
L e t t e r s

I f v e r s u s R u l e

Dear Editor ,

I am writing about the article "The Time is Ripe for a
Dyadic Execute" by Zdenek V. Jizba that appeared in A P L
Quote Quad VoL 19, no. 2.

I would like to comment on Jizba's characterization of
a dyadic execute as being aldn to a "rule" in expert systems
languages.

His dyadic execute usage is more accurately described
as an if/then operation, not a "rule" .

A rule, in most Ski and expert systems usages, is an
operator that has, in its simplest form, two partS- a left hand
side and right hand side, also know as patterns and actions.

IF patterns T H E N actions

Here the similarity with a procedural language's IF /THEN
operation stops. A rule does not need to be E X E C U T E D to
cause the fight hand side (actions) to "f i re" . Rules are usu-
ally generaliTed demons, that is, they are constantly looking
at the data, and when they see a pattern in the data that
matches their left hand side, they can execute the actions on
their right hand side.

Once a rule is executed (also called "compiled," or
"added to the rule set") , this " lookout for the pattern"
action is always active. The test, or the pattern on the left
hand side, is not done only when the rule is executed, fike an
I F / T H E N statement. It is always active, ready to jump when
it finds some data that matches its left hand side.

For example, in a p ~ , e d u r a l language, an I F f r H E N
does its testing only when the IF /THEN statement is exe-
cuted. (Assume "----" is assignment.)

x f f i 7
IF x > 8 T H E N print "hello"
x f f i 9

Results: nothing

The IF statement would have to be "executed" again to get i t
to recognize that x has indeed taken a value greater than 8.

But in a rule, the testing continues after the rule has
been executed (or compiled, or put into the rule set).

x = ']

IF x > 8 T H E N print "hello"
Results: nothing

x = 9
Results: prints "'hello"

So, while the recommendation that dyadic execute should be
added to the A P L language is worthy of consideration, please
don ' t call this function " ru le ." It would be useful as a simple
I F / T H E N function.

A P L has been used successfully on many Artificial
Intelligence and Expert Systems applications already, with or
without a built-in IF /THEN function.

Sincerely,

Beth Tibbitts
Room 35-210 (914) 945-2411
IBM TJ Watson Res. CUr.
P.O. Box 218
Yorktown Heights, NY 10598
Bitnet address: BRT at Y K T V M Z , BRT at WATSON,

or brt @ ibm.corn

To the Editor:

Three comments on the definition of the dyad a pn)-
posed by Z.V. Jizba in A P L Quote Quad, 19 no. 2.

1. Since the explicit result of r.aB is simply r . useful
results can only be obtained as side-effects in R.

2. Conditional execution of a function can be obtained as
a special case of the "power conjunction" (denoted by
•) defined on page 34 of Quote Quad, 18 no. 1.

The alternative definition of the dyad a offered in
Quote Quad, 18 no. I provides a form of " t rap" or
"'exception handling" not otherwise available in the
language.

.

Kenneth E. Iverson
70 Emkine Ave.
Apt. 405
Toronto, Ontario
M4P 1Y2

Dear Editor ,

As the countdown to APL89 continues, I would like to
extend a challenge to various implementem of APL. Please
help me to express the functions in Probability in APL in your
favorite dialect. I, and most educators, are in the difficult
position of having to choose between a variety of expressions
for the same concepts. Please submit all entries to me before
the end of the Conference to become eligible for an A P L
Medal.

lAnda Alvord
Scotch Plalns-Fanwood High School
Scotch Plains, NJ 07076
USA

APL Quote Quad 19 3 2 March 1989

http://crossmark.crossref.org/dialog/?doi=10.1145%2F379217.379220&domain=pdf&date_stamp=1989-03-01

To the Editor,

'Fast I] 0 - Ef f ic ient File Processing'

The above paper (by Loft D McNichols) was distributed
at the APL88 conference and gives a thorough exposition
with examples of a very useful technique - I would hope
that it has wider dissemination because these are real per-
formance improvements that anyone working in the
APL2/TSO environment can implement for very little cost
and effort. Use of this code in recent months has led to two
observalions which I would like to share_

a) As presented the function <CH.ECK__DCB> is
unnecessarily reslrictive, modification to lines [7] and
[8] permits use of the functions on partitioned data.sets
and those with R E C F M f U .

b) A circumstance has arisen whereby the performance
gains are not achievable; namely when a dataset is being
extended using DISP= M O D . In which case the follow-
ing hapl~us:

ISPF (etc.) reports BLKSIZE= bignumber

AP111 finds that the blocks are nowhere near this
long - in fact it retrieves ch~_ks which are as long as
the hits that got added - which is especially bad news
if you have an application which adds records one at
a time.

Clearly we have a useful technique here, and one more
widely applicable than the original exposition suggested;
nevertheless there is also a lesson to be learnt in that we
have to stay vigilant and measure everything - because even
gift horses are not always what they seem.

Dick Bowman
c/o CEGB
85 Park Street
London SE1
England

C o r r e c t i o n

The previous issue of Quote Quad (19 #2) had a few
lines which could hamper easy understanding.

The last 10 lines of paragraph 4 of page 18 should read
instead:

~I'[(..~I)/%p.I]÷O

instead of the better
I[(, ~I÷X~I4ISBV)/%P .I]+0

and
... o I÷OxN÷PD o ...

L 1 : • . •

i iv<x.x+l)/ 4
instead of the better

2"4-0
E , I : . - .

• ~ ((P D) < I ÷ I + l) / l ~ 1

F.H.D. van Batenberrg

Mid- l ine a s s ignmen t

Dear Editor,

Your editor's note in APL Quote Quad, 19/2, p. 19,
would have been even closer to the point if the following
code were included:
[2] . . .
E 3]

(~x)/ px÷,x=xzssv]÷o
after removing the first ÷ from the article, too.

Adam Kerteaz
400 East 58th Street
New York, NY 10022
USA

[Editor's note: One who moves APL code from one APL
implementation to another becomes aware of trouble spots
that exist because not all implementations agree about how
lines of code should be paired. One such problem area is
mid-line assignment.

Readers are invited to submit examples of code they
have found that does not port from one APL to another. In
preparing the example, please trim the code to the bare
essentials that illustrate the point.]

Dear A l L Collca~c,

The Toronto APL Special Interest Group is pleased to
announce their new publication, The APL Toolkit, 2nd Edi-
tion, available immediately. It is the result of our group
effort over 5 years[

For mailing addresses in Canada, the price of the
Toolkit manual is $25 Canadian. For all other locations, the
price is $25 U.S. This is an exceptional bargain, considering
that it costs almost as much to produce and mail. If you wish
to order, please remit the appropriate amount by cheque or
money order to the following address:

CIPS APL SIG - Toronto
Attention: Toolkit Editor
P.O. Box 384, Adelaide St. Station
Toronto, Ontario, Canada
MSC 2J5

We are sure you will agree that this is one of the finest
collections of APL functions for the general audience. It is
fully documented, and you will learn much about APL pro-

Continued on page 27

A P L Quote Quad 19 3 3 March 1989

