
Code Layout Optimizations for Transaction Processing Workloads

Alex Ramirez�, Luiz André Barrosoy, Kourosh Gharachorlooy,
Robert Cohnz, Josep Larriba-Pey�, P. Geoffrey Lowneyz, and Mateo Valero�

�Computer Architecture Department yWestern Research Laboratory zAlpha Development Group
Universitat Politecnica de Catalunya Compaq Computer Corporation Compaq Computer Corporation

Abstract

Commercial applications such as databases and Web servers con-
stitute the most important market segment for high-performance
servers. Among these applications, on-line transaction processing
(OLTP) workloads provide a challenging set of requirements for
system designs since they often exhibit inefficient executions dom-
inated by a large memory stall component. This behavior arises
from large instruction and data footprints and high communication
miss rates. A number of recent studies have characterized the beha-
vior of commercial workloads and proposed architectural features
to improve their performance. However, there has been little re-
search on the impact of software and compiler-level optimizations
for improving the behavior of such workloads.

This paper provides a detailed study of profile-driven compiler
optimizations to improve the code layout in commercial workloads
with large instruction footprints. Our compiler algorithms are im-
plemented in the context of Spike, an executable optimizer for the
Alpha architecture. Our experiments use the Oracle commercial
database engine running an OLTP workload, with results gener-
ated using both full system simulations and actual runs on Alpha
multiprocessors. Our results show that code layout optimizations
can provide a major improvement in the instruction cache beha-
vior, providing a 55% to 65% reduction in the application misses
for 64-128K caches. Our analysis shows that this improvement
primarily arises from longer sequences of consecutively executed
instructions and more reuse of cache lines before they are replaced.
We also show that the majority of application instruction misses are
caused by self-interference. However, code layout optimizations
significantly reduce the amount of self-interference, thus elevating
the relative importance of interference with operating system code.
Finally, we show that better code layout can also provide substantial
improvements in the behavior of other memory system components
such as the instruction TLB and the unified second-level cache. The
overall performance impact of our code layout optimizations is an
improvement of 1.33 times in the execution time of our workload.

1 Introduction

Commercial applications such as databases and Web servers consti-
tute the largest and fastest-growing segment of the market for high-
performance servers. While applications such as decision support
(DSS) and Web index search have been shown to be relatively in-
sensitive to memory system performance [2], a number of recent
studies have underscored the radically different behavior of online
transaction processing (OLTP) workloads [2, 6, 7, 15, 17, 19, 25].
In general, OLTP workloads lead to inefficient executions with a
large memory stall component and present a more challenging set
of requirements for processor and memory system design. This be-
havior arises from large instruction and data footprints and high

communication miss rates that are characteristic for such work-
loads [2]. At the same time, the increasing popularity of electronic
commerce on the Web further elevates the importance of achieving
good performance on OLTP workloads.

While there have been several recent studies that characterize
the behavior of commercial workloads and propose architectural
features to enhance their performance (e.g., [3, 16, 23]), there has
been little research on software and compiler-level optimizations to
improve the behavior of such workloads. One of the distinguishing
features of OLTP workloads that is amenable to compiler-level op-
timizations is their large instruction footprint and the relative im-
portance of the instruction cache performance. Previous studies
have shown high instruction cache miss rates for both the applic-
ation and operating system components. In fact, the number of
instruction misses can be higher than the data misses for the same
size instruction and data caches [2]. Furthermore, even a reason-
ably sized second-level unified cache (1MB) can have as high as
50% of its misses due to instructions [2].

This paper provides a detailed study of profile-driven compiler
optimizations to improve the code layout in commercial workloads.
Our primary goal is to further characterize the instruction cache be-
havior of OLTP workloads and to study the impact of code layout
optimizations on the performance of such workloads. The main
compiler algorithms that we study are basic block chaining, fine-
grain procedure splitting, and procedure ordering. These optimiz-
ations are implemented in the context of Spike [5], an executable
optimizer for the Alpha architecture. Spike is a relatively mature
optimizer and has been used for generating the more recent audited
TPC-C benchmark results for Alpha servers [29]. Our performance
results for OLTP are based on executions of the Oracle commercial
database engine (version 8.0.4) running under Compaq Tru64 Unix
(previously known as Digital Unix). We use a combination of full
system simulation (including operating system activity) and actual
runs on Alpha multiprocessor platforms for our experiments.

To better understand the behavior of our workload, we begin
by studying the application database instruction stream in isola-
tion (achieved by filtering out operating system references). We
first characterize the footprint of the application code and study its
behavior with different cache parameters. We then analyze the im-
pact of various code layout optimizations on the application code
cache behavior. Our results show that code layout optimizations
can provide a major improvement in the instruction cache beha-
vior, providing a 55% to 65% reduction in the application misses
for 64-128K caches. We find that a line size of 128-bytes is ideal
for both the optimized and unoptimized code, and that the improve-
ments from associativity are quite small. The most effective code
layout optimization is basic block chaining, with combined proced-
ure splitting and ordering optimizations providing further substan-
tial reductions in instruction misses. Finally, our detailed analysis
shows that the instruction cache miss improvements obtained by
code layout optimizations can be primarily attributed to (i) longer

0-7695-1162-7/01/$10.00 (C) 2001 IEEE

sequences of consecutively executed instructions and (ii) more re-
use of cache lines before they are replaced.

We next study the combined application and operating system
instruction streams. The interference between the two streams di-
minishes the benefits of code layout optimizations, leading to a
reduction of 45% to 60% in combined instruction misses (com-
pared to 55%-65% for the isolated application stream) for 64-128K
caches. The majority of the application instruction misses are
caused by self-interference in the application code. However, code
layout optimizations substantially reduce such self-interference,
thus increasing the impact of the interference between the applica-
tion and the operating system. Applying code layout optimizations
to the operating system code does not lead to any significant im-
provements.

Finally, we show that better code layout can also provide sub-
stantial improvements in other parts of the memory system such
as the instruction TLB and the unified second-level cache. The
overall performance impact of the code layout optimizations is an
improvement in execution time of 1.33 times across our different
simulation and hardware platform experiments.

The rest of the paper is structured as follows. The next section
provides an overview of the code layout optimizations used in this
study. Section 3 presents our experimental methodology, including
a brief description of the OLTP workload. Section 4 characterizes
the instruction cache behavior of the database application code and
studies the impact of code layout optimizations on the isolated ap-
plication instruction stream. The combined application and operat-
ing system instruction stream is studied in Section 5. Finally, we
discuss related work and conclude.

2 Code Layout Optimizations

This section describes the code layout optimizations used in our
study. These optimizations are implemented in the context of
Spike [5], a Compaq product that optimizes executables for the
Alpha architecture. Spike was originally developed for optimiz-
ing Alpha NT binaries and was subsequently extended to optimize
Tru64 Unix binaries as well. This optimizer has been successfully
used to improve the audited results for TPC-C and Oracle applic-
ation benchmarks running on Alpha servers. Finally, Spike can be
used to optimize both user-level applications and operating system
code.

A detailed description of the code layout optimizations avail-
able in Spike can be found in previous papers [5, 20, 22]. The Spike
optimizer algorithm consists of three parts. The basic blocks of a
procedure are reordered to sequentialize the most frequent paths.
The procedure is then split into segments (or sequences), where
each segment ends with an unconditional branch or return. Fi-
nally, these segments are mapped into memory using the Pettis and
Hansen procedure ordering algorithm[20]. We also implemented
a version of the CFA optimization [22], which attempts to reserve
a conflict-free area in the instruction cache for the most frequently
executed traces. However, the footprint for such traces in our OLTP
workload was too large to fit within a reasonably sized fraction of
the cache, and the optimization yielded no gains. Therefore, we do
not use the CFA optimization in this study.

Our code layout algorithms are profile-driven. Either Pixie
(uses instrumentation) or DCPI [1] (uses sampling) can be used for
collecting basic block execution counts. Spike then builds the call
graph for the entire program and the control flow graphs for each
procedure. The call graph includes edges for branches between
procedures. A call or branch edge weight is determined by the ex-
ecution count on the basic block that contains the call. For the flow
graph, the control flow edge weights are estimated from the basic

block counts.

Basic Block Chaining

Figure 1(a) shows an example of the block chaining algorithm.
Spike uses a simple greedy algorithm to order the basic blocks
within a procedure. The flow edges are sorted by weight and are
processed in order, starting with the edge with the heaviest weight.
Each flow edge has a source and destination block. If the edge's
source block does not already have a successor and the destina-
tion block does not already have a predecessor, the two blocks are
chained together. The layout algorithm biases conditional branches
to be not taken and eliminates frequently executed unconditional
branches. Chaining is complete when all of the edges are pro-
cessed. At this point, a procedure will consist of one or more
chains. The chains are sorted by the execution count on the first ba-
sic block. The chain containing the procedure entry point is placed
first, and the rest of the chains are placed in decreasing order.

Fine-Grain Procedure Splitting

After the basic blocks in a procedure are chained, we divide the
chain into multiple code segments. A code segment is ended by
an unconditional branch or return. Each code segment is then rep-
resented as a new separate procedure in Spike. The call graph in-
cludes branch as well as call edges to represent transitions between
these new procedures. Figure 1(b) illustrates our procedure split-
ting algorithm where a single procedure is split into multiple seg-
ments/procedures. The above procedure splitting algorithm was
developed for this study and differs from the one currently avail-
able in the Spike distribution. The latter algorithm only splits a
procedure into a hot and a cold part based on the relative execution
frequency of the basic blocks within the procedure.

Fine grain procedure splitting leads to a program composed of
many segments, each one with a few basic blocks that we expect
will execute sequentially. By splitting each procedure into multiple
segments/procedures, we get an extra degree of flexibility for the
follow-on procedure ordering algorithm.

Procedure Ordering

The procedure ordering algorithm is a straightforward implement-
ation of Pettis and Hansen that attempts to place related procedures
near one another. The example presented in Figure 2 illustrates the
steps. We build a call graph and assign a weight to each edge based
on the number of calls. If there is more than one edge with the same
source and destination, we compute the sum of the execution counts
and delete all but one edge. To place the procedures in the graph,
we select the most heavily weighted edge (A to C), record that the
two nodes should be placed adjacently, collapse the two nodes into
one (A,C), and merge their edges. We again select the most heavily
weighted edge and continue until the graph is reduced to a single
node (E,D,B,A,C). The final node contains an ordering of all the
procedures. When we merge nodes which contain more than one
procedure, we use the weights in the original (not merged) graph
to determine which of the four possible merge endpoints is best.
In addition, special care is taken to ensure that we rarely require a
branch to span more than the maximum branch displacement.

3 Methodology

This section describes the OLTP workload, our profiling scheme,
and the simulation and multiprocessor hardware platforms used in
this study.

0-7695-1162-7/01/$10.00 (C) 2001 IEEE

CALL

RET

A1

A2

A3

A4

A7

A8

A5

A6

A1 10 Node weight

0.4 Branch probability0.6

A1

A2

A3

A4 A5

A6 A7

A8

10

10

10

6 4

7.62.4

10

1

0.6

0.4

1 1

0.6

0.4

Unconditional branch / Fall-through

Conditional branch

(a) basic block chaining algorithm

RET

RET

RET

Procedure 2

Procedure 3

Procedure 4

Procedure 5

Procedure 6

Procedure 1
Unconditional branch

Unconditional branch

Indirect jump

Subroutine return

Subroutine return

Subroutine return

CALL
RET

(b) procedure splitting algorithm

Figure 1: Example of the basic block chaining and procedure split-
ting algorithms.

A

B C

ED

B

ED

1

A,C

E

E

4

1

3

1
8

7

8
1

7
B,D

11

A,C

2
D,B,A,C E,D,B,A,C

10

Figure 2: Example of the procedure ordering algorithm.

3.1 OLTP Workload

Our OLTP workload is modeled after the TPC-B benchmark [30].
This benchmark models a banking database system that keeps track
of customers' account balances, as well as balances per branch and
teller. Each transaction updates a randomly chosen account bal-
ance, as well as the balances of the corresponding branch and teller.
The transaction also adds an entry to the history table which keeps
a record of all submitted transactions. We use the Oracle 8.0.4
commercial database management system as our database engine.

Our OLTP workload is set up and scaled in a similar way to a
previous study which validated such scaling [2]. We use a TPC-B
database with 40 branches and a size of over 900MB. We use Or-
acle in a dedicated mode for this workload, whereby each client
process has a dedicated server process for serving its transactions.
To hide I/O latencies, including the latency of log writes, OLTP
runs are usually configured with multiple server processes per pro-
cessor. We use 8 processes per processor in this study.

3.2 Collecting Profiles

The OLTP profile data was obtained using Pixie. We use the ori-
ginal (unmodified) binary to start up the database, cache all tables
in memory, and warm up the indices. In order to focus the profile
on the transaction processing component of the workload, only the
server processes that are dedicated to executing client requests use
the “pixified” binary. The workload is then ran for 2000 transac-
tions after the warmup period.

Kernel profiles were collected using the Tru64 Unix kprofile
tool, which is based on PC sampling using the Alpha performance
counters. The profile data for the kernel was derived while execut-
ing the transaction processing section of the OLTP workload.

3.3 Hardware and Simulation Platforms

Our performance evaluation experiments consist of both full sys-
tem simulations and direct machine measurements using hardware
counters. Our hardware experiments consisted of running OLTP for
5000 transactions five times (after a warmup period), discarding the
best and worst case numbers and averaging the remaining three.
Using DCPI [1], we measured execution time, instruction cache
misses, and instruction TLB performance. We used a couple of
different Alpha multiprocessor platforms that are specifically men-
tioned in the results sections.

For our simulations, we use the SimOS-Alpha environment
(our Alpha port of SimOS [24]) which was used in a previous
study of commercial applications and has been validated against
Alpha multiprocessor hardware [2]. SimOS-Alpha is a full system
simulation environment that simulates the hardware components
of Alpha-based multiprocessors (processors, MMU, caches, disks,
console) in enough detail to run Alpha system software. The abil-
ity to simulate both user and system code under SimOS-Alpha is
essential given the rich level of system interactions exhibited by
commercial workloads. Our simulations run from a checkpoint
that is taken when the workload is already in its steady state, and
run for 500 transactions (after a warmup period) on a simulated 4-
processor Alpha system. The basic SimOS-Alpha simulations use
a 1 GHz single-issue pipelined processor model with 64KB 2-way
instruction and data caches (64-byte line size), and a 1.5MB 6-way
unified L2 cache. The memory latencies assume aggressive chip-
level integration [4]: 12ns L2 hit, 80ns for local memory, and 150-
200ns for 2-hop and 3-hop remote misses. To simplify our study of
instruction cache behavior with various cache parameters, we mod-
ified SimOS-Alpha to also generate application and kernel instruc-

0-7695-1162-7/01/$10.00 (C) 2001 IEEE

tion traces. These traces include the virtual and physical addresses
along with the CPU and process that executed the instruction, and
are used with simple instruction cache simulators for our studies of
miss behavior across a large variety of cache parameters.

After code layout optimizations, the improved efficiency of the
workload often causes it to be more I/O bound. This leads to higher
idle time, making elapsed execution time comparisons meaning-
less. In practice, the workload can be re-tuned to eliminate the
excess idle time. However, such re-tuning would further modify
the behavior of the optimized runs with respect to the unoptimized
runs, making it difficult to isolate the effects of our optimizations.
Therefore, we chose to use non-idle execution cycles instead of
elapsed execution time as our performance metric.

4 Behavior of the Database Application in
Isolation

Code layout optimizations typically yield performance improve-
ments primarily due to improvements in the instruction cache be-
havior of the application. To better understand these effects, this
section analyzes the instruction cache behavior of the application
in isolation, i.e., without considering the impact of operating sys-
tem interference. We achieve this by filtering out operating sys-
tem instructions from the instruction stream before doing our cache
simulations. The combined instruction stream is studied in the next
section.

This section begins by presenting a detailed characterization of
the instruction cache behavior of both the original and optimized
database application binaries. The optimized binary incorporates
all the optimizations described in Section 2. Next we show how
the individual optimizations contribute to the overall miss reduc-
tions. Finally, we provide further insight into the changes in the
application behavior that lead to these improvements.

4.1 Instruction Cache Miss Characterization

Figure 3 shows an execution profile of the unoptimized database
application. The x-axis corresponds to the static instruction foot-
print sorted from the most to the least frequently executed instruc-
tion. The y-axis corresponds to the cumulative fraction of executed
instructions that a given footprint size captures. The figure shows
that a 50KB footprint only captures 60% of the executed instruc-
tions, and capturing 99% of the instructions requires nearly 200KB.
The total footprint is around 260KB. Due to non-ideal packing of
instructions into cache lines, the actual footprint assuming 128-
byte lines is approximately 500KB. For reference, the static size of
the baseline application binary is over 27MB. The large instruction
footprint and flat execution profile highlight the extreme memory
system demands of OLTP workloads.

Figure 4 shows the application instruction cache miss behavior
for the baseline and optimized binaries, for a range of cache and
line sizes. Figure 5 is a composition of the results in Figures 4(a)
and (b) to more clearly indicate the improvements in misses in the
optimized binary relative to the baseline. Overall, a 128-byte cache
line seems to be the sweet spot across various cache sizes for both
the baseline and optimized binaries. Focusing on 64KB and 128KB
instruction caches (realistic for near-term systems), the relative re-
duction of misses due to code layout optimizations is approxim-
ately 55%-65%.

Overall, relative gains are larger with larger line sizes. This is
due to the better packing of instructions into cache lines (more on
this later). Furthermore, the relative gains are larger with larger
cache sizes up to 256KB. This result is slightly counter-intuitive:

0 50000 100000 150000 200000
Code size (bytes)

0

20

40

60

80

100

F
ra

ct
io

n
of

 e
xe

cu
te

d
in

st
ru

ct
io

ns

Figure 3: Execution profile of the unoptimized application binary:
fraction of all dynamic instructions captured with a given footprint.

the better the baseline, the harder it should be to improve it. Yet, it
appears that the code layout optimizations can make better use of
the larger caches as well.

Figure 6 displays the impact of associativity for both the
baseline and optimized binaries. For reasonable cache sizes
(32KB-128KB), the impact of associativity is quite small. This
is because capacity issues dominate at these sizes. In comparison,
the benefits from code layout optimizations are much larger. These
optimizations not only reduce conflicts by careful ordering of code
segments, but also reduce capacity misses by better packing the
code.

An interesting indication of how efficiently the code layout
optimizations pack the application code comes from measuring
the footprint of the baseline and optimized binaries in number of
unique cache lines touched during execution. The optimized bin-
ary footprint in 128B cache lines is 37% smaller than the baseline
binary (315KB versus 500KB). Furthermore, only 21% of the total
number of instructions fetched into the cache are not used for
the optimized binary, compared to 46% for the baseline binary
(use/reuse of fetched instructions is discussed in more detail later
in the section).

Figure 7 isolates the impact of different code layout optimiza-
tions on the instruction cache misses of the application. Procedure
ordering alone causes a slight increase in cache misses. Clearly, the
order of code segments at this large a granularity does not provide a
better code layout. The largest (absolute) benefit comes from basic
block chaining due to significant increases in instruction sequence
lengths. Adding splitting or procedure ordering alone does not im-
prove performance significantly. However, doing procedure order-
ing after the fine-grain routine splitting can further improve per-
formance significantly; procedure ordering at this granularity sep-
arates frequently executed segments from infrequent ones, which
further improves code packing.

4.2 Detailed Analysis of the Instruction Cache
Miss Reductions

In this section, we use various metrics such as instruction sequence
lengths, word usage before replacement, and cache line lifetimes,
to provide further intuition.

The increased benefit of using larger cache lines with the op-
timized binary point to a significant increase in spatial locality.
To explore this further, we measured the number of sequentially
executed instructions between control breaks. Figure 8(a) shows
the average number of sequentially executed instructions in both
the baseline and the optimized application binaries. For reference,
we also show the average dynamic basic block size which is com-

0-7695-1162-7/01/$10.00 (C) 2001 IEEE

base porder chain chain+split chain+porder all
Optimizations used

0

500000

1E+06

In
st

ru
ct

io
n

ca
ch

e
m

is
se

s

128-byte lines / 4-way set assoc.

32KB
64KB
128KB
256KB
512KB

Figure 7: Impact of the different code layout optimizations on instruction cache misses.

16-byte 32-byte 64-byte 128-byte 256-byte
Cache size (KB)

0

2E+06

4E+06

6E+06

In
st

ru
ct

io
n

ca
ch

e
m

is
se

s

32KB
64KB
128KB
256KB
512KB

(a) Baseline OLTP binary

16-byte 32-byte 64-byte 128-byte 256-byte
Cache size (KB)

0

2E+06

4E+06

6E+06

In
st

ru
ct

io
n

ca
ch

e
m

is
se

s

32KB
64KB
128KB
256KB
512KB

(b) Optimized OLTP binary

Figure 4: Instruction cache misses for various cache and line sizes.
Caches are direct-mapped; 4-processor system.

16-byte 32-byte 64-byte 128-byte 256-byte
Cache line size (bytes)

20

30

40

50

60

70

R
el

at
iv

e
nu

m
be

r
of

 m
is

se
s

(%
)

32KB
64KB
128KB
512KB
256KB

Figure 5: Relative instruction cache misses for the optimized binary
over the baseline binary. Caches are direct-mapped; 4-processor
system.

32KB 64KB 128KB 256KB 512KB
Cache size (KB)

0

500000

1E+06

In
st

ru
ct

io
n

ca
ch

e
m

is
se

s

128-byte line

baseline
baseline 4-way
optimized
optimized 4-way

Figure 6: Impact of associativity on instruction cache misses for
both the baseline and the optimized binaries.

0-7695-1162-7/01/$10.00 (C) 2001 IEEE

basic block size base optimized
Setup

0

2

4

6

8

10
A

ve
ra

ge
 le

ng
th

 (
in

st
ru

ct
io

ns
)

average length

(a) Average number of sequentially executed instructions. The
average basic block size is presented for comparison purposes.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Sequence length (instructions)

0

5

10

15

20

F
ra

ct
io

n
of

 a
ll

se
qu

en
ce

s
(%

)

base
optimized

(b) Percentage of sequences of each length.

Figure 8: Sequentially executed instructions in both the baseline
and optimized application binaries.

mon to both binaries. The basic block chaining optimization aligns
branches so that they tend to be not taken, increasing code sequen-
tiality. The optimized Oracle binary increases the sequence length
from 7.3 to over 10 instructions. Figure 8(b) shows a histogram
of the sequence length for both binaries. The results show that the
sequence length increase in the optimized binary is mainly due to
a reduction of the 1-instruction sequences (from 21% to 15% of
all sequences), and a large spike at the 17-instruction length (14%
of all sequences), which is just above the 64-byte cache line size.
Even for the unoptimized binary, the large number of sequences at
length 15 suggests that a larger line size than 64-bytes is benefi-
cial (since sequences are not guaranteed to be aligned with a cache
line).

While the increases in instruction sequence lengths are notice-
able, they alone do not explain the instruction miss improvements
shown before. Figure 9 shows a more direct measure of the in-
creased spatial locality. The figure provides a histogram of the
number of unique words used in a 128-byte cache line before it
is replaced from a 128KB cache. The results show that the code
layout optimizations lead to a remarkable increase in the number
of times the full 128-byte cache line is used before being replaced
(over 60% of the lines!).

We next consider a metric for temporal locality. Figure 10
shows the number of times an individual instruction is used be-
fore eviction. The results shows that over half of the instructions
fetched into the cache are not used in the the unoptimized binary,
and very few instructions are used more than once. In comparison,
the optimized binary significantly reduces the number of unused

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Unique words used before replacement (words)

0

20

40

60

F
ra

ct
io

n
of

 a
ll

re
pl

ac
em

en
ts

 (
%

)

128KB cache / 128-byte line / 4-way assoc

base
optimized

Figure 9: Unique word usage before cache replacement.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Times a word is used before replacement

0

10

20

30

40

50

P
er

ce
nt

ag
e

of
 w

or
ds

 lo
ad

ed
 in

to
 t

he
 ic

ac
he

 (
%

)

128KB cache / 128-byte line / 4-way assoc

base
optimized

Figure 10: Histogram of individual instruction reuse before cache
replacement.

fetched instructions and increases the number of instructions that
are used more than once before eviction. Figure 11 provides an-
other metric for temporal locality by showing cache line lifetime
measured in cache cycles (i.e., number of cache accesses). On av-
erage, the lifetime increases by over a factor of 2 due to code layout
optimizations.

In summary, code layout optimizations provide a major reduc-
tion in application instruction cache misses. The gains primarily
come from longer instruction sequences and better packing of fre-
quently executed sequences which lead to improved spatial and
temporal locality.

5 Combined Database Application and Oper-
ating System Behavior

The previous section studied the application instruction stream
in isolation to develop insight into the interaction between the
code layout optimizations and the application behavior without in-
volving potentially complex interactions between the application
and operating system footprints. Previous studies have shown
that OLTP applications exhibit significant operating system activ-
ity [2, 17]. The interactions between the application and operating
system instruction streams are analyzed in this section.

Figure 12(a) shows the number of instruction cache misses for
the combined instruction streams of the unoptimized application

0-7695-1162-7/01/$10.00 (C) 2001 IEEE

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Cache cycles before replacement (log2)

0

10

20

30

F
ra

ct
io

n
of

 a
ll

lin
e

re
pl

ac
em

en
ts

 (
%

)

128KB cache / 128-byte line / 4-way assoc

base
optimized

Figure 11: Cache line lifetimes for base and optimized binaries.

and the operating system. The two dotted curves show the num-
ber of misses if the instruction streams were executed in isolation.
The solid curve shows the effect of the combined streams. Even
though the number of misses in the kernel is small when executed
in isolation, the impact of the interference between the kernel and
application footprints causes a noticeable increase in total misses.
Figure 12(b) shows the same data except with an optimized ap-
plication binary. The effect of the interference with the kernel is
more pronounced in this case primarily because instruction misses
from the application are substantially reduced by the layout op-
timizations while the number of misses due to interference remain
constant. Overall, the reduction in instruction misses is 45%-60%
for 64-128KB caches. This compares to the 55%-65% reductions
when we study the application in isolation.

Figure 13 shows a detailed analysis of the interference between
the application and the operating system. For each instruction
cache miss from a given process, the graph shows the owner pro-
cess of the displaced cache line. For both the baseline and optim-
ized application binaries, the majority of application misses arise
due to self interference. In contrast, the kernel interferes very little
with itself, with the majority of kernel misses caused by interfer-
ence with the application.

In addition to the direct impact on instruction cache misses,
code layout optimizations can also improve behavior in other parts
of the memory hierarchy. Figure 14 shows the number of misses
in the instruction TLB and the shared L2 cache (with data and in-
struction misses shown separately) for both the baseline and the
optimized Oracle binaries. These results are derived from our base
SimOS simulations assuming a 64-entry fully associative iTLB and
a 1.5MB 6-way set-associative L2. The decrease in iTLB misses
primarily arises from better code packing at the page granularity.
The reduction in L2 cache misses is less intuitive. These reductions
also arise from the better code packing at the cache line granularity
which leads to less interference with both other instruction and data
cache lines.

We have also measured the impact of the code layout optimiza-
tions on instruction, iTLB misses, and board-level cache misses in
a 21164-based AlphaServer. Our results indicated a 28% reduction
in instruction misses (8KB cache), a 43% reduction in iTLB misses
(48-entry iTLB), and a 39% reduction in board-level cache misses
(2MB direct-mapped).

Finally, Figure 15 presents execution time measurements on
two separate Alpha platforms: a 21264-based (AlphaServer DS20,

32KB 64KB 128KB 256KB 512KB
Cache size (KB)

0

500000

1E+06

1.5E+06

In
st

ru
ct

io
n

ca
ch

e
m

is
se

s

128-byte line / 4-way assoc

all
application
kernel

(a) baseline OLTP binary

32KB 64KB 128KB 256KB 512KB
Cache size (KB)

0

500000

1E+06

1.5E+06

In
st

ru
ct

io
n

ca
ch

e
m

is
se

s

128-byte line / 4-way assoc

all
application
kernel

(b) optimized OLTP binary

Figure 12: Instruction cache behavior for combined application and
operating system.

0-7695-1162-7/01/$10.00 (C) 2001 IEEE

kernel application both
Missing Process

0

500000

1E+06

In
st

ru
ct

io
n

ca
ch

e
m

is
se

s

128KB cache / 128-byte line / 4-way assoc

on kernel owned line
on application owned line

(a) baseline OLTP binary

kernel application both
Missing Process

0

500000

1E+06

In
st

ru
ct

io
n

ca
ch

e
m

is
se

s

128KB cache / 128-byte line / 4-way assoc

on kernel owned line
on application owned line

(b) optimized OLTP binary

Figure 13: Interference between application and kernel instruction
streams.

iTLB L2 instr. misses L2 data misses
0

500000

1E+06

1.5E+06

2E+06

2.5E+06

N
um

be
r

of
 m

is
se

s

base
optimized

Figure 14: Comparison of the iTLB and L2 cache performance for
the baseline and optimized binaries.

600MHz) and a 21164-based (AlphaServer 4100, 300MHz) server.
The figure shows the reduction in execution time relative to the
unoptimized (base) application binary for various combinations of
layout optimizations. Overall, both systems achieve an improve-
ment of 1.33 times in execution time due to the optimizations. Our
SimOS simulations that approximate a 1GHz Alpha 21364-based
system show a 1.37 times improvement in execution time. It is in-
teresting to note that the overall execution time improvements are
consistent across three generations of Alpha processors with sub-
stantially different clock frequencies and memory system paramet-
ers. The above results are for single-processor runs. Multiprocessor
runs can reduce the impact of code layout optimizations due to the
increased impact of data communication misses. For example, a
4-processor run on the AlphaServer 4100 yields a 1.25 times im-
provement in execution time (compared to the 1.33 times improve-
ment for the 1-processor run). Finally, we also performed the same
code layout optimizations on the operating system. However, the
improvement in performance was much smaller (3.5%), partly be-
cause kernel execution constitutes a small fraction of the overall ex-
ecution time. (A combined code layout optimization of the applic-
ation and the kernel may provide more synergistic gains; however,
we did not study this.) The above improvements from code lay-
out optimizations with Spike are consistent with results we have
observed in audit-sized TPC-C benchmarks on AlphaServers.

6 Discussion and Related Work

Code layout optimizations were originally proposed to reduce the
working set size of applications for virtual memory [8, 10, 11].
More recent work has focused on the reduction of branch mispre-
dicts and cache misses.

McFarling [18] describes an algorithm that uses the loop and
call structure of a program to determine which parts of the program
should overlay each other in the cache and which parts should be
assigned to non-conflicting addresses.

Hwu and Chang [13] describe a profile based algorithm which
uses function inline expansion, and groups basic blocks that tend to
execute in sequence into traces. Traces that tend to execute close
together are mapped in the same page to avoid conflicts among
them.

Pettis and Hansen [20] propose a profile based technique which
first reorders the basic blocks inside a procedure to reduce the num-
ber of taken branches. Then, procedures are split in two parts: the
hot section which contains the frequently executed code, and the
cold part which contains mostly unused code. After splitting, the
procedures are mapped in memory so that two procedures which
call each other will be mapped close in memory. As described be-
fore, we use a fine-grain procedure splitting technique instead of
the hot/cold technique.

Torrellas et al. [28] designed a basic block reordering algorithm
for operating system code. Using a basic block chaining algorithm
similar to that of Hwu and Chang, they build traces spanning sev-
eral functions, and then keep a section of the cache address space
reserved for the most frequently referenced basic blocks.

Gloy et al. [9] extend the Pettis and Hansen placement al-
gorithm at the procedure level to consider the temporal relation-
ship between procedures in addition to the target cache informa-
tion and the size of each procedure. Hashemi et al. [12] and Kala-
maitianos et al. [14] use a cache line coloring algorithm inspired
by the register allocation graph coloring technique to map proced-
ures to minimize the number of conflicts. The above studies do not
consider procedure splitting and/or chaining in combination with
the procedure placement algorithm. Our work shows that proced-
ure placement is quite ineffective on its own for workloads such as

0-7695-1162-7/01/$10.00 (C) 2001 IEEE

base porder chain chain+split chain+porder all
Optimization combination

75

80

85

90

95

100

R
el

at
iv

e
ex

ec
ut

io
n

ti
m

e
(n

on
-i

dl
e

cy
cl

es
, %

)

21264 (64KB, 2-way)
21164 (8KB, 1-way)

Figure 15: Execution time of various code layout optimizations on Alpha hardware platforms.

OLTP which have large instruction footprints, and only becomes
beneficial when used in combination with splitting and chaining.

Ramirez et al. [21, 22] use a variation of the Torrellas algorithm
specially targeted to database applications, and map whole basic
block traces to the reserved area of the instruction cache in an effort
to maximize code sequentiality. Their work was mainly on DSS
which has a much better instruction cache behavior than OLTP.

Code layout has been implemented in various production tools,
such as Compaq's Object Modification tool (OM) [27], its suc-
cessor Spike [5], and IBM's FDPR [26]. They are all variations
of Pettis and Hansen's algorithm.

Maynard [17] and more recently Barroso et al. [2] and Kee-
ton et al. [15] have characterized the memory system behavior of
commercial workloads. Our paper specifically examines how code
layout changes this behavior. Ranganathan et al. [23] analyze the
performance of commercial applications on out-of-order machines,
and show that a 4-element instruction stream buffer proves effect-
ive at increasing performance. Their work is based on application
traces without the kernel, and hence does not include the interfer-
ence between application and kernel instruction streams. Neverthe-
less, our analysis of code layout optimizations suggests that it can
be used to enhance the efficiency of instruction stream buffers by
increasing instruction sequence lengths.

Cohn et al. [5] and Schmidt et al. [26] measure the effect of
code layout on a wide variety of applications. Cohn et al. report
that code layout makes most applications faster, except for small
programs that spend most of the time in tight loops. Schmidt et al.
only consider code layout optimizations for the operating system.
In comparison, our paper contains an in-depth analysis of code lay-
out optimizations in the context of OLTP workloads.

7 Concluding Remarks

With the growing dominance of commercial applications in the
multiprocessor server market, it is important to consider software
and compiler-level optimizations in addition to hardware features
that can improve the performance of such workloads. This paper
presents an in-depth analysis of utilizing profile-driven compiler
optimizations to improve code layout in the context of OLTP work-
loads which are especially challenging due to their large instruction

footprints.
Considering the application instruction stream in isolation, the

code layout optimizations lead to a 55% to 65% reduction in the
instruction misses for 64-128K caches, with basic block chaining
being responsible for a large portion of this improvement. The
improvement in instruction misses can be primarily attributed to
longer sequences of consecutively executed instructions and better
spatial and temporal reuse of cache lines before they are replaced.
The combined application and operating system instruction streams
highlight the importance of interference between the two streams,
which becomes even more prominent with the optimized applica-
tion. Applying code layout optimizations to the operating system
code does not lead to any significant improvements. The overall
impact of code layout optimizations on the combined instruction
stream is a reduction of 45% to 60% in misses. We also show
that optimizing the code layout can provide significant indirect im-
provements in other parts of the memory system such as the in-
struction TLB and the unified second level cache. Overall, these
optimizations yield an improvement in performance of 1.33 times
across our different simulation and hardware platform experiments.

The typical size and complexity of commercial workloads
makes them less amenable to research on software and compiler-
level optimizations. However, we find the significant performance
improvements achieved by using relatively simple profile-driven
code layout optimizations to be quite promising. We hope that
these encouraging results pave the path for further exploration of
software techniques to improve the behavior of commercial work-
loads and reduce the burden on hardware designs.

Acknowledgments

We would like to thank Jennifer Anderson for her early involvement
in this work. We also thank the anonymous reviewers for their
comments.

References

[1] J.-A. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Hen-
zinger, S.-T. Leung, R. L. Sites, M. T. Vandervoorde, C. A. Wald-
spurger, and W. E. Weihl. Continuous profiling: Where have all the

0-7695-1162-7/01/$10.00 (C) 2001 IEEE

cycles gone? In Proceedings of the 16th International Symposium on
Operating Systems Principles, pages 1–14, Oct 1997.

[2] L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory system
characterization of commercial workloads. Proceedings of the 16th
Annual Intl. Symposium on Computer Architecture, pages 3–14, June
1998.

[3] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk,
S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese. Piranha:
A Scalable Architecture Based on Single-Chip Multiprocessing. In
Proceedings of the 27th International Symposium on Computer Ar-
chitecture, June 2000.

[4] L. A. Barroso, K. Gharachorloo, A. Nowatzyk, and B. Verghese. Im-
pact of Chip-Level Integration on Performance of OLTP Workloads.
In Proceedings of the 6th International Symposium on High Perform-
ance Computer Architecture, January 2000.

[5] R. Cohn, D. Goodwin, and P. G. Lowney. Optimizing Alpha execut-
ables on Windows NT with Spike. Digital Technical Journal, 9(4):3–
20, 1997. http://research.compaq.com/wrl/DECarchives/DTJ.

[6] Z. Cventanovic and D. Bhandarkar. Performance characterization of
the Alpha 21164 microprocessor using TP and SPECworkloads. In
Proceedings of the 21st Annual International Symposium on Com-
puter Architecture, pages 60–70, Apr 1994.

[7] Z. Cvetanovic and D. D. Donaldson. AlphaServer 4100 performance
characterization. Digital Technical Journal, 8(4):3–20, 1996.

[8] D. Ferrari. Improving locality by critical working sets. Communica-
tions of the ACM, 17(11):614–620, Nov. 1974.

[9] N. Gloy, T. Blackwell, M. D. Smith, and B. Calder. Procedure place-
ment using temporal ordering information. Proceedings of the 30th
Annual ACM/IEEE Intl. Symposium on Microarchitecture, pages 303–
313, Dec. 1997.

[10] D. J. Hartfield and J. Gerald. Program restructuring for virtual
memory. IBM Systems Journal, 2:169–192, 1971.

[11] S. J. Hartley. Compile-time program restructuring in multipro-
grammed virtual memory systems. IEEE Transactions on Software
Engineering, 14(11):1640–1644, Nov. 1988.

[12] A. H. Hashemi, D. R. Kaeli, and B. Calder. Efficient procedure
mapping using cache line coloring. Proc. ACM SIGPLAN Conf. on
Programming Language Design and Implementation, pages 171–182,
June 1997.

[13] W.-M. Hwu and P. P. Chang. Achieving high instruction cache per-
formance with an optimizing compiler. Proceedings of the 16th An-
nual Intl. Symposium on Computer Architecture, pages 242–251, June
1989.

[14] J. Kalamaitianos and D. R. Kaeli. Temporal-based procedure reorder-
ing for improved instruction cache performance. Proceedings of the
4th Intl. Conference on High Performance Computer Architecture,
Feb. 1998.

[15] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and W. E. Baker.
Performance Characterization of a Quad Pentium Pro SMP Using
OLTP Workloads. Proceedings of the 25th Annual Intl. Symposium
on Computer Architecture, pages 15–26, June 1998.

[16] J. L. Lo, L. A. Barroso, S. J. Eggers, K. Gharachorloo, H. M. Levy,
and S. S. Parekh. An analysis of database workload performance on
simultaneous multithreaded processors. Proceedings of the 25th An-
nual Intl. Symposium on Computer Architecture, pages 39–50, June
1998.

[17] A. M. G. Maynard, C. M. Donnelly, and B. R. Olszewski. Contrast-
ing characteristics and cache performance of technical and multi-user
commercial workloads. In Proceedingsof the Sixth International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, pages 145–156, Oct 1994.

[18] S. McFarling. Program optimization for instruction caches. Proceed-
ings of the 3rd Intl. Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 183–191, Apr. 1989.

[19] S. E. Perl and R. L. Sites. Studies of Windows NT performance us-
ing dynamic execution traces. In Proceedings of the Second Sym-
posium on Operating System Design and Implementation, pages 169–
184, Oct. 1996.

[20] K. Pettis and R. C. Hansen. Profile guided code positioning. Proc.
ACM SIGPLAN Conf. on Programming Language Design and Imple-
mentation, pages 16–27, June 1990.

[21] A. Ramirez, J. L. Larriba-Pey, C. Navarro, X. Serrano, J. Torrellas,
and M. Valero. Optimization of instruction fetch for decision sup-
port workloads. Proceedings of the Intl. Conference on Parallel Pro-
cessing, pages 238–245, Sept. 1999.

[22] A. Ramirez, J. L. Larriba-Pey, C. Navarro, J. Torrellas, and M. Valero.
Software trace cache. Proceedings of the 13th Intl. Conference on
Supercomputing, June 1999.

[23] P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A. Barroso. Per-
formance of database workloads on shared-memory systems with out
of order processors. Proceedings of the 8th Intl. Conference on Archi-
tectural Support for Programming Languagesand Operating Systems,
Oct. 1998.

[24] M. Rosenblum, E. Bugnion, S. A. Herrod, and S. Devine. Using
the SimOS machine simulator to study complex computer systems.
ACM Transactions on Modeling and Computer Simulation, 7(1):78–
103, Jan. 1997.

[25] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and A. Gupta.
The impact of architectural trends on operating system performance.
In Proceedings of the Fifteenth ACM Symposium on Operating Sys-
tems Principles, pages 285–298, 1995.

[26] W. J. Schmidt, R. R. Roediger, C. S. Mestad, B. Mendelson, I. Shavit-
Lottem, and V. Bortnikov-Sitnitsky. Profile-directed restructuring of
operating system code. IBM Systems Journal, 37(2), 1998.

[27] A. Srivastava and D. W. Wall. A practical system for intermodule
code optimization at link-time. Journal of Programming Languages,
1(1):1–18, Dec. 1992.

[28] J. Torrellas, C. Xia, and R. Daigle. Optimizing instruction cache per-
formance for operating system intensive workloads. Proceedings of
the 1st Intl. Conference on High Performance Computer Architecture,
pages 360–369, Jan. 1995.

[29] http://www.tpc.org.

[30] Transaction Processing Performance Council. TPC Benchmark B
(Online Transaction Processing) Standard Specification, 1990.

0-7695-1162-7/01/$10.00 (C) 2001 IEEE

