer of information 
between nodes. Fig. 2 shows an example of the blocked memory 
data structure for typical cells. 

16 17 19 ( 

4.3 49 Sl 

57 59 ( 

Fig. 1. Area map of 64-processcr Hypercube. 

net 1 

net 2 

center (x.y) 
next cell - M2 o-,-b 

#nets-2 

net id - Nl 

Fig. 2. Example net and corresponding memory structure. 

Paper 42.3 

808 



2.4. Cost func.tio:I STEP 3.4. If MOVE = INTRA-PROCESSOR DISPLACEMENT. 

The cost function for the standard cell placement problem 
consists of three parts: 
(1) Estimated wire-length using half the perimeter of the bound- 
ing box rule: 
(2) Overshoot or undershoot of each row length over the desired 

processor p randcmly selects a cell, CZ?LZ,(p ), and a position. 
POS(p 1. within its allocated area map. 

STEP 4.4. Compute Ac,i,pba.c l’CELL(p).POS(p)) = A,(WL.p) + 
A&A0 .p) + A&E0 .p ) 

row length: 
(3) Area overlap between cells in the same row. 

2.5. Moves END PROCEDURE: 
After the cells have been evenly distributed by area 

among$t the processors of Lhe hypercube. each processor repeat- 
edly interacts with its neighboring processors in each of the d 
dimensions of the hypercube. The set of steps involved in a 
parallel set of moves is outlined below. At each time step. P/2 
pairs of processors participate in the evaluating P/2 mow s. 

2.5.1. Discussion of moves 

Mastership selection 

PROCEDURE PARALLEL MOVES: 

STEP 1. For each pair of processors (p.q) connected in dimension 
i. if the inner-loop-count is even and if p < q, then p is chosen 
to be the Master. q to be the Slave, otherwise vice versa. 

STEP 2. Master randomly decides the type of the move. 

STEP 3.1. If MOVE = INTER-PROCESSOR EXCHANGE, proces- 
sor p (Master) randomly selects a cell CELL(p) and sends its data 
structure to processor q. Meanwhile, processor q (Slave) also 
randomly selects a cell CELL(q) and sends its data structure to 
processor p. 

STEP 4.1. Compute Ac,r,,o,, ,~ (CELL (p).CELL (q 1) = 
A,(WL.CELL(p).POS(yE.p) + A,WL GELL(q ).POS(p),y ) + 
A,(AU .CE.U. (p j.POS(p 1.p > + A&40 CELL (P )J’OS(q ).Y ) + 
A,(AO.CELL(q ).POS(q).q) + A,(AO .CELL(q).POS(p).p) + 
A,(EO.C~LL(p).POS(p),p) + A,@0 .CELL(p).PO.S(y).q) + 
A,(,50 CELL (q ).POS’(q 1.4 ) + A,,,@0 CELL (q ).POS‘(p 1.p ) 

STEP 5.1. Processor q sends the portion of the cost function it 
computed to processor p. 

STEP 6.1. Go to STEP 7 

STEP 3.2. If MOVE = INTRA-PROCESSOR EXCHANGE. proces- 
sor p (Master) randomly selects two cells. CELL,(p) and 
CELL,(p ), both within its allocated area map. 

STEP 4.2. Compute Ar,< ,,“, lpF (CELL,(p).CELL,(p)) = A,(WL .p> 
+ AJAO .p I+ A@0 .p 1 

STEP 5.2. Go to STEP 7 

STEP 3.3. If MOVE = INTER-PROCESSOR DISPLACEMENT, 
processor p (Master) selects a cell CELL(p) with position POS(p) 
and sends the data structure for CELL(p) along with the portion 
of the cost function it has computed to processor q (Slave). Pro- 
cessor q selects a random position POS(q) within its area map and 
computes the remainder of the cost function. 

STEP 4.3. Compute Adirylacr (CELL (p ),POS(q 1) = 
A,(Wf. .CELL(p),POS(y ).q) f A,(AO CELL(p).POS(p).p) t 
A,(AO.CELL(p).POS(q).y) + A,(EO.CELL(p).POS(p).p) f 
A,(EO.CELL(p).POS(q ).q) 

STEP 5.3. Go to STEP 7. 

STEP 7. Master accepts/rejects move usmg exponential function 
ACCEPT( A , T) 

For each pair of processors (p.q) connected in dimension i. 
one of them is chosen to be the Master and the other to be the 
Slave using the criteria listed in STEP 1 to ensure that the 
mastership of the pair alternates between processors in alternate 
iterations. The choice is not random as in 1101 because it would 
then involve an extra message between the Processors, and we 
wish to reduce the communication overhead as much as possible. 
We alternate mastership between iterations because otherwise in 
a fixed scheme. we would bias the displacements of cells from the 
Master to the Slave processor resulting in the Master processor 
having no cells after severai iterations. 

Selection of move 

The ratio of cell displacements to cell exchanges has a pro- 
found effect on the quality of the final placement. The best 
results were observed to occur when the random selection favors 
displacements in a ratio of approximately 5 to 1 similar to the 
result reported in [2]. In addition. the Master decides if the 
exchange or displacement move will be an intra-processor (com- 
pletely within the Master) or inter-processor (between the Master 
and the Slave). The best results were observed to occur when the 
number of intra-processor moves is equal to the number of 
inter-processor moves. 

Cost calculation 

We now discuss the cost function calculation for an inter- 
processor exchange, i.e. STEP 4.1.. which is the most complicated 
and of all the move types. (The other move calculations are simi- 
lar). We break up the task of calculating the cost of an inter- 
processor exchange move into 10 sub-tasks that are distribuLed 
equally among the Master and Slave processors. The first term. 
A,(WL.CELL(p),POS(q).p) deals with the change in the wire 
length due to the movement of CELL(p) from POS(p) to POS(q). 
This is calculated by estimating the change in half the Perimeter 
of the bounding box of each net. This term can be calculated by 
processor p alone since it keeps information about all the nets to 
which CELL(p) is connected. along with all the (x,y) locations of 
cells that are on the same nets. and can read POS(q) (which is the 
new (x.y) location for CELL(p)) from the message sent by pro- 
cessor q. The term A,( WL .CELL (y ),POS(p ),y 1 relates to the 
change in wire length due to the movement of CELL(q) from 
POS(q) to POS(p). and is computed in an identical manner by 
processor q The term A,(AO CELL (p ).Z’OS(p 1.p ) deals with 
the change in the area overlap due to the movement of CELL(p) 
out of POS(p) and is calculated by processor p since it has infor- 
mation about all the cells that are near a given (x.y) location 
within processor p’s area map. When CELL(p) is moved out of 
from location POS(p), it might remove some of the area overlaps. 
The term A,(AO ,CELL(p).POS(q).y) deals with the change in 
the area overlap due to the movement of CELL(p) into POS(q) 
and is calculated by processor q since it has information about all 

Paper 42.3 

809 



the cells that ;tre near a given (x.y> location within processor p’s 
area map. When CELL(p) is moved into location POS(p). it 
might create some of the area overlaps. The terms A, and A, are 
similar calculations for CELL(q). The term 

A,(EO .CELL (p ),POS(p ),p ) deals with the change in actual row 
length compared to desired row length (edge overshoot or 
undershoot) when CELL(p) is moved out of l’OS(p). and is calcu- 
lated by processor p. The term A&50 CEIL (p ).pO.S(y ),y ) deals 
with the change in edge overshoot/undershoot when CELL(p) is 
moved into POS(q). and is calculated by processor q. The terms 
A, and A,,, are similar calculations for CELl.(q). 

2.6. Annealing schedule 

In any simulated annealing algorithm. two important cri- 
teria are the choice of the initial temperature and the rate of 
decrease of the temperature. For the choice of the initial tem- 
perature. we adopted the heuristic that at the initial tempera- 
tures, we should accept 95% of all moves for which there is an 
increase in the cost function. Silence. prior to starting the actual 
anpealing algorithm, we calculate the change in cost functions for 

‘10 X N (N = number of standard cells in circuit) single moves 
within the hypercube. The average change, A, is calculated for 
those moves in which the change in cost is positive. This average 
cost is then used to find a proper initial temperature: 

A 
;T;,,,, = -____ 

ln(0.95) 

The temperature of the system is then reduced after each 
stage of the algorithm according to the cooling schedule given by 

T ,+t = a(i ).T, 

where cy varies from 0.8 to 0.95 and decreases to 0.1 during the 
final stages of the algorithm. This variation is table-driven. 

In order to enhance convergence during the later stages of 
the algorithm, a range limiting mechanism is incorporated similar 
to [2]. At high temperatures during the simulated annealing pro- 
cess. we do not restrict the distance over which exchanges and 
displacements of cells can occur. Gradually, as the temperature 
is decreased, for each processor. the range limit is also decreased 
accordingly until eventually certain dimensions of the hypercube 
are “frozen”, i.e. changes between pairs of processors connected via 
those dimensions are effectively inhibited. 

At each new temperature. the system is allowed to stabilize. 
This is accomplished by collectively attempting to generate a user 
specified number of new states per cell at each stage/temperature 
of the system. The final stopping criterion is satisfied when the 
temperature reaches a minimum value of 0.1. 

2.7. Broadcasting New Cell Locations 

Once the cells have been moved to new locations, these 
updated locations have to be sent to all processors so that they 
can update all net and pin information effected by the move. A 
very simple scheme was proposed in our earlier paper [lo] which 
used the property of the existence of Hamiltonian circuits in the 
hypercube topology [16]. Each processor which had an updated 
cell location would inform its Hamiltonian circuit successor of 
the updated value of the cell location. This processor would then 
inform its llamiltonian circuit successor which would do the 
same. It can be easily seen that if all P processors contained 
updated cell locations, it will take P time steps for all the 
updated cell locations to be available at all the processors. Since 
each message transfer is extremely expensive (it will be shown in 
Section 3.2 that while a move computation takes approximately 
20-30 milliseconds, a message transfer between two adjacent 
nodes takes about 3-4 milliseconds) we decided to abandon this 
simple scheme and adapt a more complicated but extremely 
efficient one. 

In the new scheme, each processor havmg a set of new cell 
locations broadcasts this information to all its log(P) neighbors in 
the first time step along its links in log(P) dimensions. In the 
next time step, t.he processors that have just received these mes- 
sages from the first time step. forward the messages to their own 
neighbors connected via links in the higher most log(P)-i.1 
dimensions where i equals the dimension of the link along which 
a message was received during the first time step. In the i”’ time 
step, all processors receiving messages from the i-1” time step 
forwards the messages to their neighbors in the higher most 
log(P)-i-l dimensions where i again equals the dimension of the 
link along which a message was received during the j-1” time 
step. In the case of multiple initial processors wanting to broad- 
cast modified cell locations. the messages are combined where 
needed at intermediate nodes before forwarding. This scheme 
guarantees that the broadcasting is completed in log(P) time steps 
without conflicts for links. Fig. 3a shows a 3-dimensional hyper- 
cube with labels on processing nodes and links. Fig. 3b shows the 
steps involved in broadcasting updated cell locations from proces- 
sors 1. 2. and 7 which are labeled to as Ml, M2. and M7 in Fig. 
3b. 

The entries in Fig. 3b are of the form Mi(j.k) which 
represents a message which originated from processor P, during 
the first time step and going from processor Pi to Pk during the 
current time step. For example. in time step 2, message M7C6.4) 
which has originated from P, is transmitted from processor P, to 
P, along a dimension 1 link. It can be verified that all messages 
reach all processors within 3 time steps. In case of conflicts for 
using a particular link at a particular time step. messages are 
combined. For example. in time step 2, link L9 has two messages, 
Ml(0.4) and M2c0.4) which represent messages originating from 
processors P, and P, but going from PO to P, during time step 2. 

A unique feature of our algorithm is that once messages are 
combined for transmission over a particular link. they need not 
be split up at intermediate nodes for transmission over separate 
links. The process of updating cell locations will take part at all 
nodes by extracting information from the received messages and 
using this information to modify local cell structures. 

Fig. 3a. A 3-dimensional hypercube. 

Paper 42.3 
810 



iW(2.3) 
M2c2.0) Ml(0.2) 

of moves decreases. However, at extremely low temperatures. 
the percentage of acceptances of displacements increases with 
practically no acceptance for exchanges. The increase in the 
acceptance of displarements is primarily due to only intra- 
prccessor displacements betng attempted as governed by the 
implemented range limiter. 

3.2. Timing Estimates 

Si.7c.e we did not have access to an Intel Hypercube at the 
Un,vcrsir.y of Illinois to evaluate the speedup of our algorithm, 
we present here an estimate of the expec,ted speedup. The Intel 
Simula-.or does not give any timing infGrrnation for message com- 
mu.lica.ion so timing has to be estimated .Yrom other sources. The 
running time of our algorithm depends on two separate com- 
ponents: Computation and Ccmmunicalion. We will present 
estjmat-s of both in the following sections. 

Fig. 3b. Broadcast steps for a 3-dimensional hypercube 
on a message from nodes 1, 2. and 7. 

3. ALGORITHM WIPLEMENTATION AND PERFORMANCE 

The advantage of our algorithm over TimberWolf is that it 
is much faster. We have implemented the algorithm in about 
4,500 lines of C code. Due to the unavailability of an actual Intel 
hypercube at the present time at the University of Illinois. initial 
testing of this algorithm has been completed using the Intel iPSC 
Simulator running on a SUN 3/50 workstation system under 
UNIX 4.2 1171 Initial algorithm testing has only been attempted 
on a small scale due to excessive simulator execution times. 

3.1. Placement results 

It should be noted that in the parallel annealing scheme. 
since we have deviated from the serial acceptance of moves, we 
cannot assume the convergence properties of the annealing algo- 
rithms to be valid. The theoretical convergence properties are 
still a stbject of future research. However. we nave expert- 
mented with a wide variety of standard cell circuits, some of 
which were randomly generated. others were obtained from 
industry and universities. 

In Table I, we show the results of our parallel placement 
algorithm on a 4-dimensional hypercube for four standard cell 
circuits. We have also implemented a uniprocessor version of the 
simulated annealing algorithm which is slightly simpler than 
TimberWolf in that the cnly mo’*‘e: that are allowed are 
exchanges and displacements and only standard cells are handled 
(no macro-cells or pads). At each temperature of the annealing 
process. approximately 100 new states were attempted per cell. 
Our parallel algorithm gives a final placement cost that iv lC!-20% 
better. 

We studied the effect of the parallel simulated annealing ht 
each temperature. We validated. empirically that even though we 
are performing the accepts/rejects on the basis of outdate@ iilfor- 
mation. our algorithm has the same general convergence property 
as the uniprocessor algorithm. From 3ur studies. we observed 
that in the initial stages of the algorithm (higher temperatures), a 
large percentage of both Lypes of moves are accepted. As the 
temperature is decreased. the percentage of acceptances both types 

Table 1. Final placement wiring length comparison 

-.-~ 
number 4-dim Uniprocessor Percentage 

cells Hypercube (TimberWolf) improvement 
64 29248 32135 10% 

183 63094 76498 21% 
286 96778 115359- 19% 
469 159759 195066 22% 

Computation 

To evaluate the computation cost Fer move (exchange and 
displace merit), we implemented our algorithm on a single proces- 
sor of l.he Intel hyper:ube simulator. We performed 1000 ran- 
dom moves 01 both the exchange and displacement class and 
evaluated an average computation time The CLOCK command 
in &he simulator gives the running time on the machine on which 
the simulator is running, which was a SUN 3/50 workstation 
using a Motorola 68020 CPU which is rated to be 2.7MIPs [IS]. 
The Intel Hypercube hodes consist of Intel 80286 CPUs which 
have been reported tc he 0.7YMIPs[19] or 3.5 times slower than 
the Motorola 68020 for the Lypes of computation performeil in 
our algorithm Hence, the computation time per move on the 
Intel Hypercube was estimated to be as shown in Table 2. 

Table 2. Computation times (milliseconds) on hypercuhe node. 

Commu:nication costs 

WE ,will use the results of some benchmark studies per- 
formed by Reed and Grunwald at !he Ilriversity of Illinois on 
communication cos& on the Intel iPYC !20]. The results are sum- 
marized in Fig. 4 which shows the d&y in transfer of messages 
of varying size for simultaneous exchanges and unidirectional 
message transfers aiong a link We therefore need to estimate 
what the average packet size will be for different types of mes- 
sages in order to determine com<~unicalic,n costs. During the dis- 
tributed cost. calclllatlon phase. the entire data structure for a 
candidate cell is sent to a aeighboring prccessor over a single link 
in the hypercube. Table 3 shows the range of message sizes for 
various size standard cell circuits and corresponding commbnica- 
tiorl times deriv-d from Fig. 4. 

Expected Speedup 

By combining these timing resuits and taking into account 
the parallelism involved in the calculation of the move cost. the 
time to s:omplete each cf the four types of moves was calculated 

Paper 42.3 

81 I 



Table 3. Estimation of communication costs 
from size of messages. 

183 1 68 1 792 1 212 1 2.5 ms 

Table 4. Estimate of time to complete the four types of 
moves in milli-seconds using Intel hypercube 

A++-++4 
P zm PO m Ima 

Packet Si (bytes) 

Fig. 4. Link delay for various packet sizes 

as given in Table 4. The time required to broadcast updated cell 
information has been shown in Section 2.7 to require only log(P) 
communication steps. A complete broadcast cycle for a h- 
dimensional hypercube should therefore require 18.2 milli- 
seconds. Unfortunately. each node in the Intel Hypercube is not 
able to actively use all of iLs log(P) links at the same time due to 
architectural limitations. Thus the actual number of. simuItane- 
ous messages that can be transmitted/received will be somewhere 
between 2 and log(P). In the worst case only a single exchange of 
data between processing nodes can occur hence a complete broad- 
cast cycle for a 6-dimensional hypercube will require 64.7 milli- 
seconds. 

Using these estimates we can determine the expected 
speedup of our parallel algorithm over a similar uniprocessor ver- 
sion. If our algorithm were to be run on a 6-dimensional hyper- 
cube using the BOO-cell standard circuit then at each iteration 32 
parallel moves will be attempted. It is to be expected that at 
least one of these moves will be an intra-processor exchange 

which will be the bottleneck in terms of timing. The time to 
complete these 32 moves and update will be between 51.2 ms and 
97.7 ms depending on update broadcast timing. For a uniproces- 
sor version of this algorithm the 32 moves will be distributed in 
a 5 to 1 ratio between displacements and exchanges. Computa- 
tional time will thus be 25.6 X 33 + 6.4 X 33 + 16 = 1072 ms 
with the additional 16 ms added for time to complete updating of 
cell structures. In the hypercube this updating is done while 
waiting for communications. Using these results the estimated 
speedup of the Intel hypercube over the uniprocessor version will 
be somewhere between 11 and 21. Speedup estimates for the 
other standard circuits are given in Table 5. 

4. CONCLUSIONS 

In this paper we have presented a parallel version of the 
simulated annealing technique for solving the standard cell place- 
ment problem that is targeted to run in a local memory message 
passing parallel processing environment, namely the Hypercube 
computer. We have presented an improved algorithm that 
reduces the communication overhead. can handle more features of 
the placement problem, and is specifically targeted to run on the 
Intel Iiypercube. We have presented a novel tree broadcasting 
strategy for the hypercube that is used extensively in our algo- 
rithm for updating cell locations in the parallel environment. We 
have implemented the algorithm on an Intel hypercube simulator. 
We reported on the performance of our algorithm on actual stan- 
dard cells used in industry. We also presented some accurate 
estimates of the execution time for the algorithm. Our algorithm 
will not give rise to oscillations because we have a number of 
cells assigned to each processor. and cells are chosen randomly for 
possible exchange. Uniike the conventional array algorithms for 
module placement. our proposed algorithm will thus not get 
stuck at local minima. The possibility of choosing the same pair 
of cells for repeated exchange (oscillations) is very low. Cell 
exchanges can be performed among nearest neighbors through our 
novel area mapping technique and also between cells that are 

Table 5. Time to complete 32 moves in milli-seconds. 

number uniprocessor 6-dim. cube speedup 
cells min max min max 

64 528 39.2 85.7 6.2 13.5 

183 817 48.2 94.7 8.6 17.0 

286 991 51.2 97.7 10.1 19.4 

469 993 51.2 97.7 10.2 19.4 

800 1072 51.2 97.1 11.0 20.9 

2357 1102 57.2 103.7 10.6 19.3 

large distances away. The results show that our parallel algo- 
rithm is not only faster but also gives better final placement 
results than the uniprocessor simulated annealing algorithms. 

Future research involves evaluating the algorithm on an 
actual Intel Hypercube. It would be interesting to explore the 
impact of different hypercube architectures such as the 
NCUBE/lO. the Ametek S/l4 and the Caltech MARK II on our 
algorithm. We are also investigating improved parallel algo- 
rithms that reduce the communication costs. Eventually. we plan 
to develop an integrated placement and routing package on the 
Hypercube. 

Paper 42.3 

812 



[ll 

w 

[31 

[41 

151 

b1 

[71 

181 

191 

1101 

REFERENCES 

C. Sechen and A. S. Vincentelli, “The TimberWolf 
Placement and Routing Package.” Prow. Custom lnlegrated 
Circuits Con/.. pp. 522-527, May 1984. 

C. Sechen and A. S. Vincentelli, “TimberWolf3.2: A New 
Standard Cell Placement and Global Routing Package,” 
Proc. 23rd Design Automation Con/., pp. 432-439. Jun. 
1986. 

E. H. L. Aarts. F. M. J. de Bent, E. H. A. Habers. and P. J. 
M. van Laarhoven, -‘Parallel Implementations of the 
Statistical Cooling Algorithm.” Integration, the VLSI 
Journal. vol. 4. pp. 209-238. 1986. 

E. Felten. S. Karlin. and S. W. Otto. “The Traveling 
Salesman Problem on a Hypercubic. MIMD Computer.” 
Proc. I.985 Parallel Processing Conf.. pp. 6-10. Aug. 1985. 

M. J. Chung and K. K. Rao, “Parallel Simulated Annealing 
for Partitioning and Routing.” Proc. IEEE’ Int. ConJ. on 
Computer Design (ICCD-86). pp. 238-242. Oct. 1986. 

A. Casotto. F. Romeo. and A. S. Vincentelli, “A Parallel 
Simulated Annealing Algorithm for the Placement of 
Macro-Cells.” Proc. Innt. ConJ/. on Computer-Aided Design. 
Nov. 1986. 

S. Devadas and A. R. Newton. “Topological Optimization 
of Multiple Level Array Logic: On Uni and Multi- 
processors.” Proc. Int Conf. Computer-Aided Design 
tICCAD-56). pp. 38-41. Nov. 1986. 

S. A. Kravitz and R. A. Rutenbar, “Multiprocesssor-Based 
Placement by Simulated Annealing.” Proc. 23rd Design 
Automation Conf.. pp. 567-573. Jun. 1986. 

R. A. Rutenbar and S. A. Kravitz, “Layout by Annealing in 
a Parallel Environment.” Proc. IEEE Znt. Conf. on 
Computer Design (ICCD-861, pp. 434-437, Oct. 1986. 

P. Banerjee and M. Jones, “A Parallel Simulated Annealing 
for Standard Cell Placement on a Hypercube Computer.” 
PPWC. IEEE ht. Conf. C0mpar-Aided l.hign (ICCAD-~~J. 
Nov. 1986. 

ill1 

I-1 

I131 

[I41 

[151 

[I61 

t171 

1181 

iI91 

DOI 

J. S. Rose, D. R. Blythe. W. M. Snelgrove. and %. G. 
Vranesic. “Fast. High Quality VLSI Placement on a MIMD 
Multiprocessor.” Proc. Int. Conf. Computer-Aided Design 
(ICCAD-86). pp. 42-45. Nov. 1986. 

J. Tuazon. J. Peterson. M. Pniel. and D. Leberman. 
“Caltech/JPL Mark II Hybercube Concurrent Processor.” 
Proc. 1985 Parallel Processing Conference. pp. 666-673. 
Aug. 198.5. 

J. C. Peterson. J. Tuazon. D. Lieberman. and M. Pniel. “The 
Mark 111 Hypercube-Ensemble Concurrent Computer,” 
Proc. IY8S Parallel Processing Conference. pp. 71-73. Aug. 
1985. 

Intel Scientific Computers. “iPSC: The First Family of 
Concurrent Supercomputers.” 1985. product 
announcement. 

Ametek System 14 User’s Guide C L’dition Version 2.0. 
Ametek Computer Research Div.. May 1986. 

N. Deo. in Graph Theory with Applications to Engineering 
and Computer Science. Englewoods Cliffs. N.J.: Prentice- 
Hall, Inc.. 1974 _ 

Intel Corporation, “Hypercube Simulator Version 2.1,‘. 
310175-002, Jun. 1986. 

D. MacGregot, D. Mothersole. and B. Moyer. “The 
Motorola MC.68020.” IEEE Micro, pp. 101-l 18. Aug. 
1984. 

Intel Corporation. “Introduction to the iAPX 286.” 
210308-001, Feb. 1982. 

D. A. Reed and D. C. Grunwald, “Benchmarking 
Hypercube Hardware and Software,” SAM 2nd Con/. on 
Hypercube Muliiprocessors (to appear). 1986. 

Paper 42.3 
813 


