
Abstract

Modern system design often requires multiple levels of simu-
lation for design validation and performance debugging. However,
while machines have gotten faster, and simulators have become
more detailed, simulation speeds have not tracked machine speeds.
As a result, it is difficult to simulate realistic problem sizes and
hardware configurations for a target machine. Instead, researchers
have focussed on developing scaling methodologies and running
smaller problem sizes and configurations that attempt to represent
the behavior of the real problem. Given the increasing size of prob-
lems today, it is unclear whether such an approach yields accurate
results. Moreover, although commercial workloads are prevalent
and important in today’s marketplace, many simulation tools are
unable to adequately profile such applications, let alone for realis-
tic sizes.

In this paper we present a hardware-based emulation tool that
can be used to aid memory system designers. Our focus is on the
memory system because the ever-widening gap between processor
and memory speeds means that optimizing the memory subsystem
is critical for performance. We present the design of the Memory
Instrumentation and Emulation System (MemorIES). MemorIES
is a programmable tool designed using FPGAs and SDRAMs. It
plugs into an SMP bus to perform on-line emulation of several
cache configurations, structures and protocols while the system is
running real-life workloads in real-time, without any slowdown in
application execution speed. We demonstrate its usefulness in sev-
eral case studies, and find several important results. First, using
traces to perform system evaluation can lead to incorrect results
(off by 100% or more in some cases) if the trace size is not suffi-
ciently large. Second, MemorIES is able to detect performance
problems by profiling miss behavior over the entire course of a

run, rather than relying on a small interval of time. Finally, we
observe that previous studies of SPLASH2 applications using
scaled application sizes can result in optimistic miss rates relative
to real sizes on real machines, providing potentially misleading
data when used for design evaluation.

1 Introduction

Modern computer system design often proceeds through a
combination of simulation, mathematical modeling, and experi-
ence. Models are helpful but can be complex to derive and verify,
and may not provide sufficient detail. Basing machine design on
experience with previous systems can be misleading if the target
applications have changed. As a result, simulation is often the tool
of choice for design evaluation. While machines have proceeded to
get faster, the simulation tools, unfortunately, have not really
evolved at the same speed. Although the level of detail for simula-
tors has increased[PRA+97][RHW+95], the systems being mod-
eled are much more complex, so the simulators are not necessarily
able to run larger problem sizes or realistic machine parameters
because of prohibitive simulation time or storage requirements.
For example, Table 1 shows the L2/L3 cache sizes that have been
used in real systems over the last few years in comparison to the
cache sizes simulated during the same period. As the table shows,
although the machines use larger caches, the simulators are unable
to keep up. The problem sizes are therefore often scaled to allow
the simulations to complete in a reasonable time while still pre-
serving the essential characteristics (e.g. miss ratio, communica-
tion patterns) of the applications. Because these applications are
smaller than they would be in practice, the cache sizes must also be
scaled so that the relevant working sets have the appropriate cache
behavior. As a result of this scaling, design decisions are often
made based on partial information.

In the case of high-end commercial servers, choice of system
parameters can be extremely critical, both from a cost as well as a
performance perspective. As the gap between processor speed and
memory speed continues to increase, caches can play a particularly
pivotal role in the performance of high end SMP servers and
NUMA systems. The size of these caches increases from one sys-

MemorIES: A Programmable, Real-Time Hardware Emulation
Tool for Multiprocessor Server Design

IBM T.J. Watson Research Center
Yorktown Heights, NY

Ashwini Nanda, Kwok-Ken Mak1, Krishnan Sugavanam, Ramendra K. Sahoo, Vijayaraghavan
Soundararajan, and T. Basil Smith

1Kwok-Ken Mak is currently with Cisco Systems.

{ashwini,sugavana,rsahoo,sound,tbsmith}@us.ibm.com

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to

sion and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1

Copyright © A.C.M. 2000 1-58113-317-0/00/0011...$5.00

for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than

republish, to post on servers, or to redistribute to lists, requires prior specific permis-

(212) 869-0481, or permissions@acm.org.
ASPLOS 2000 Cambridge, MA Nov. 12-15 , 2000

37

http://crossmark.crossref.org/dialog/?doi=10.1145%2F378993.378999&domain=pdf&date_stamp=2000-11-12

tem generation to another to keep up with the ever-increasing
working set requirements of important applications, such as trans-
action processing. For example, TPC-C database sizes have grown
from ~10GB in 1995 to ~100GB or more in 1999[TPC]. Similarly,
Decision Support applications (TPC-D/TPC-H) have also grown
from ~10GB in 1994 to ~300GB or more in 1999[TPC]. Partly in
response to these changes, the cache sizes for such servers have
increased. Figure 1 shows the approximate ranges of level 2 or
level 3 cache sizes in current systems as well as projected ranges in
the future assuming the current rate of increase in workload
demands remains the same. As an example, the IBM RS/6000 S7A
12-way SMP system [IBM] available in the market today has 8MB
off-chip level 2 caches per processor.

Designing an optimal structure for these caches is a challeng-
ing task due to the lack of a proper evaluation infrastructure.
Clearly, actual measurement for a given cache configuration is not
possible without building it. Trace-driven simulation or execution-
driven simulation serves the purpose for relatively small caches of
up to a few megabytes. However, accurate trace-driven simulation
for caches as large as several tens or hundreds of megabytes is not
feasible today due to the difficulty in obtaining, storing and run-
ning very large traces. Execution driven simulation such as COM-
PASS [NHO+98] or Augmint [NMS+96] would take several days
to several months to run an application large enough (as for exam-
ple a 100GB-1TB database) to appropriately exercise the large
caches. The only alternative left today to the designer for evaluat-
ing large caches is to make analytical projections of cache statistics
from earlier measurements of smaller cache configurations.
Although projections could be reasonably accurate for one or two
larger cache sizes than the measured cache size, the accuracy of
such predictions would drastically decrease as we get into much
larger sizes.

In order to determine trade-offs for future cache designs in
multiprocessor servers, we have designed a hardware emulation
tool called the Memory Instrumentation and Emulation System
(MemorIES). The MemorIES tool is capable of emulating caches
ranging from 2MB-8GB with varying associativity and line size
attributes, different replacement algorithms and cache protocols in
real-time with no slow down in execution speed. The MemorIES
board consists of several Field Programmable Gate Arrays
(FPGAs) and up to 1GB of DRAM memory. The board sits on a
conventional SMP bus (such as in a RS/6000 SMP server) and pas-
sively monitors all the bus transactions. It emulates several SMP
nodes (smaller than the host SMP) each having a shared cache by
keeping the state information on lines that would be shared in the
caches of the emulated SMPs. The tool can be programmed either
by its console software and/or by reconfiguring the on-board
FPGAs to change the cache parameters, cache protocol, and other
attributes.

TABLE 1. Simulated Cache Sizes vs. Actual Cache Sizes in Previous Studies. (n/a means either not applicable or the
data was unavailable. Sources: [WOT+95][FW97][MNL+97][BDH+99][FW99])

Year Application Problem Size
simulated
processors

Simulated L2
cache size

L2 size for
machines of
that year

L3 size for
machines of
that year

1995 FFT 64K points 16-64 8KB-1MB 512KB n/a

Barnes Hut 16K bodies 16-64 8KB-1MB 512KB n/a

Water 512 molecules 16-64 8KB-1MB 512KB n/a

1997 FFT 64K points 32-64 8KB-1MB 4MB 32MB

Barnes Hut 16K bodies 32-64 8KB-1MB 4MB 32MB

Water 512 molecules 32-64 8KB-1MB 4MB 32MB

1999 FFT 64K points 32-64 128KB-512KB 8MB 32MB

Barnes Hut 16K bodies 32-64 n/a 8MB 32MB

Water 512 molecules 32-64 128KB-512KB 8MB 32MB

< 4MB
1MB-

4MB-

1996 1998

16MB-

64MB-

2000 2002 2004

256MB

16MB
64MB

1GB

FIGURE 1. Level 2 and Level 3 Cache Sizes in High End
Servers

38

The emulated shared caches can behave as level 2 or level 3
caches depending on whether the actual level 2 cache is switched
off or on. MemorIES emulates an L3 cache when the host machine
uses both L1 and L2 caches, and emulates an L2 cache when the
host machine turns off its L2 cache. The tool captures extensive
memory and cache access behavior as well as bus transaction sta-
tistics on-line and non-intrusively while the machine is running
real benchmarks in real-time. This mechanism allows the Memo-
rIES boards to collect memory behavior of important benchmarks
over a period of several hours compared to less than a minute of
data that can be gathered using conventional tracing mechanisms.
Although the MemorIES tool relies upon on-line trace analysis and
real-time cache emulation, it also provides a mechanism to collect
traces for finer and repeatable off-line analysis when necessary.
While most of today’s processors and cache controllers provide
extensive instrumentation to capture program statistics at run time,
they can collect statistics only on the one cache design they repre-
sent. On the other hand, the MemorIES tool is equivalent to imple-
menting multiple programmable cache controllers in hardware for
the purpose of performance measurements.

MemorIES provides a way to quickly determine bottlenecks
in applications, providing enough information for a detailed simu-
lation model to then be used to more precisely pinpoint the perfor-
mance problems. By focussing on one critical piece of the system
(the memory subsystem/caches), we are able to use the MemorIES
board as an efficient complement to our already-existing simula-
tors.

The rest of the paper is organized as follows. Section 2
describes the system environment in which MemorIES is used.
Section 3 discusses the design of MemorIES. Section 4 compares
MemorIES with trace- and execution-driven simulation and sec-
tion 5 presents working examples of the MemorIES tool. Section 6
discusses prior work. Section 7 concludes the paper.

2 System Environment

The MemorIES tool is designed to help understand future
SMP server performance issues, especially L2/L3 cache behavior,

by providing emulated cache directories and protocol tables, and to
study non-uniform memory access (NUMA) memory reference
behavior using current generation SMPs. The operating environ-
ment of MemorIES is shown in Figure 2. The current generation
MemorIES board plugs into the memory bus (called the 6xx bus)
of IBM’s S70 class RS/6000 or AS/400 servers that have a maxi-
mum capacity of 12 processors.

The CPU IDs on the memory bus of the host machine are par-
titioned to emulate a variety of target machines. A target machine
has one or more emulated SMP nodes connected to a memory con-
troller (or controllers) through a shared cache in each emulated
node. Each emulated node has one or more processors connected
to a 6xx bus through L2 caches.

The board captures all the memory references on the 6xx bus
of the host system and maintains cache tag and state information
for the emulated shared cache(s). The parameters that can be eval-
uated include cache capacity, line size, associativity, number of
caches, cache protocols, and replacement algorithms. Various
cache statistics such as hit ratio, read/write ratio, effect of I/O on
hit ratio, and amount of cache-to-cache interventions, to name a
few, are collected using counters in the emulation board.

The console machine is an IBM PC running Windows 95/98,
which provides a programming interface to the MemorIES board
using an AMCC parallel port control card. The console software is
used for power-up initialization of the MemorIES board, cache
parameter setting, and statistics extraction. A few example target
systems that can be emulated using MemorIES are described next.
All of these configurations are dynamically programmable using
the console software.

2.1 Single and Multiple Node Emulation

 Figure 3 shows how MemorIES emulates the L3 cache
behavior of a single node target SMP. The target SMP has one or
more processors connected to a 6xx bus through L2 caches. The

P1

L2

P2

L2

P3

L2

Pk

L2

System Memory

6xx Bus

..........

1 <= k <= 12

Console AMCC Card

MemorIES

HOST

Machine
Parallel
Console Port

PCI

MACHINE

FIGURE 2. Operating Environment of MemorIES

P1

L2

P2

L2

P3

L2

Pk

L2

6xx Bus

..........

MemorIES L3

Memory Controller
& Memory

1 <= k <= 12

FIGURE 3. Logical Target Machine for Single-Node
L3 Emulation

39

MemorIES board passively collects various statistics of the target
system which can then be used to study cache behavior.

MemorIES can also emulate the L3 cache behavior of a multi-
ple-node, hierarchically connected SMP or NUMA machine. Each
of the multiple nodes in the target system is connected to the mem-
ory controller through an L3 cache. Each node has one or more
processors connected to a 6xx bus through L2 caches. This config-
uration is similar to the single node configuration, except that there
are multiple L3 emulators in use, each responding to requests from
a different node (i.e. subset of processors) in the system.

2.2 Multiple Cache Configurations for Single/
Multiple Node Systems

In Figure 4, two of the L3 node directory emulators of Memo-
rIES emulate two different cache configurations of the first node of
the target system, while the remaining two L3 directory emulators
emulate two other configurations of the second node of the target
system. Configurations such as this are used to evaluate multiple
cache structures for the same workload in parallel.

2.3 Other Applications of MemorIES

Although the primary use of the MemorIES board is to emu-
late large cache systems, the tool is very flexible and can be pro-
grammed to perform many other functions relatively easily by
changing the FPGA firmware and recompiling.

Identification of hot spots. The FPGAs can be pro-
grammed to treat their private 256MB memory as a table of mem-
ory read/write frequency counters either on cache line basis or
page basis. These counters help to identify hot spots in cache lines
or in memory pages and provide useful insight into program
behavior for OS and application tuning.

Trace collection. The on-board memory (which goes up to
8GB with higher density DRAMs) can be used to collect bus traces
from the host machine and later dump to a disk in the console
machine. The current revision of the MemorIES board is capable
of collecting traces containing up to 1 billion 8-byte wide bus ref-
erences at a time. In contrast to collecting a trace via a simulator,
the MemorIES board collects traces in real-time, allowing it to col-
lect large traces in a fraction of the time that conventional methods
would take. While it also possible to collect traces using a logic
analyzer connected to a running machine, the program that is run-
ning must be periodically stopped to allow the logic analyzer to
dump the trace data to disk. MemorIES requires no such stoppage,
allowing for the collection of large traces without gaps in the trace
and without perturbing the program.

NUMA directory emulation. MemorIES can also emu-
late NUMA directory protocols, for example, a system with 4
NUMA nodes kept coherent using a sparse-directory cache coher-
ence scheme[WEB93]. The memory address space can be parti-

tioned so that one of the 4 nodes is the ‘home’ for that particular
partition. The memory requests issued by a processor can now be
separated into local or remote requests depending on whether the
memory location to which the request is made belongs to the same
node as the processor or not. The private 256MB memory present
in each of the 4 nodes can be partitioned to hold both the L3 tag
directory and the sparse directory belonging to the corresponding
‘home’. If an entry gets evicted out of the sparse directory, then the
other L3 nodes can be informed about the eviction so that the entry
can also be invalidated in the other L3 tag directories. Because
MemorIES is a passive emulator, it is not able to invalidate L2 or
L1 cache entries; however, the L2 cache can be turned off or
reduced to a smaller size to get a good approximation of the sparse
directory behavior using real-time workloads.

Remote cache emulation. In a similar vein, Memo-
rIES can also model NUMA nodes with remote caches. The
private 256MB memory belonging to each node can hold
both the L3 tag directory as well as the remote cache tag
directory.

3 Design of the MemorIES Board

MemorIES is a self contained board (Figure 5) with a parallel
port interface to a console PC and a 6xx SMP memory bus inter-
face to the host machine. The board uses seven Field Programma-
ble Gate Arrays (FPGAs) to implement the programmable cache
controller functions and 1GB of SDRAM memory to implement
the cache tag and state tables. It has the ability to plug directly into
the 6xx bus of the host machine at a maximum speed of 100MHz,
or connect to an interposer card to take measurements from sys-
tems with a different bus architecture, such as an Intel X86 plat-
form. Different bus architecture measurements require protocol
conversion on the interposer card, reprogramming of the FPGA, or
changing the command map file if the protocol is similar.

The current design can emulate up to four shared cache
nodes. Each emulated shared cache node is implemented using one
Altera 10K250 FPGA and four industry standard 64MB SDRAM
DIMMs. Table 2 lists the various parameters for the cache emula-

P1

L2

P2

L2

P3

L2

Pj

L2

P1

L2

P2

L2

P3

L2

Pk

L2

Memory Controller & Memory

1< (j+k) <= 12

L3 L3 L3 L3MemorIES

FIGURE 4. Logical Target Machine for Multiple
Cache, Multiple Node Emulation

40

tion function of MemorIES. The MemorIES board contains more
than 400 counters to count various cache hit/miss events in detail.
Each counter is 40-bit wide and can hold performance data for
more than 30 hours of real time program execution at the typical
20% bus utilization level. Figure 6 shows the functional flow for
cache emulation using MemorIES and Figure 7 shows the physical
block diagram of the MemorIES board.

3.1 FPGA Functions

The seven FPGAs that incorporate the MemorIES functional-
ity are the address filter, global events counter and buffer FPGA,
the console FPGA and the 4 SMP node controllers (Nodes A
through D), as illustrated in Figure 7. Each SMP Node controller
can emulate a shared L2, L3 or remote cache. The address filter
FPGA is responsible for interfacing with the 6xx bus, filtering out
non-emulation related transactions (like retries on the bus), group-
ing the transactions based on the bus ids and forwarding the trans-
actions to the global events counter FPGA. The global events
counter and buffer FPGA has a set of global counters to keep track
of events like number of bus cycles, number of reads issued on the
bus etc. It also provides buffering to handle occasional bursts (see
Section 3.3) and forwards the transactions to one of the node con-
troller FPGAs based on the bus id of the requesting processor and
which emulated SMP node that processors belongs to. The console
FPGA controls the parallel port interface to the PC via the AMCC
chip set and is necessary for all diagnostic activities.

The four cache emulation FPGAs are designed to always run
in lock step mode regardless of the cache parameter settings. This
simplifies the design for emulating multiple node configurations.
The lock step feature also simplifies the control of the transaction
buffers in the Console Decode FPGA and the Address Filter
FPGA.

3.2 Modeling Cache Protocols

MemorIES has the capability to program a wide range of
cache protocols using state transition tables that are easily synthe-
sized as FPGA logic. The cache state transitions are modeled as a
lookup table which consists of the type of memory operation, the
current state of the cache entry, and the resulting state from other
cache nodes. The table lookup map file is loaded into each cache
node controller FPGA during the initialization phase. Different
state table files could be loaded to different node controller FPGAs
to experiment with different coherence protocols during the same
measurement.

3.3 Matching Bus and Memory Speeds

The throughput of the SDRAMs implementing state/Tag/
LRU functions is roughly 42% of the maximum 6xx bus band-
width. In order to handle occasional bursts exceeding 42% bus uti-
lization, MemorIES provides transaction buffers between the 6xx
bus and the cache control logic. The transaction buffer in the
Address Filter FPGA can take in memory operations at a maxi-
mum rate of 100 MHz. Operations such as I/O register accesses,
interrupts or memory operations that are rejected by other system

Tag/State/LRU Memory Cache Controller FPGA 6xx Bus Interface

FIGURE 5. The MemorIES Board

41

bus devices are filtered out and do not take up any transaction
buffer space. The node controller FPGAs contain 512 transaction
buffer entries to pace the SDRAM tag directory operations. In the
rare event that all the entries in the transaction buffers get filled,
the Address Filter rejects further transactions on the bus by posting
a retry command. This is a case when the MemorIES board could
alter system bus behavior, and hence memory access behavior to
some extent. However, in the past few months of use in the labs in
high-end database workload environments, the MemorIES board
has never once posted a retry command (implying that MemorIES
behaves passively). The maximum bus utilization with 8 CPUs
always varied between 2% to 20% across 2 platforms, 2 OSes, and
2 benchmarks, indicating that 42% was a safe target for the Memo-
rIES board.

3.4 Limitations

It is important to note that MemorIES is a passive emulator: it
snoops on the 6xx bus, but is in general unable to stop and/or inject
transactions on the bus.This limitation has two important ramifica-
tions. First, MemorIES is unable to simulate the latency of a refer-
ence by pausing the requesting processor for a pre-established
period of time. Second, when a line gets replaced in the L3 cache,
the line cannot be invalidated in the lower levels (L1 and L2).
Therefore, it cannot emulate accurately a fully-inclusive L3 cache.

It is to be noted that all trace driven simulations using bus traces
also have the same limitation.

4 MemorIES vs. Simulation

The MemorIES tool is intended for use as a complement to
different simulation technologies. It is much faster than either
trace-driven or execution-driven simulation and is thus capable of
quick profiling of applications so that bottlenecks can be rapidly
identified. After identification, other types of simulation are
employed to narrow down the sources of the bottleneck and enable
fine-tuning of the system.

4.1 MemorIES vs. Trace-driven Simulation

Faster run time of the evaluation tool is critical to system
design time, especially systems designed for large applications. A
trace-driven C simulator (which was used as one of the methods to
validate the MemorIES design) was used to run varying trace sizes
and the resulting run times compared to that of the MemorIES
board. Table 3 shows the significant savings in run times of the
MemorIES board and clearly indicates that software simulation
becomes prohibitive as trace sizes grow. The software simulation
optimistically assumes that the entire trace is memory resident and
the MemorIES board assumes a 6xx bus speed of 100 MHz with a
bus utilization of 20%. In reality, MemorIES can emulate up to 4
different L3 configurations at the same time but this speedup is not
indicated.

4.2 MemorIES vs. Execution-driven Simulation

In order to determine the time savings MemorIES provides in
evaluating memory hierarchy performance, the SPLASH2 FFT
application with 8 threads was run with varying data sizes on an
execution-driven simulator, Augmint [NMS+96], as well as on an
8-way IBM S7A SMP. Table 4 shows the execution time of the
Augmint simulator vs. the time taken by the MemorIES board to
run the FFT program with different data sizes.

While numerous researchers have proposed varying the level
of detail of simulation in order to speed up simulation time
[RHW+95], and these simulators are quite fast, the slowdown with
respect to MemorIES is still quite significant. For example,
Embra[WR96], an execution-driven simulator for processors,
caches and memory systems, uses dynamic binary translation and
reports a slow down of a factor of 7 to 20 for uniprocessor work-
loads and a factor of 94 to 221 for multiprocessor workloads. Of
course, the advantage of a simulator like Embra is that it runs a
workload until it reaches a particular point in simulation, and then
checkpoint the workload, so that a more detailed simulator can
then run from the checkpointed time, rather than from the begin-
ning of the application. MemorIES does not simulate an entire sys-
tem, and does not allow the positioning of a workload.

5 Case Studies

In this section we present detailed case studies illustrating the
use of our MemorIES board. Although MemorIES is a passive
emulator, and not a system-level simulator, its ability to process

6xx busTag and
state RAMs

Cache

Cache params,
map & registers

Host 6xx

Console interface

System eventCache event
 counters counters

Tag/state
Control

FIGURE 6. Cache Emulation Functional Flow

 interface

bus

TABLE 2. Summary of Cache Emulation Parameters

Feature Parameters

Cache size 2MB - 8GB

Cache associativity Direct mapped to 8-
way set associative

Processors per shared cache
node

1 - 8

Cache line size 128B - 16KB

42

large problem sizes and large cache sizes still enables us to per-
form several important validation and debugging exercises that are
not possible with current simulation techniques.

For these experiments, the host machine is an 8-way IBM
S7A SMP [IBM] that uses 262 MHz Northstar processors with
8MB individual L2 caches. The system has 16 GB of main mem-
ory and over a terabyte of disk space. The L2 cache size and asso-
ciativity can be changed at boot time from 8MB 4-way set-
associative to 1MB direct mapped.

5.1 Case Study 1: Impact of trace length on
observed cache miss behavior

Our first case study involves the use of traces in machine
evaluation. While trace-driven simulation is a common, low-cost
technique used for evaluating memory system behavior in multi-
processors, one big drawback is that collecting and analyzing a
large trace that comprises a complete run of a workload can be
quite time consuming. Because MemorIES utilizes on-line emula-
tion and real-time data processing, it speeds up trace analysis enor-
mously. A long trace representing 8 hours of runtime, which would
be nearly impossible to collect using a simulator due to excessive
simulation time, can be processed and processed in 8 hours on
MemorIES.

We used the MemorIES board in order to study cache miss
behavior in future systems. Because of our ability to process long
traces, we discovered an important relationship between trace

length and cache misses. Figure 8 shows miss ratios for the TPC-C
(150GB database) benchmark, for two trace lengths (10 billion ref-
erences and 20 million references), and for TPC-H (100GB data-
base), for 400 billion, 200 billion, and 10 billion reference traces.
As seen in Figure 8, using inappropriate trace sizes dramatically
changes the optimal parameters for performance. Using too small a
trace may suggest that larger caches (for example, beyond 128MB
in TPC-C) have no impact on miss rate, when in reality larger
caches continue to reduce the miss rate. The overestimation of
miss rate occurs because the trace is so small that startup effects,
rather than steady-state effects, are measured. In particular, when
the trace is too small, cold miss behavior is much more dominant

4 Sets of
8Mx72 SDRAM

Industry Standard
168 pin DIMM

 Node

Local CountersCMD/Address

FIFO

Address Filter

6xx registers6xx Address

AMCC

Dual Parallel Interface

4 Sets of
8Mx72 SDRAM

Industry Standard
168 pin DIMM

Node

Local Counters

4 Sets of
8Mx72 SDRAM

Industry Standard
168 pin DIMM

 Node

Local Counters

4 Sets of
8Mx72 SDRAM

Industry Standard
168 pin DIMM

 Node

Local Counters

6xx cmd-decode

100MHz

FPGA

Interposer Card

Tri-State Select

state

Console FPGA

Console PC

FIFO

FIFO

FIFO

FIFO

AMCC bus
chip set to all FPGAs

Global Event
 Counter
 FPGA

 FIFO

Controller A
FPGA

Controller B
FPGA

Controller C
FPGA

Controller D
FPGA

FIGURE 7. MemorIES Physical Block Diagram

Trace size
(number of
vectors)

Execution time
of C simulator

Execution time of
MemorIES

32768 1 second 3.28 milliseconds

262144 8 seconds 26.21 milliseconds

10 million 5 minutes 1 second

10 billion approx 3 days 16.67 minutes

TABLE 3. Execution Times of C Simulator vs.
MemorIES. The C Simulator was run on a 133MHz
machine. The host machine for MemorIES was 262MHz.

43

an effect than in a real run. Clearly, the longer the trace, the more
accurate the resulting simulation can become.

Another interesting result from our trace length studies
involves choosing the number of processors per shared L3 cache.
We chose to address the issue that we have a given L3 cache size
(64MB) and 8 processors, and we wish to consider whether to con-
struct an SMP with all 8 processors sharing the L3 cache, or split
the system into several SMPs, each with their own 64MB L3
cache, with all the L3 caches connected on a bus. As shown in
Figure 9, the trace length directly impacts this choice. The long
trace results indicate that miss ratio increases with increasing num-
ber of processors per L3 cache, while the short trace results indi-
cate an opposite trend. When too short a trace is used, the
incremental impact of adding more processors per L3 cache is to
reduce the cold miss ratio, since the additional processors effec-
tively prefetch data for the other processors that share the L3
cache. With a short trace that is representative of trace lengths in
use today (45 million L3 references, or about 600 million instruc-
tions), this impact is quite large. However, with a larger trace (over
10 billion L3 references), the effect of reducing cold misses is
much smaller. Instead, each processor reaches its steady state. In
this steady state, the processors all access their different data sets.
These data sets do not overlap completely, and as a result, when
multiple processors share an L3 cache, the L3 cache must support
a larger aggregate working set (the working sets of each of individ-
ual processors). As a result, the miss ratio increases for that L3
cache. This data contradicts the previous data for short traces, and
suggests using fewer processors per L3 cache.

5.2 Case Study 2: OS performance debugging

Our use of the MemorIES board for collecting traces is also
useful in combination with other techniques for performance
debugging. Figure 10 shows a run of the TPC-C transaction pro-
cessing benchmark on an IBM SMP system over several hours.
The important feature of the graph is that there are periodic spikes
in the miss ratio around every 5 minutes, no matter what cache size
is being modeled. This suggests some sort of software issue unre-

lated to cache design. Without such a long-running trace, this
behavior might not have been observed: instead, it is possible that
only the plateaus between the spikes would have been seen. For
example, 5 minutes of trace in the system under consideration cor-
responds to about 2 billion memory accesses on the bus, whereas
most traces collected in this time frame are in the range of 20-60
million bus accesses, which makes it very hard for the smaller
traces to catch this kind of activity. Even an execution-driven sim-
ulator might not have seen this problem, if a sufficiently short-run-
ning input set were used, or if the wrong window of time were
simulated. After collecting the traces and observing the problem,
an OS monitoring tool was used in order to collect more detailed
information. This detailed information established a correlation
between the periodic spikes in cache misses and a software prob-
lem with the OS journaling activity in the file system. Even though
the OS team was already aware of this problem from independent
experimentation, the MemorIES board was able to quantify the
severity of the problem. Upon fixing the problem in the OS the
spikes were eliminated, resulting in significant improvements in
the system performance.

5.3 Case Study 3: Scaling

Our final case study involves the use of MemorIES for scal-
ing purposes. As an example, we use applications from the
SPLASH2 [WOT+95] benchmark suite. SPLASH2 is widely used
in execution-driven simulator studies, but because such simulation
can be prohibitively expensive, often the problem sizes are scaled
so that they can be run in reasonable time, while still maintaining
the miss rates and communication patterns of the realistic sizes.
Because variants of the problems in the SPLASH2 suite are run
daily in research labs, and because the problem sizes are ever
increasing, it is valuable to see if the scalings that have been pro-
posed in the past accurately model the behavior of real-world prob-
lem sizes. If so, then such scalings can safely be used in place of
the real sizes for debugging and performance evaluation. If not,
then it is important to understand how the scalings are deficient, in
order to suggest more accurate modeling methods.

 We chose to run SPLASH applications with sizes more
appropriate for today’s machines. These sizes are indicated in
Table 5, along with their runtimes and memory footprints. The
sizes that are run in practice are typically bounded by 2 factors:
memory space and application speedup. The problems are typi-
cally sized so that they are the largest problem that still fits in the
memory of the target machine. Moreover, they are sized so that the
speedup is reasonable for that problem size[LEV00]. The sizes we
have chosen fit these criteria, and the reasonableness of the selec-
tions was confirmed by searching for example runs of these appli-
cations in the literature[FQG+92][HLC+99][JS99][WLM+99].
These sizes are quite a bit larger than the sizes used in previous
SPLASH studies (see Table 1). For our sizes, the data sets of these
applications consume up to several GB of memory, in contrast to
the several MB of memory that the data sets of the previous
SPLASH studies occupy. Using the MemorIES board, we are able
to collect miss rate, miss ratio, and communication statistics and

TABLE 4. Execution Time of Augmint vs. MemorIES.
Augmint was run on a 133MHz machine, while the host
machine for the MemorIES experiment was 262MHz.

FFT data size
parameter
‘m’

Execution
time of
Augmint

Execution time of
MemorIES
(Host machine
run time)

20 47 minutes 3 seconds

22 3.2 hours 13 seconds

24 13 hours 53 seconds

26 > 2 days 196 seconds

44

profile these applications to see if the observed behavior is close to
the typical simulated behavior.

In Table 6 we show the cache miss rates (in misses per thou-
sand instructions) of our applications, both for some of the param-
eters from previous generation simulations, as well as for the
MemorIES board with large caches and large problem sizes. The
results from the original SPLASH2 paper were generated using
only 1 level of caching, but our system has 2 levels of caching, so
we use miss rate, rather than miss ratio, as the comparison metric.
Because the L1 and L2 caches in our system are fully inclusive, the
miss rate for our L2 can be compared to the miss rate in the
SPLASH2 paper1. The miss rates were measured using the on-chip
counters of the L2 controller of the S7A machine. There are sev-

eral important points to consider. First, the miss rates from previ-
ous studies are vastly different from realistic problem sizes,
suggesting that the scalings employed in the past are potentially
inaccurate for much larger problem sizes. In addition, the miss
rates for our sizes are not necessarily always larger than in the
smaller sizes: for FFT, for example, our miss rate is much smaller.
Clearly, this suggests that scaling becomes more difficult as the

0 100 200 300 400 500 600

Cache Size (MBs)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

L3
 m

is
s

ra
tio

10B refs (on-line emulation)
20M refs

FIGURE 8. L3 Miss Ratio for Different Trace Lengths for TPC-C (left) and TPC-H (right). For TPC-C, a 10 billion
reference trace is compared to a 20 million reference trace. For TPC-H, a 400 billion reference trace is compared to both a 200
billion reference trace and a 10 billion reference trace.

128 256 512 1024

Cache Size (MBs)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

L3
 m

is
s

ra
tio

10B refs.

200B refs.

400B refs.

64
M

12
8M

51
2M

0

5

10

15

1 Proc
2 Proc
4 Proc
8 Proc

Percent miss ratio vs L3 capacity and # of Proc
Single L3 node - 1KB linesize

FIGURE 9. L3 Miss Ratio for Different Degrees of L3 Sharing, Short Traces and Long Traces. There are a total of 8
processors. 1 Proc is a configuration in which each processor has a separate 64MB L3 cache, and the L3 caches are
connected over a bus. 8 Proc is a configuration in which all 8 processors share a single 64MB cache. The figure on the
left represents a run with a trace containing 45 million references, while the figure on the right represents a run with 10
billion references.

64
M

12
8M

51
2M

0

5

10

15

20

25

30

1 Proc
2 Proc
4 Proc
8 Proc

Percent miss ratio vs L3 capacity and # of Proc
Single L3 node - 1KB linesize

1. The 1MB 4-way set-associative cache was chosen for the
SPLASH2 results because data were available for all applications
for that size, and because the level 1 working sets of the small sizes
all fit in that cache size. The level 1 working sets for all of our
sizes fit in our 8MB L2 cache, which is the actual cache size in our
system.

45

problem sizes get larger. Moreover, the miss rates are rather large
(0.2-8.2), as are the miss ratios (misses/reference), which range
from 5-36% (not shown here), even though the L2 caches are
large, suggesting that future systems can benefit from large caches,
despite the possible increase in cache-to-cache sharing. In fact, if
we add L3 caches, we see a significant number of misses being sat-
isfied (Figure 11). In addition, we see that the miss ratios and miss
rates are monotonically decreasing, further suggesting an incentive
for large L3 caches. Although this does result in an increase in
cache-to-cache sharing, preliminary calculations based on laten-
cies and miss ratios suggest that performance improves from 2-
25% for these applications, and for no L3 cache size do we see
performance degradation.

To analyze the communication patterns, we configure Memo-
rIES in a NUMA configuration, in which several SMPs are con-

nected together and each SMP has an L3 cache. The two multiple
L3 configurations studied are a) Two SMP nodes with 4 processors
sharing each L3 and b) Four SMP nodes with 2 processors sharing
each L3. Figure 12 shows how references (misses from L2) are sat-
isfied on the SMP memory bus for FFT, Ocean and FMM. This
kind of breakdown is useful for understanding the characteristics
of an application for tuning its performance as well as choosing the
optimum L3 size for a given set of price and performance criteria.
The general trends reinforce previous results, although a precise
comparison cannot be made since this type of traffic was not pub-
lished in [WOT+95]. Some key observations from these results
are:

• FFT and Ocean have relatively small modified or shared inter-
ventions1, indicating less data sharing among threads. For
these kinds of applications more attention should be paid to
memory data placement in a NUMA system, and tertiary
caches are definitely useful.

• FMM has a significant amount of modified and shared inter-
vention traffic relative to the other applications, indicating
more data sharing. Applications like this will gain from effi-
cient cache-to-cache transfer implementations in an SMP or
NUMA environment.

We can also use the MemorIES board for scaling studies
involving transaction processing, decision support, and web server
workloads.

6 Prior Work

While the majority of systems studies have involved various
methods of simulation, in this section we focus on related work in
hardware-based emulation. The RPM project at USC [DGJ+98]

FIGURE 10. TPC-C Miss Ratio Profile. The periodic
spikes are due to a bug in the journaling activity in the OS.
The top curve is for a 16MB direct-mapped L3 cache, and the
bottom curve is for a 1GB 8-way set-associative cache.

TABLE 5. SPLASH2 Application Characteristics. All
applications are run with 8 processors.

Application

Memory
footprint
(GB)

Runtime,
8MB 4-
way set-
assoc. L2
(seconds)

Runtime,
1MB
direct-
mapped
L2
(seconds)

FMM (4M parti-
cles)

8.34 633 653

FFT -m28 -l7 12.58 777 853

OCEAN -n8194 14.5 860 971

WATER (spatial,
1253 molecules

1.38 1794 2008

BARNES-HUT
(16M bodies)

3.1 2021 2082

1. A shared intervention occurs when a processor misses on a line
in its L2 cache and must retrieve a shared copy from another L2
cache, rather than going to memory or the L3 cache to fetch the
line.

Application

Miss rate for
sizes in
SPLASH2 paper,
1MB cache, 4-
way set-
associative

Miss rate for
sizes in this
paper, 8MB L2
cache, 2-way
set-associative

FMM 0.33 0.7

FFT 5.5 0.3

Ocean 3.7 8.2

Water 0.073 0.2

Barnes 0.11 0.3

TABLE 6. Miss Rates (misses per thousand instructions)
for Various SPLASH2 Applications

46

has done extensive work on hardware prototyping using FPGAs.
The MemorIES work, however differs from the RPM work in
many ways. First, RPM emulates a complete system including sev-
eral levels of caches, network and IO control, and a variety of
NUMA and message passing multiprocessors. The scope of Mem-
orIES is rather limited. We concentrate only on the cache and
cache protocol emulation. However, given the systems we are con-
sidering and the focus of our design efforts (i.e., the memory sys-
tem), this trade-off is appropriate. A second difference between
RPM and Memories is that MemorIES plugs into a commercial
SMP and logically partitions the host SMP into smaller target
SMPs using CPU IDs on the bus. In contrast, RPM emulates each
individual processor separately and builds a complete system from
scratch. It would require a great deal of work to make a realistic
commercial application (such as databases) run on RPM. Since
MemorIES plugs into a real, state-of-the-art SMP, it can collect
data on important real world applications including databases that
run on that machine without having to worry about porting a huge
application to a new machine. Finally, RPM operated at a smaller
frequency (5-20MHz) than the contemporary memory bus speeds
prevalent in its time. In contrast, MemorIES operates at the full
speed of the system’s memory bus (100MHz). As a result, it does
not alter the program behavior.

Another type of emulation common in commercial system
design involves synthesizing a board full of FPGAs to mimic the
behavior of a particular chip in a target system [QUI]. The FPGAs
are synthesized using the actual hardware description language
that is used to describe the target chip, so that any bugs in the chip
can be discovered quickly. This type of system is not generally
meant for experimentation and performance debugging, but is used
primarily for functional validation. In addition, it is expensive to
synthesize and also runs slower than the target chip. MemorIES, in
contrast, runs at the speed of the host system and is configurable to
represent numerous memory systems, allowing performance
debugging, but is not meant to be a tool for functional validation.

7 Summary

In this paper we presented the design of MemorIES, a real-
time programmable hardware emulation tool used for evaluating
large caches and SMP cache protocols for future server systems.
MemorIES produces memory access and cache performance statis-
tics on line while real life applications are running on the host
machine, without slowing down the host system or degrading its

FIGURE 11. L3 Miss Ratio with 8MB 4-way set-
associative L2. 8 processors are used, all sharing one L3
cache. The line sizes of the L2 and L3 cache are 128B.

L3 miss ratio (misses/reference) for
SPLASH2 applications (8MB L2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

L3 cache size

FMM

FFT

Ocean

Water

Barnes

FIGURE 12. Where an L2 Miss is Satisfied in FFT,
Ocean, and FMM. The leftmost bars in each graph are
2-node systems with 4 processors per L3. The rightmost
bars are 4-node systems with 2 processors per L3. Both
L2 and L3 caches are 4-way set-associative. The L2 is
8MB with a 128B line size, and the L3 has a 1KB line
size. mod-int and shr-int are modified- and shared-
interventions, respectively.

Where an L2 miss is satisfied: FMM

0%

20%

40%

60%

80%

100%

32
M

64
M

12
8M

25
6M

51
2M 1G

32
M

64
M

12
8M

25
6M

51
2M 1G

L3 Cache Size

Local L2 mod-int

L3 hit

L3-to-L3 shr-int

Remote L2 mod-int

Remote L3 mod-int

Memory rd

Where an L2 miss is satisfied: Ocean

0%

20%

40%

60%

80%

100%

32
M

64
M

12
8M

25
6M

51
2M 1G

32
M

64
M

12
8M

25
6M

51
2M 1G

L3 Cache Size

Local L2 mod-int

L3 hit

L3-to-L3 shr-int

Remote L2 mod-int

Remote L3 mod-int

Memory rd

Where an L2 miss is satisfied: FFT

0%

20%

40%

60%

80%

100%

32
M

64
M

12
8M

25
6M

51
2M 1G 32
M

64
M

12
8M

25
6M

51
2M 1G

L3 Cache size

Local L2 mod-int

L3 hit

L3-to-L3 shr-int

Remote L2 mod-int

Remote L3 mod-int

Memory rd

47

performance in any manner. MemorIES complements system sim-
ulation techniques by providing fast results for a wide design
space: once the design space has been pruned or once performance
bottlenecks have been discovered, detailed simulation can then be
used to pinpoint the proper parameter choice or determine the spe-
cific source of the bottleneck. We demonstrate its usefulness in
several case studies, and find several important results. First, using
traces to perform system evaluation can lead to incorrect results
(off by 100% or more in some cases) if the trace size is not suffi-
ciently large. For example, a small trace may suggest that a there
are only marginal gains when increasing the cache size beyond a
certain point, while a larger trace suggests that caches continue to
reduce the miss rate significantly beyond that cache size. Second,
MemorIES is able to detect performance problems by profiling
miss behavior over the entire course of a run, rather than relying on
a small interval of time. Finally, we observe that previous studies
of SPLASH2 applications using scaled application sizes can result
in optimistic miss ratios relative to real sizes on real machines,
providing potentially misleading data when used for design evalu-
ation.

8 Acknowledgments

We are thankful to our management for their support, as well
as to the numerous contributors who helped with the project defini-
tion, software development, design and validation of MemorIES.
We are especially thankful to Wayne Nation, Michael Rosenfield,
Lorraine Herger, Mickey Tsao, Nathan Lee, Luke Wong, Steven
VanderWiel, Steve Kunkel, Phil Vitale, Marius Pirvu, and Anthony
Nguyen for their contributions at various phases of the project.

References
[ALT] Altera Corporation, Flex10K Embedded Program-
mable Logic Family Data Sheet. http://www.altera.com.

[BDH+99] E. Bilir, R. Dickson, Y. Hu, M. Plakal, D. Sorin, M.
Hill, and D. Wood. Multicast Snooping: A New Coherence
Method using a Multicast Address Network. In Proceedings of the
26th Annual International Symposium on Computer Architecture.
May 1999.

[DGJ+98] M.Dubois, A. Gefflaut, J. Jeong, A. Moga, and K.
Oner, “Rapid prototyping on RPM-Methodology and Experience,”
IEEE Design and Test of Computers, pp 112-118, July-Sep. 1998.

[FW97] B. Falsafi and D. Wood. Reactive NUMA: A Design
for Unifying S-COMA with CC-NUMA. In Proceedings of the
24th Annual International Symposium on Computer Architecture.
June 1997.

[FW99] B. Falsafi and D. Wood. Parallel Dispatch Queue: A
Queue-Based Parallel Programming Abstraction to Parallelize
Fine-Grain Communication Protocols. In Proceedings of the 5th
International Conference on High-Performance Computing. Janu-
ary, 1999.

[FQG+92] D. Fullagar, P. Quinn, C. Grillmair, J. Salmon, and
M. Warren. N-body Methods on MIMD Supercomputers: Astro-
physics on the Intel Touchstone Delta. In Proceedings of the Fifth
Australian Supercomputing Conference. December 1992.

[HLC+99] Y. Hu, H. Lu, A. Cox, and W. Zwaenepoel. OpenMP
for Networks of SMPs. In Proceedings of the Thirteenth Interna-
tional Parallel Processing Symposium. April 1999.

[IBM] IBM Corp., RS/6000 Enterprise Server S7A Users’
Guide, Oct. 1998

[LEV00] J. Levesque. Personal Communication. April 2000.

[MNL+97] M. Michael, A. Nanda, B.-H. Lim, and M. Scott.
Coherence Controller Architectures for SMP-Based CC-NUMA
Multiprocessors. In Proceedings of the 24th International Sympo-
sium on Computer Architecture. June 1997.

[NHO+98] A.K. Nanda, Y. Hu, M. Ohara, M. Giampapa, C.
Benveniste and M. Michael. The Design of COMPASS: An Execu-
tion Driven Simulator for Commercial Applications Running on
Shared Memory Multiprocessors. In Proceedings of International
Parallel Processing Symposium, April 1998.

[NMS+96] A.-T. Nguyen, M. Michael, A. Sharma and J. Torrel-
las. The Augmint Multiprocessor Simulation Toolkit for Intel x86
Architectures. In Proceedings of the International Conference on
Computer Design, pp. 486-490, Oct.1996.

[PRA+97] V. S. Pai, P. Ranganathan, and S. Adve. RSIM: An
Execution-Driven Simulator for ILP-Based Shared-Memory Mul-
tiprocessors and Uniprocessors. In Proceedings of the Third Work-
shop on Computer Architecture Education. Feb. 1997.

[QUI] Quickturn Corporation. http://www.quickturn.com

[RHW+95] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta.
Complete Computer Simulation: The SimOS Approach. In IEEE
Parallel and Distributed Technology. Fall 1995.

[JS99] D. Jiang and J. P. Singh. Scaling Application Perfor-
mance on Cache-coherent Multiprocessors. In Proceedings of the
26th Annual International Symposium on Computer Architecture.
May 1999.

[TPC] Transaction Processing Council: http://www.tpc.org

[WEB93] W.-D. Weber. Scalable Directories for Cache-Coher-
ent Shared-Memory Multiprocessors. Stanford University Techni-
cal Report CSL-TR-93-557. Jan. 1993.

[WLM+99] Z. Wang, J. Lupo, A. McKenney, and R. Pachter.
Large Scale Molecular Dynamics Simulations with Fast Multipole
Implementations. In Proceedings of SC99. Nov. 1999.

[WOT+95] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh and A.
Gupta. The SPLASH-2 Programs: Characterization and Method-
ological Considerations. In Proceedings of the 22nd International
Symposium on Computer Architecture, June 1995.

[WR96] E. Witchel and M. Rosenblum. Embra: Fast and
Flexible Machine Simulation. In Proceedings of the International
Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS). 1996.

48

