
Pointer and Escape Analysis for Multithreaded Programs ∗

Alexandru S®alcianu
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

salcianu@lcs.mit.edu

Martin Rinard
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

rinard@lcs.mit.edu

ABSTRACT

This paper presents a new combined pointer and escape
analysis for multithreaded programs. The algorithm uses
a new abstraction called parallel interaction graphs to an-
alyze the interactions between threads and extract precise
points-to, escape, and action ordering information for ob-
jects accessed by multiple threads. The analysis is compo-
sitional, analyzing each method or thread once to extract
a parameterized analysis result that can be specialized for
use in any context. It is also capable of analyzing programs
that use the unstructured form of multithreading present in
languages such as Java and standard threads packages such
as POSIX threads.

We have implemented the analysis in the MIT Flex com-
piler for Java and used the extracted information to 1) ver-
ify that programs correctly use region-based allocation con-
structs, 2) eliminate dynamic checks associated with the use
of regions, and 3) eliminate unnecessary synchronization.
Our experimental results show that analyzing the interac-
tions between threads significantly increases the effective-
ness of the region analysis and region check elimination, but
has little effect for synchronization elimination.

1. INTRODUCTION
Multithreading is a key structuring technique for modern

software. Programmers use multiple threads of control for
many reasons: to build responsive servers that communicate
with multiple parallel clients [15], to exploit the parallelism
in shared-memory multiprocessors [5], to produce sophisti-
cated user interfaces [16], and to enable a variety of other
program structuring approaches [11].

Research in program analysis has traditionally focused
on sequential programs [14]; extensions for multithreaded
programs have usually assumed a block structured, parbe-
gin/parend form of multithreading in which a parent thread
starts several parallel threads, then immediately blocks wait-
ing for them to finish [12, 19]. But the standard form of
multithreading supported by languages such as Java and

∗
The research was supported in part by DARPA/AFRL Con-

tract F33615-00-C-1692, NSF Grant CCR00-86154, and NSF Grant
CCR00-63513.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
PPoPP’01,June 18-20, 2001, Snowbird, Utah, USA.
Copyright 2001 ACM 1-58113-346-401/0006 ...$5.00.

threads packages such as POSIX threads is unstructured —
child threads execute independently of their parent threads.
The software structuring techniques described above are de-
signed to work with this form of multithreading, as are
many recommended design patterns [13]. But because the
lifetimes of child threads potentially exceed the lifetime of
their starting procedure, unstructured multithreading sig-
nificantly complicates the interprocedural analysis of multi-
threaded programs.

1.1 Analysis Algorithm
This paper presents a new combined pointer and escape

analysis for multithreaded programs, including programs
with unstructured forms of multithreading. The algorithm
is based on a new abstraction, parallel interaction graphs,
which maintain precise points-to, escape, and action order-
ing information for objects accessed by multiple threads.
Unlike previous escape analysis abstractions, parallel inter-
action graphs enable the algorithm to analyze the interac-
tions between parallel threads. The analysis can therefore
capture objects that are accessed by multiple threads but
do not escape a given multithreaded computation. It can
also fully characterize the points-to relationships for objects
accessed by multiple parallel threads.

Because parallel interaction graphs characterize all of the
potential interactions of the analyzed method or thread with
its callers and other parallel threads, the resulting analysis
is compositional at both the method and thread levels —
it analyzes each method or thread once to produce a single
general analysis result that can be specialized for use in any
context.1 Finally, the combination of points-to and escape
information in the same abstraction enables the algorithm
to analyze only part of the program, with the analysis result
becoming more precise as more of the program is analyzed.

1.2 Application to Region-Based Allocation
We have implemented our analysis in the MIT Flex com-

piler for Java. The information that it produces has many
potential applications in compiler optimizations, software
engineering, and as a foundation for further program anal-
ysis. This paper presents our experience using the analysis
to optimize and check safety conditions for programs that
use region-based allocation constructs instead of relying on
garbage collection. Region-based allocation allows the pro-
gram to run (a potentially multithreaded) computation in

1Recursive methods or recursively generated threads may require an
iterative algorithm that may analyze methods or threads in the same
strongly connected component multiple times to reach a fixed point.

the context of a specific allocation region. All objects cre-
ated by the computation are allocated in the region and
deallocated when the computation finishes. To avoid dan-
gling references, the implementation must ensure that the
objects in the region do not outlive the associated compu-
tation. One standard way to achieve this goal is to dynam-
ically check that the program never attempts to create a
reference from one object to another object allocated in a
region with a shorter lifetime [4]. If the program does at-
tempt to create such a reference, the implementation refuses
to create the reference and throws an exception. Unfortu-
nately, this approach imposes dynamic checking overhead
and introduces a new failure mode for programs that use
region-based allocation.

We have used our analysis to statically verify that our
multithreaded benchmark programs use region-based allo-
cation correctly. It therefore provides a safety guarantee to
the programmer and enables the compiler to eliminate the
dynamic region reference checks. We also found that in-
trathread analysis alone is not powerful enough — the algo-
rithm must analyze the interactions between parallel threads
to verify the correct use of region-based allocation.

We also used our analysis for the more traditional pur-
pose of synchronization elimination. While our algorithm is
quite effective at enabling this optimization, for our multi-
threaded benchmarks, the interthread analysis provides lit-
tle additional benefit over the standard intrathread analysis.

1.3 Contributions
This paper makes the following contributions:

• Abstraction: It presents a new abstraction, paral-
lel interaction graphs, for the combined pointer and
escape analysis of programs with unstructured multi-
threading.

• Analysis: It presents a new algorithm for analyz-
ing multithreaded programs. The algorithm is com-
positional and analyzes interactions between parallel
threads.

• Region-Based Allocation: It presents our experi-
ence using the analysis to statically verify that pro-
grams correctly use region-based allocation constructs.
The benefits include providing a safety guarantee for
the program and eliminating the overhead of dynamic
region reference checks.

The remainder of the paper is structured as follows. Sec-
tion 2 presents an example that illustrates how the algorithm
works. Section 3 presents the abstractions that the analy-
sis uses, while Section 4 presents the analysis algorithm and
Section 5 discusses the analysis uses. We discuss experi-
mental results in Section 6, related work in Section 7, and
conclude in Section 8.

2. EXAMPLE
We next present a simple example that illustrates how the

analysis works.

2.1 Structure of the Parallel Computation
Figure 1 presents a multithreaded Java program that com-

putes the Fibonacci number of its input. The Task class
implements a parallel divide and conquer algorithm for this

computation. Each Task stores an Integer object in its
source field as input and produces a new Integer object in
its target field as output.2

This program illustrates several common patterns for mul-
tithreaded programs. First, it uses threads to implement
parallel computations. Second, when a thread starts its ex-
ecution, it points to objects that hold the input data for
its computation. Finally, when the computation finishes, it
writes references to its result objects into its thread object
for the parent computation to read.

class main {
public static void main(String args[]) {

int i = Integer.parseInt(args[0]);
Fib f = new Fib(i);
Region r = new Region();
r.enter(f);

}
}
class Fib implements Runnable {

int source;

Fib(int i) { source = i; }

public void run() {
Task t = new Task(new Integer(source));
t.start();
try {

t.join();
} catch (Exception e) { System.out.println(e); }
System.out.println(t.target.toString());

}
}
class Task extends Thread {

public Integer source;
public Integer target;

Task(Integer s) { source = s; }

public void run() {
int v = source.intValue();
if (v <= 1) {

target = source;
} else {

Task t1 = new Task(new Integer(v-1));
Task t2 = new Task(new Integer(v-2));
t1.start();
t2.start();
try {

t1.join();
t2.join();

} catch (Exception e) { System.out.println(e); }
int x = t1.target.intValue();
int y = t2.target.intValue();
target = new Integer(x + y);

}
}

}

Figure 1: Multithreaded Fibonacci Example

2.2 Regions and Memory Management
As the computation runs, it continually allocates new

Task objects for the parallel subcomputations and new Integer

objects to hold their inputs and outputs. The lifetimes of

2This program uses the standard Java thread creation mechanism.
The statement t1.start() creates a new parallel thread of control.
This new thread of control then invokes the run method of the Task
class on the t1 object. This start/run linkage is the standard way to
execute new threads in Java.

these objects are contained in the lifetime of the Fibonacci
computation, and die when this computation finishes. A
standard memory management system would not exploit
this property. The Task and Integer objects would be allo-
cated out of the garbage-collected heap, increasing the mem-
ory consumption rate, the garbage collection frequency, and
therefore the garbage collection overhead.

Region-based allocation provides an attractive alterna-
tive. Instead of allocating all objects out of a single garbage-
collected heap, region-based approaches allow the program
to create multiple memory regions, then allocate each object
in a specific region. When the program no longer needs any
of the objects in the region, it deallocates all of the objects
in that region without garbage collection.

Researchers have proposed many different region-based al-
location systems. Our example (and our implemented sys-
tem) uses the approach standardized in the Real-Time Java
specification [4]. Before the main program invokes the Fi-
bonacci computation, it creates a new memory region r.
The statement r.enter(f) executes the run method of the
f object (and all of the methods or threads that it exe-
cutes) in the context of the new region r. When one of
the threads in this computation creates a new object, the
object is allocated in the region r. When the entire multi-
threaded computation terminates, all of the objects in the
region are deallocated without garbage collection. The Task
and Integer objects are therefore managed independently of
the garbage collected heap and do not increase the garbage
collection frequency or overhead. Region-based allocation
is an attractive alternative to garbage collection because it
exploits the correspondence between the lifetimes of objects
and the lifetimes of computations to deliver a more efficient
memory management mechanism.

2.3 Regions and Dangling Reference Checks
One potential problem with region-based allocation is the

possibility of dangling references. If an object whose lifetime
exceeds the region’s lifetime refers to an object allocated in-
side the region, any use of the reference after the region is
deallocated will access potentially recycled garbage, violat-
ing the memory safety of the program. The Real-Time Java
specification eliminates this possibility as follows. It allows
the computation to create a hierarchy of nested regions and
ensures that no parent region is deallocated before one of its
child regions. Each region is associated with a (potentially
multithreaded) computation; the objects in the region are
deallocated when its computation terminates and the ob-
jects in all of its child regions have been deallocated. The
implementation dynamically checks all assignments to ob-
ject fields to ensure that the program never attempts to
create a reference that goes down the hierarchy from an ob-
ject in an ancestor region to an object in a child region. If
the program does attempt to create such a reference, the
check fails. The implementation prevents the assignment
from taking place and throws an exception.

While these checks ensure the memory safety of the exe-
cution, they impose additional execution time overhead and
introduce a new failure mode for the software. Our goal is
to analyze the program and statically verify that the checks
never fail. Such an analysis would enable the compiler to
eliminate all of the dynamic region checks. It would also
provide the programmer with a guarantee that the program
would never throw an exception because a check failed.

2.4 Analysis in the Example
We use a generalized escape analysis to determine whether

any object allocated in a given region escapes the compu-
tation associated with the region. If none of the objects
escape, the program will never attempt to create a dangling
reference and the compiler can eliminate all of the checks.
The algorithm first performs an intrathread, interprocedural
analysis to derive a parallel interaction graph at the end of
each method. Figures 2 and 3 present the analysis results for
the run methods in the Fib and Task classes, respectively.

2.4.1 Points-to Graphs
The first component of the parallel interaction graph is the

points-to graph. The nodes in this graph represent objects;
the edges represent references between objects. There are
two kinds of edges: inside edges, which represent references
created within the analyzed part of the program (for Fig-
ure 2, the sequential computation of the Fib.run method),
and outside edges, which represent references read from ob-
jects potentially accessed outside the analyzed part of the
program. In our figures, solid lines denote inside edges and
dashed lines denote outside edges.

There are also several kinds of nodes. Inside nodes rep-
resent objects created within the analyzed part of the pro-
gram. There is one inside node for each object creation
site in the program; that node represents all objects created
at that site. Parameter nodes represent objects passed as
parameters to the currently analyzed method; load nodes
represent objects accessed by reading a reference in an ob-
ject potentially accessed outside the analyzed part of the
program. Together, the parameter and load nodes make up
the set of outside nodes. In our figures, solid circles denote
inside nodes and dashed circles denote outside nodes.

In Figure 2, nodes 1 and 4 are outside nodes. Node 1

represents the this parameter of the method, while node 4

represents the object whose reference is loaded by the ex-
pression t.target at line 2 of the example at the end of the
Fib.run method. Nodes 2 and 3 are inside nodes, and de-
note the Task and Integer objects created in the statement
Task t = new Task(new Integer(source)) at line 1 of the
example.

2.4.2 Started Thread Information
The parallel interaction graph contains information about

which threads were started by the analyzed part of the pro-
gram. In Figure 2, node 2 represents the started Task thread
that implements the entire Fibonacci computation. In Fig-
ure 3, nodes 8 and 11 represent the two threads that im-
plement the parallel subtasks in the computation. The in-
terthread analysis uses the started thread information when
it computes the interactions between the current thread and
threads that execute in parallel with the current thread.

2.4.3 Escape Information
The parallel interaction graph contains information about

how objects escape the analyzed part of the program to be
accessed by the unanalyzed part. A node escapes if it is a
parameter node or represents an unanalyzed thread started
within the analyzed part of the program. It also escapes if
it is reachable from an escaped node. In Figure 2, node 1

escapes because it is passed as a parameter, while nodes 3

and 4 escape because they are reachable from the unana-
lyzed thread node 2.

source

1this

2t

target

3

4

is an unanalyzed
started thread node

is reachable from3

1 is a parameter node

2

2

is reachable from 24

Points-to Information Escape Information

inside edge

outside edge

inside node

outside node

Figure 2: Analysis Result for Fib.run

source

8t1

target

9

10

is an unanalyzed
started thread node

is reachable from9

5 is a parameter node

8

8

is reachable from 810

Points-to Information Escape Information

source

11t2

target

12

13

source

5this
target

6

7
is reachable from 56

is reachable from 57

is an unanalyzed
started thread node

is reachable from12

11

11

is reachable from1113

Figure 3: Analysis Result for Task.run

Points-to Information
from Fib.Run

source

5
target

6

7

source

1this

2t

target

3

4

Points-to Information
from Task.Run

Mappings

Figure 4: Mappings for Interthread Analysis of
Fib.run and Task.run

source

8

target

9

10

is an unanalyzed
started thread node

is reachable from9

8

8

is reachable from 810

Points-to Information Escape Information

source

11

target

12

13

source

2t
target

3

7

is an unanalyzed
started thread node

is reachable from12

11

11

is reachable from1113

1this

1 is a parameter node

Figure 5: Analysis Result After First Interthread
Analysis

Points-to Information Escape Information

source

2t
target

3

7

1this 1 is a parameter node

source

8

target

9

source

11

target

12

Figure 6: Final Analysis Result for Fib.run

2.5 Interthread Analysis
Previously proposed escape analyses treat threads very

conservatively — if an object is reachable from a thread ob-
ject, the analyses assume that it has permanently escaped [2,
3, 6, 22]. Our algorithm, however, analyzes the interactions
between threads to recapture objects accessed by multiple
threads. The foundation of the interthread analysis is the
construction of two mappings µ1 and µ2 between the nodes
of the parallel interaction graphs of the parent and child
threads. Each outside node is mapped to another node if
the two nodes represent the same object during the analy-
sis. The mappings are used to combine the parallel interac-
tion graph from the child thread into the parallel interaction
graph from the parent thread. The result is a new parallel
interaction graph that summarizes the parallel execution of
the two threads.

Figure 4 presents the mappings from the interthread anal-
ysis of Fib.run and the Task.run method for the thread that
Fib.run starts. The algorithm computes these mappings as
follows:

• Initialization: Inside the Fib.run method, node 2

represents the started Task thread. Inside the Task.run
method, node 5 represents the same started thread.
The algorithm therefore initializes µ2 to map node 5

to node 2.

• Matching target edges: The analysis of the Task.run
method creates inside edges from node 5 to nodes 6

and 7. These edges have the label target, and rep-
resent references between the corresponding Task and
Integer objects during the execution of the Task.run

method.

The Fib.run method reads these references to obtain
the result of the Task.run method. The outside edge
from node 2 to node 4 represents these references dur-
ing the analysis of the Fib.run method. The analysis
therefore matches the outside edge from the Fib.run

method (from node 2 to node 4) against the inside
edges from the Task.run method to compute that node
4 represents the same objects as nodes 6 and 7. The
result is that µ1 maps node 4 to nodes 6 and 7.

• Matching source edges: The analysis of the Fib.run
method creates an inside edge from node 2 to node 3.
This edge has the label source, and represents a ref-
erence between the corresponding Task and Integer

objects during the execution of the Fib.run method.

The Task.run method reads this reference to obtain
its input. The outside edge from node 5 to node 6

represents this reference during the analysis of the
Task.run method. The interthread analysis therefore
matches the outside edge from the Task.run method
(from node 5 to node 6) against the inside edge from
the Fib.run method (from node 2 to node 3) to com-
pute that node 6 represents the same objects as node
3. The result is that µ2 maps node 6 to node 3.

• Transitive Mapping: Because µ1 maps node 4 to
node 6 and µ2 maps node 6 to node 3, the analysis
computes that node 4 represents the same object as
node 3. The result is that µ1 maps node 4 to node 3.

Note that the matching process models interactions in which
one thread reads references created by the other thread. Be-
cause the threads execute in parallel, the matching is sym-
metric.

The analysis uses µ1 and µ2 to combine the two parallel
interaction graphs and obtain a new graph that represents
the combined effect of the two threads. Figure 5 presents
this graph, which the analysis computes as follows:

• Edge Projections: The analysis projects the edges
through the mappings to augment nodes from one par-
allel interaction graph with edges from the other graph.
In our example, the analysis projects the inside edge
from node 5 to node 6 through µ2 to generate new
inside edges from node 2 to nodes 3 and 7. It also
generates other edges involving outside nodes, but re-
moves these edges during the simplification step.

• Graph Combination: The analysis combines the
two graphs, omitting the outside node that represents
the this parameter of the started thread (node 5 in
our example).

• Simplification: The analysis removes all outside edges
from captured nodes, all outside nodes that are not
reachable from a parameter node or unanalyzed started
thread node, and all inside nodes that are not reach-
able from a live variable, parameter node, or unana-
lyzed started thread node.

In our example, the analysis recaptures the (now analyzed)
thread node 2. Nodes 3 and 7 are also captured even though
they are reachable from a thread node. The analysis removes
nodes 4 and 6 in the new graph because they are not reach-
able from a parameter node or unanalyzed thread node.
Note that because the interactions with the thread nodes
8 and 11 have not yet been analyzed, those nodes and all
nodes reachable from them escape.

Because our example program uses recursively generated
parallelism, the analysis must perform a fixed point compu-
tation during the interthread analysis. Figure 6 presents the
final parallel interaction graph from the end of the Fib.run

method, which is the result of this fixed point analysis. The
analysis has recaptured all of the inside nodes, including the
task nodes. Because none of the objects represented by these
nodes escapes the computation of the Fib.run method, its
execution in a new region will not violate the region refer-
encing constraints.

3. ANALYSIS ABSTRACTION
We next formally present the abstraction (parallel interac-

tion graphs) that the analysis uses. In addition to the points-
to and escape information discussed in Section 2, parallel
interaction graphs can also represent ordering information
between actions (such as synchronization actions) from par-
ent and child threads. This ordering information enables the
analysis to determine when thread start events temporally
separate actions of parent and child threads. This infor-
mation may, for example, enable the analysis to determine
that a parent thread performs all of its synchronizations on
a given object before a child thread starts its execution and
synchronizes on the object. To simplify the presentation, we
assume that the program does not use static class variables,

all the methods are analyzable and none of the methods re-
turns a result. Our implemented analysis correctly handles
all of these aspects [20].

3.1 Object Representation
The analysis represents the objects that the program ma-

nipulates using a set n ∈ N of nodes, which is the disjoint
union of the set NI of inside nodes and the set NO of outside
nodes. The set of thread nodes NT ⊆ NI represents thread
objects. The set of outside nodes is the disjoint union of the
set NL of load nodes and the set NP of parameter nodes.
There is also a set f ∈ F of fields in objects, a set v ∈ V of
local and parameter variables, and a set l ∈ L ⊆ V of local
variables.

3.2 Points-To Escape Graphs
A points-to escape graph is a triple 〈O, I, e〉, where

• O ⊆ N × F× NL is a set of outside edges. We use the
notation O(n1, f) = {n2|〈n1, f, n2〉 ∈ O}.

• I ⊆ (N × F × N) ∪ (V × N) is a set of inside edges.
We use the notation I(v) = {n|〈v, n〉 ∈ I}, I(n1, f) =
{n2|〈n1, f, n2〉 ∈ I}.

• e : N → P(N) is an escape function that records the
escape information for each node.3 A node escapes if
it is reachable from a parameter node or from a node
that represents an unanalyzed parallel thread.

The escape function must satisfy the invariant that if n1

points to n2, then n2 escapes in at least all of the ways that
n1 escapes. When the analysis adds an edge to the points-
to escape graph, it updates the escape function so that it
satisfies this invariant. We define the concepts of escaped
and captured nodes as follows:

• escaped(〈O, I, e〉, n) if e(n) 6= ∅
• captured(〈O, I, e〉, n) if e(n) = ∅

3.3 Parallel Interaction Graphs
A parallel interaction graph is a tuple 〈〈O, I, e〉, τ, α, π〉:
• The thread set τ ⊆ N represents the set of unanalyzed

thread objects started by the analyzed computation.

• The action set α records the set of actions executed
by the analyzed computation. Each synchronization
action 〈sync, n1, n2〉 ∈ α has a node n1 that represents
the object on which the action was performed and a
node n2 that represents the thread that performed the
action. If the action was performed by the current
thread, n2 is the dummy current thread node nCT ∈
NT . Our implementation can also record actions such
as reading an object, writing an object, or invoking
a given method on an object. It is straightforward
to generalize the concept of actions to include actions
performed on multiple objects.

• The action order π records ordering information be-
tween the actions of the current thread and threads
that execute in parallel with the current thread.

3Here P(N) is the set of all subsets of N , so that e(n) is the set of
nodes through which n escapes.

– 〈〈sync, n1, n2〉, n〉 ∈ π if the synchronization ac-
tion 〈sync, n1, n2〉 may have happened after one
of the threads represented by n started executing.
In this case, the actions of a thread represented
by n may conflict with the action.

– 〈〈n1, f, n2〉, n〉 ∈ π if a reference represented by
the outside edge 〈n1, f, n2〉 may have been read
after one of the threads represented by n started
executing. In this case, the outside edge may rep-
resent a reference written by a thread represented
by n.

We use the notation π@n = {a|〈a, n〉 ∈ π} to denote the set
of actions and outside edges in π that may occur in parallel
with a thread represented by n.

4. ANALYSIS ALGORITHM
For each program point, the algorithm computes a paral-

lel interaction graph for the current analysis scope at that
point. For the intraprocedural analysis, the analysis scope
is the currently analyzed method up to that point. The
interprocedural analysis extends the scope to include the
(transitively) called methods; the interthread analysis fur-
ther extends the scope to include the started threads.

We next present the analysis, identifying the program rep-
resentation, the different phases, and the key algorithms in
the interprocedural and interthread phases.

4.1 Program Representation
The algorithm represents the computation of each method

using a control flow graph. We assume the program has been
preprocessed so that all statements relevant to the analy-
sis are either a copy statement l = v, a load statement
l1 = l2.f, a store statement l1.f = l2, a synchroniza-
tion statement l.acquire() or l.release(), an object cre-
ation statement l = new cl, a method invocation statement
l0.op(l1, . . . , lk), or a thread start statement l.start().

The control flow graph for each method op starts with an
enter statement enterop and ends with an exit statement
exitop.

4.2 Intraprocedural Analysis
The intraprocedural analysis is a forward dataflow analy-

sis that propagates parallel interaction graphs through the
statements of the method’s control flow graph. Each method
is analyzed under the assumption that the parameters are
maximally unaliased, i.e., point to different objects. For a
method with formal parameters v0, . . . , vn, the initial par-
allel interaction graph at the entry point of the method is
〈〈∅, {〈vi, nvi〉}, λn.if n = nvi then {n} else ∅〉, ∅, ∅, ∅〉, where
nvi is the parameter node for parameter vi. If the method
is invoked in a context where some of the parameters may
point to the same object, the interprocedural analysis de-
scribed below in Section 4.4 merges parameter nodes to con-
servatively model the effect of the aliasing.

The transfer function 〈G′, τ ′, α′, π′〉 = [[st]] (〈G, τ, α, π〉)
models the effect of each statement st on the current par-
allel interaction graph. Figure 7 graphically presents the
rules that determine the new points-to graphs for the differ-
ent basic statements. Each row in this figure contains four
items: a statement, a graphical representation of existing
edges, a graphical representation of the existing edges plus
the new edges that the statement generates, and a set of side

where

where

Figure 7: Generated Edges for Basic Statements

τ ′=τ ∪ I(l)

e′(n)=




e(n) ∪ {n′} if n′ ∈ I(l) and
n is reachable in O ∪ I from n′

e(n) otherwise

Figure 8: Transfer Function for l.start()

α′=α ∪ {sync} × I(l) × {nCT}
π′=π ∪ ({sync} × I(l) × {nCT}) × τ

Figure 9: Transfer Function for l.acquire() and
l.release()

conditions. The interpretation of each row is that whenever
the points-to escape graph contains the existing edges and
the side conditions are satisfied, the transfer function for
the statement generates the new edges. Assignments to a
variable kill existing edges from that variable; assignments
to fields of objects leave existing edges in place.

In addition to updating the outside and inside edge sets,
the transfer function also updates the the escape function e
to ensure that if n1 points to n2, then n2 escapes in at least
all of the ways that n1 escapes. Except for load statements,
the transfer functions leave τ , α, and π unchanged. For a
load statement l1 = l2.f the transfer function updates the
action order π to record that any new outside edges may be
created in parallel with the threads modeled by the nodes
in τ (here nL is the load node for l1 = l2.f):

π′ = π ∪ {〈n1, f, nL〉|n1 ∈ I(l2) ∧ escaped(〈O, I, e〉, n1)} × τ

Figure 8 presents the transfer function for an l.start()

statement, which adds the started thread nodes to τ and
updates the escape function. Figure 9 presents the trans-
fer function for synchronization statements, which add the
corresponding synchronization actions into α and record the
actions as executing in parallel with all of the nodes in τ .
At control-flow merges, the confluence operation takes the
union of the inside and outside edges, thread sets, actions,
and action orders.

4.3 Mappings
Mappings µ : N → P(N) implement the substitutions

that take place when combining parallel interaction graphs.
During the interprocedural analysis, for example, a param-
eter node from a callee is mapped to all of the nodes at the
call site that may represent the corresponding actual pa-
rameter. Given an analysis component ξ, ξ[µ] denotes the
component after replacing each node n in ξ with µ(n):4

τ [µ]=
⋃

n∈τ µ(n)
O[µ]=

⋃
〈n,f,nL〉∈O

µ(n) × {f} × {nL}
I[µ]=

⋃
〈n1,f,n2〉∈I

µ(n1) × {f} × µ(n2) ∪ ⋃
〈v,n〉∈I

{v} × µ(n)

α[µ]=
⋃
〈sync,n1,n2〉∈α

{sync} × µ(n1) × µ(n2)

π[µ]=
⋃
〈〈sync,n1,n2〉,n〉∈π

({sync} × µ(n1) × µ(n2)) × µ(n)∪⋃
〈〈n1,f,n2〉,n〉∈π

(µ(n1) × {f} × µ(n2)) × µ(n)

4.4 Interprocedural Analysis
The interprocedural analysis computes a transfer function

for each method invocation statement. We assume a method
invocation site of the form l0.op(l1, . . . , lk), a potentially
invoked method op with formal parameters v0, . . . , vk with
corresponding parameter nodes nv0 , nv1 , . . . , nvk , a paral-
lel interaction graph 〈〈O1, I1, e1〉, τ1, α1, π1〉 at the program
point before the method invocation site, and a graph
〈〈O2, I2, e2〉, τ2, α2, π2〉 from the exit statement of op. The
interprocedural analysis has two steps. It first computes a
mapping µ for the outside nodes from the callee. It then uses
µ to combine the two parallel interaction graphs to obtain
the parallel interaction graph at the program point immedi-
ately after the method invocation. The analysis computes
µ as the least fixed point of the following constraints:

4The only exception is in the definition of O[µ] where we do not
substitute the load node nL that constitutes the end point of an
outside edge 〈n, f, nL〉.

I1(li) ⊆ µ(nvi), ∀i ∈ {0, 1, . . . k} (1)

〈n1, f, n2〉 ∈ O2, 〈n3, f, n4〉 ∈ I1, n3 ∈ µ(n1)
n4 ∈ µ(n2)

(2)

〈n1, f, n2〉 ∈ O2, 〈n3, f, n4〉 ∈ I2,
µ(n1) ∩ µ(n3) 6= ∅, n1 6= n3

µ(n4) ∪ {n4} ⊆ µ(n2)
(3)

The first constraint initializes µ; the next two constraints
extend µ. Constraint 1 maps each parameter node from the
callee to the nodes from the caller that represent the actual
parameters at the call site. Constraint 2 matches outside
edges read by the callee against corresponding inside edges
from the caller. Constraint 3 matches outside edges from the
callee against inside edges from the callee to model aliasing
between callee nodes.

The algorithm next extends µ to µ′ to ensure that all
nodes from the callee (except the parameter nodes) appear
in the new parallel interaction graph:

µ′(n) =

{
µ(n) if n ∈ NP

µ(n) ∪ {n} otherwise

The algorithm computes the new parallel interaction graph
〈〈O′, I ′, e′〉, τ ′, α′, π′〉 at the program point after the method
invocation as follows:

O′ = O1 ∪ O2[µ
′] I ′ = I1 ∪ (I2 − V × N)[µ′]

τ ′ = τ1 ∪ τ2[µ
′] α′ = α1 ∪ α2[µ

′]
π′ = π1 ∪ π2[µ

′] ∪ (O2[µ
′] ∪ α2[µ

′]) × τ1

It computes the new escape function e′ as the union of the
escape function e1 before the method invocation and the
expansion of the escape function e2 from the callee through
µ′. More formally, the following constraints define the new
escape function e′ as

e1(n) ⊆ e′(n)
n2 ∈ µ′(n1)

(e2(n1) − NP)[µ′] ⊆ e′(n2)

propagated over the edges from O′ ∪ I ′. After the interpro-
cedural analysis, reachability from the parameter nodes of
the callee is no longer relevant for the escape function, hence
the set difference in the second initialization constraint. We
have a proof that this interprocedural analysis produces to
a parallel interaction graph that is at least as conservative
as the one that would be obtained by inlining the callee
and performing the intraprocedural analysis as in section
4.2 [20].

Finally, we simplify the resulting parallel interaction graph
by removing superfluous nodes and edges. We remove all
load nodes nL such that e′(nL) = ∅ from the graph; such
load nodes do not represent any concrete object. We also
remove all all outside edges 〈n1, f, n2〉 that start from a cap-
tured node n1 (where e′(n1) = ∅); such outside edges do
not represent any concrete reference. Finally, we remove all
nodes that are not reachable from a live variable, parameter
node, or unanalyzed started thread node from τ ′.

Because of dynamic dispatch, a single method invocation
site may invoke several different methods. The transfer func-
tion therefore merges the parallel interaction graphs from all
potentially invoked methods to derive the parallel interac-
tion graph at the point after the method invocation site. The

current implementation obtains this call graph information
using a variant of a cartesian product type analysis [1], but
it can use any conservative approximation to the dynamic
call graph.

The analysis uses a worklist algorithm to solve the com-
bined intraprocedural and interprocedural dataflow equa-
tions. A bottom-up analysis of the program yields the full
result with one analysis per strongly connected component
of the call graph. Within strongly connected components,
the algorithm iterates to a fixed point.

4.5 Thread Interaction
Interactions between threads take place between a starter

thread (a thread that starts a parallel thread) and a startee
thread (the thread that is started). The interaction algo-
rithm is given the parallel interaction graph 〈〈O, I, e〉, τ, α, π〉
from a program point in the starter thread, a node nT that
represents the startee thread, and a run method that runs
when the thread object represented by nT starts. The par-
allel interaction graph associated with the exit statement
of the run method is 〈〈O2, I2, e2〉, τ2, α2, π2〉. The result
of the thread interaction algorithm is a parallel interaction
graph 〈〈O′, I ′, e′〉, τ ′, α′, π′〉 that models all the interactions
between the execution of the starter thread (up to its corre-
sponding program point) and the entire startee thread. This
result conservatively models all possible interleavings of the
two threads.

The algorithm has two steps. It first computes two map-
pings µ1, µ2, where µ1 maps outside nodes from the starter
and µ2 maps outside nodes from the startee. It then uses µ1

and µ2 to combine the two parallel interaction into a single
parallel interaction graph that reflects the interactions be-
tween the two threads. The algorithm computes µ1 and µ2

as the least fixed point of the following constraints:

nT ∈ µ2(nv0), nT ∈ µ2(nCT) (4)

〈n1, f, n2〉 ∈ Oi, 〈n3, f, n4〉 ∈ Ij , n3 ∈ µi(n1)
n4 ∈ µi(n2)

(5)

〈n1, f, n2〉 ∈ Oi, 〈n3, f, n4〉 ∈ Ii,
µi(n1) ∩ µi(n3) 6= ∅, n1 6= n3

µi(n4) ∪ {n4} ⊆ µi(n2)
(6)

〈n1, f, n2〉 ∈ Ii, 〈n3, f, n4〉 ∈ Oj , n3 ∈ µi(n1)
n2 ∈ µj(n4)

(7)

n2 ∈ µi(n1), n3 ∈ µj(n2)
n3 ∈ µi(n1)

(8)

Here nv0 is the parameter node associated with the single
parameter of the run method – the this pointer – and nCT

is the dummy current thread node. Also, I1 = I and O1 =
O∩ (π@nT). Note that the algorithm computes interactions
only for outside edges from the starter thread that represent
references read after the startee thread starts.

Unlike the caller/callee interaction, where the execution
of the caller is suspended during the execution of the callee,
in the starter/startee interaction, both threads execute in
parallel, producing a more complicated set of statement in-
terleavings. The interthread analysis must therefore model a
richer set of potential interactions in which each thread can
read edges created by the other thread. The interthread

analysis therefore uses two mappings (one for each thread)
instead of just one mapping. It also augments the con-
straints to reflect the potential interactions.

In the same style as in the interprocedural analysis, the
algorithm first initializes the mappings µ′

1, µ
′
2 to extend µ1

and µ2, respectively. Each node from the two initial par-
allel interaction graphs (except nv0) will appear in the new
parallel interaction graph:

µ′
1(n) = µ1(n) ∪ {n}

µ′
2(n) =

{
µ2(n) if n = nv0

µ2(n) ∪ {n} otherwise

The algorithm uses µ′
1 and µ′

2 to compute the resulting par-
allel interaction graph as follows:

O′ = O[µ′
1] ∪ O2[µ

′
2] I ′ = I[µ′

1] ∪ (I2 − V × N)[µ′
2]

τ ′ = τ [µ′
1] ∪ τ2[µ

′
2] α′ = α[µ′

1] ∪ α2[µ
′
2]

π′ = π[µ′
1] ∪ π2[µ

′
2] ∪

(O2[µ
′
2] ∪ α2[µ

′
2]) × τ [µ′

1] ∪ π@nT [µ′
1] × τ2[µ

′
2]

In addition to combining the action orderings from the
starter and startee, the algorithm also updates the new ac-
tion order π′ to reflect the following ordering relationships:

• All actions and outside edges from the startee occur in
parallel with all of the starter’s threads, and

• All actions and outside edges from the starter thread
that occur in parallel with the startee thread also oc-
cur in parallel with all of the threads that the startee
starts.

The new escape function e′ is the union of the escape func-
tion e from the starter and the escape function e2 from the
startee, expanded through µ1 and µ2, respectively. More
formally, the escape function e′ is initialized by the follow-
ing two constraints

n2 ∈ µ1(n1)

e(n1)[µ1] ⊆ e′(n2)

n2 ∈ µ2(n1)

(e2(n1) − NP)[µ2] ⊆ e′(n2)

and propagated over the edges from O′ ∪ I ′.

4.6 Interthread Analysis
The interthread analysis uses a fixed-point algorithm to

obtain a single parallel interaction graph that reflects the in-
teractions between all of the parallel threads. The algorithm
repeatedly chooses a node nT ∈ τ , retrieves the analysis re-
sult from the exit node of the corresponding run method,5

then uses the thread interaction algorithm presented above
in Section 4.5 to compute the interactions between the ana-
lyzed threads and the thread represented by nT and combine
the two parallel interaction graphs into a new graph. Once
the algorithm reaches a fixed point, it removes all nodes
in NT from the escape function — the final graph already
models all of the possible interactions that may affect nodes
that escape only via unanalyzed thread nodes. The analysis
may therefore recapture thread nodes that escaped before
the interthread analysis. For example, if a thread node does

5The algorithm uses the type information to determine which class
contains this run method. For inside nodes, this approach is exact.
For outside nodes, the algorithm uses class hierarchy analysis to find
a set of classes that may contain the run method. The algorithm
computes the interactions with each of the possible run methods, then
merges the results. In practice, τ almost always contains inside nodes
only — the common coding practice is to create and start threads in
the same method.

not escape via a parameter node, it is captured after the in-
terthread analysis. Finally the algorithm enhances the effi-
ciency and precision of the analysis by removing superfluous
nodes and edges using the same simplification method as in
the interprocedural analysis.

As presented, the algorithm assumes that each node n ∈ τ
represents multiple instances of the corresponding thread.
Our implementation improves the precision of the analysis
by tracking whether each node represents a single thread or
multiple threads. For nodes that represent a single thread,
the algorithm computes the interactions just once, adjusting
the new action order π′ to record that the outside edges and
actions from the startee thread do not occur in parallel with
the node n that represents the startee thread. For nodes
that represent multiple threads, the algorithm repeatedly
computes the interactions until it reaches a fixed point.

4.7 Resolving Outside Nodes
It is possible to augment the algorithm so that it records,

for each outside node, all of the inside nodes that it rep-
resents during the analysis of the entire program. This in-
formation allows the algorithm to go back to the analysis
results generated at the various program points and resolve
each outside node to the set of inside nodes that it represents
during the analysis. In the absence of nodes that escape via
unanalyzed threads or methods, this enables the algorithm
to obtain complete, precise points-to information even for
analysis results that contain outside nodes.

5. ANALYSIS USES
We next discuss how we use the analysis results to perform

two optimizations: region reference check elimination and
synchronization elimination.

5.1 Region Reference Check Elimination
The analysis eliminates region reference checks by verify-

ing that no object allocated in a given region escapes the
computation that executes in the context of that region. In
our system, all such computations are invoked via the execu-
tion of a statement of the form r.enter(t). This statement
causes the the run method of the thread t to execute in the
context of the memory region r. The analysis first locates
all of these run methods. It then analyzes each run method,
performing both the intrathread and interthread analysis,
and checks that none of the inside nodes in the analysis re-
sult escape. If none of these inside nodes escape, all of the
objects allocated inside the region are inaccessible when the
computation terminates. All of the region reference checks
will therefore succeed and can be removed.

5.2 Synchronization Elimination
The synchronization elimination algorithm uses the re-

sults of the interthread analysis to find captured objects
whose synchronization operations can be removed. Like
previous synchronization elimination algorithms, our algo-
rithm uses the intrathread analysis results to remove syn-
chronizations on objects that do not escape the thread that
created them. Unlike previous synchronization elimination
algorithms, our algorithm also analyzes the interactions be-
tween parallel threads. It then uses the action set α and the
action ordering relation π to eliminate synchronizations on
objects with synchronizations from multiple threads.

The analysis proceeds as follows. For each node n that
is captured after the interthread analysis, it examines π to
find all threads t that execute in parallel with a synchroniza-
tion on n. It then examines the action set α to determine
if t also synchronizes on n. If none of the parallel threads
t synchronize on n, the compiler can remove all synchro-
nizations on the objects that n represents. Even if multiple
threads synchronize on these objects, the analysis has deter-
mined that the synchronizations are temporally separated
by thread start events and therefore redundant.

6. EXPERIMENTAL RESULTS
We have implemented our combined pointer and escape

analysis algorithm in the MIT Flex compiler system, a static
compiler for Java. We used the analysis information for syn-
chronization elimination and elimination of dynamic region
reference checks. We present experimental results for a set
of multithreaded benchmark programs. In general, these
programs fall into two categories: web servers and scien-
tific computations. The web servers include Http, an http
server, and Quote, a stock quote server. Both of these ap-
plications were written by others and posted on the Inter-
net. Our scientific programs include Barnes and Water, two
complete scientific applications that have appeared in other
benchmark sets, including the SPLASH-2 parallel comput-
ing benchmark set [23]. We also present results for two syn-
thetic benchmarks, Tree and Array, that use object field as-
signment heavily. These benchmarks are designed to obtain
the maximum possible benefit from region reference check
elimination.

6.1 Methodology
We first modified the benchmark programs to use region-

based allocation. The web servers create a new thread to
service each new connection. The modified versions use a
separate region for each connection. The scientific programs
execute a sequence of interleaved serial and parallel phases.
The modified versions use a separate region for each paral-
lel phase. The result is that all of the modified benchmarks
allocate long-lived shared objects in the garbage-collected
heap and short-lived objects in regions. The modifications
were relatively straightforward to perform, but it was diffi-
cult to evaluate the correctness of the modifications with-
out the static analysis. The web servers were particularly
problematic since they heavily use the Java libraries. With-
out the static analysis it was not clear to us that the li-
braries would work correctly with region-based allocation.
For Http, Quote, Tree, and Array, the interprocedural anal-
ysis alone was able to verify the correct use of region-based
allocation and enable the elimination of all dynamic region
checks. Barnes and Water required the interthread analysis
to eliminate the checks — interprocedural analysis alone was
unable to verify the correct use of region-based allocation.

We used the MIT Flex compiler to generate a C imple-
mentation of each benchmark, then used gcc to compile the
program to an x86 executable. We ran the Http and Quote
servers on a 400 MHz Pentium II running Linux, with the
clients running on an 866 MHz Pentium III running Linux.
The two machines were connected with their own private
100 Mbit/sec Ethernet. We ran Water, Barnes, Tree, and
Array on an 866 MHz Pentium III running Linux.

Analysis time [s]
Bytecode for removing Backend

Program instructions checks syncs time [s]

Tree 10,970 0.5 15.9 41.1
Array 10,896 0.6 16.9 42.2
Water 17,675 11.3 56.1 66.0
Barnes 15,945 6.9 94.2 54.8
Http 14,313 17.1 38.3 73.8
Quote 14,039 16.9 41.4 61.4

Figure 10: Program Sizes and Analysis Times

Original Optimized version
Program version Interprocedural Interthread

Tree 59 43 43
Array 59 43 43
Water 2,367,193 919,575 919,575
Barnes 2,838,720 678,355 678,355
Http 67,268 8,460 7,406
Quote 268,913 200,650 198,610

Figure 11: Number of Synchronization Operations

Program Standard Checks No Checks

Tree 6.5 16.8 7.0
Array 8.2 43.4 8.3
Water 9.6 9.7 8.1
Barnes 8.4 7.6 6.7
Http 4.5 5.3 5.2
Quote 11.7 11.3 11.3

Figure 12: Execution Times for Benchmarks

Number of Number of
Program Objects in Heap Objects in Regions

Tree 184 65,534
Array 183 8
Water 20,755 3,110,675
Barnes 17,622 2,121,167
Http 12,228 62,062
Quote 21,785 121,350

Figure 13: Allocation Statistics for Benchmarks

6.2 Results
Figure 10 presents the program sizes and analysis times.

The synchronization elimination algorithm analyzes the en-
tire program, while the region check algorithm analyzes only
the run methods and the methods that they (transitively)
invoke. The synchronization elimination analysis therefore
takes significantly more time than the region analysis. The
backend time is the time required to produce an executable
once the analysis has finished. All times are in seconds.
Figure 11 presents the number of synchronizations for the
Original version with no analysis, the Interprocedural ver-
sion with interprocedural analysis only, and the Interthread
version with both interprocedural and interthread analysis.
For this optimization, the interthread analysis produces al-
most no additional benefit over the interprocedural analysis.
Figure 12 presents the execution times of the benchmarks.
The Standard version allocates all objects in the garbage-
collected heap and does not use region-based allocation. The
Checks version uses region-based allocation with all of the
dynamic checks. The No Checks version uses region-based

allocation with the analysis eliminating all dynamic checks.
None of the versions uses the synchronization elimination
optimization. Check elimination produces substantial per-
formance improvements for Tree and Array and modest per-
formance improvements for Water and Barnes. The running
times of Http and Quote are dominated by thread creation
and operating system overheads, so check elimination pro-
vides basically no performance increase. Figure 13 presents
the number of objects allocated in the garbage-collected
heap and the number allocated in regions. The vast ma-
jority of the objects are allocated in regions.

6.3 Discussion
Our applications use regions in one of two ways. The

servers allocate a new region for each connection. The re-
gion holds the new objects required to service the connec-
tion. Examples of such objects include String objects that
hold responses sent to clients and iterator objects used to
find requested data. The scientific programs use regions for
auxiliary objects that structure the parallel computation.
These objects include the Thread objects required to gen-
erate the parallel computation and objects that hold values
produced by intermediate calculations.

In general, eliminating region checks provides modest per-
formance improvements. We therefore view the primary
value of the analysis in this context as helping the program-
mer to use regions correctly. We expect the analysis to be
especially useful in situations (such as our web servers) when
the programmer may not have complete confidence in his or
her detailed knowledge of the program’s object usage pat-
terns.

7. RELATED WORK
We discuss several areas of related work: analysis of mul-

tithreaded programs, escape analysis for multithreaded pro-
grams, and region-based allocation.

7.1 Analysis of Multithreaded Programs
The analysis of multithreaded programs is a relatively

unexplored field [17]. There is an awareness that multi-
threading significantly complicates program analysis but a
full range of standard techniques have yet to emerge. Grun-
wald and Srinivasan present a dataflow analysis framework
for reaching definitions for explicitly parallel programs [10],
and Knoop, Steffen and Vollmer present an efficient dataflow
analysis framework for bit-vector problems such as liveness,
reachability and available expressions [12]. Both frameworks
are designed for programs with structured, parbegin/parend
concurrency and are intraprocedural. We view the main con-
tributions of this paper as largely orthogonal to this previous
research. In particular, the main contributions of this paper
center on abstractions and algorithms for the interprocedu-
ral and compositional analysis of programs with unstruc-
tured multithreading. We also focus on problems, pointer
and escape analysis, that do not fit within either framework.

We are aware of two pointer analysis algorithms for multi-
threaded programs: an algorithm by Rugina and Rinard for
multithreaded programs with structured parbegin/parend
concurrency [19], and an intraprocedural algorithm by Cor-
bett [7]. The algorithms are not compositional (they dis-
cover the interactions between threads by repeatedly rean-
alyzing each thread in each new analysis context to reach
a fixed point), do not maintain escape information, and do
not support the analysis of incomplete programs.

7.2 Escape Analysis for Multithreaded Programs
Published escape analysis algorithms for Java programs

do not analyze interactions between threads [3, 6, 22, 2]. If
an object escapes via a thread object, it is never recaptured.
These algorithms are therefore best viewed as sequential pro-
gram analyses that have been extended to execute correctly
but very conservatively in the presence of multithreading.
Our analysis takes the next step of analyzing interactions
between threads to recapture objects accessed by multiple
threads.

Ruf’s analysis occupies a point between traditional escape
analyses and our multithreaded analysis [18]. His analysis
tracks the synchronizations that each thread performs on
each object, enabling the compiler to remove synchroniza-
tions for objects accessed by multiple threads if only one
thread synchronizes on the object. Our analysis goes a step
further to remove synchronizations even if multiple threads
synchronize on the object. The requirement is that thread
start events must temporally separate synchronizations from
different threads.

7.3 Region-Based Allocation
Region-based allocation has been used in systems for many

years. Our comparison focuses on safe versions, which en-
sure that there are no dangling references to deleted regions.
Several researchers have developed type-based systems that
support safe region-based allocation [21, 8]. These systems
use a flow-insensitive, context-sensitive analysis to correlate
the lifetimes of objects with the lifetimes of computations.
Although these analyses were designed for sequential pro-
grams, it should be straightforward to generalize them to
handle multithreaded programs.

Gay and Aiken’s system provides an interesting contrast
to ours in its overall approach [9]. They provide a safe,
flat region-based system that allows arbitrary references be-
tween regions. The implementation instruments each store
instruction to count references that go between regions. A
region can be deleted only when there are no references to
its objects from objects in other regions. This dynamic, ref-
erence counted approach works equally well for both sequen-
tial and multithreaded programs. The system also supports
the explicit assignment of objects to regions and allows the
programmer to use type annotations to specify that a given
reference must stay within the same region. Violations of
this constraint generate a run-time error; a static analysis
reduces but is not designed to eliminate the possibility of
such an error occurring.

Following the Real-Time Java specification, our imple-
mentation provides a less flexible system of hierarchically
organized regions with an implicit assignment of objects to
regions. Because region lifetimes are hierarchically nested,
the implementation dynamically counts, for each region, the
number of child regions rather than the number of external
pointers into each region. Instead of performing counter
manipulations at each store, the unoptimized version of our
system checks each assignment to ensure that the program
never generates a reference that goes down the hierarchy
from an ancestor region to a descendant region. Our static
analysis eliminates these checks, with the interthread anal-
ysis required to successfully optimize multithreaded pro-
grams.

8. CONCLUSION
Multithreading is a key program structuring technique,

language and system designers have made threads a cen-
tral part of widely used languages and systems, and multi-
threaded software is becoming pervasive. This paper presents
an abstraction (parallel interaction graphs) and an algo-
rithm that uses this abstraction to extract precise points-
to, escape, and action ordering information for programs
that use the standard unstructured form of multithreading
provided by modern languages and systems. We have im-
plemented the analysis in the MIT Flex compiler for Java,
and used the extracted information to verify that programs
correctly use region-based allocation constructs, eliminate
dynamic checks associated with the use of regions, and elimi-
nate unnecessary synchronization. Our experimental results
show that analyzing the interactions between threads signif-
icantly increases the effectiveness of the optimizations for
region-based programs, but has little effect for synchroniza-
tion elimination.

9. ACKNOWLEDGEMENTS
We started this research in collaboration with John Wha-

ley; we thank him for his contributions during this collabo-
ration. We thank Wes Beebee for his invaluable assistance
with the region-based allocation package and Darko Marinov
and Viktor Kuncak for many interesting discussions regard-
ing pointer and escape analysis.

10. REFERENCES

[1] O. Agesen, J. Palsberg, and M. Schwartzbach. Type
inference of SELF: analysis of objects with dynamic
and multiple inheritance. Software—Practice and
Experience, 25(9):975–995, Sept. 1995.

[2] B. Blanchet. Escape analysis for object oriented
languages. application to Java. In Proceedings of the
14th Annual Conference on Object-Oriented
Programming Systems, Languages and Applications,
Denver, CO, Nov. 1999.

[3] J. Bogda and U. Hoelzle. Removing unnecessary
synchronization in Java. In Proceedings of the 14th
Annual Conference on Object-Oriented Programming
Systems, Languages and Applications, Denver, CO,
Nov. 1999.

[4] G. Bollella, B. Brosgol, S. Furr, D. Hardin, P. Dibble,
J. Gosling, and M. Turnbull. The Real-Time
Specification for Java. Addison-Wesley, Reading,
Mass., 2000.

[5] R. Chandra, A. Gupta, and J. Hennessy. Data locality
and load balancing in COOL. In Proceedings of the 4th
ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, San Diego, CA,
May 1993.

[6] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and
S. Midkiff. Escape analysis for Java. In Proceedings of
the 14th Annual Conference on Object-Oriented
Programming Systems, Languages and Applications,
Denver, CO, Nov. 1999.

[7] J. Corbett. Using shape analysis to reduce finite-state
models of concurrent Java programs. In Proceedings of
the International Symposium on Software Testing and
Analysis, Mar. 1998.

[8] K. Crary, D. Walker, and G. Morrisett. Typed
memory management in a calculus of capabilities. In
Proceedings of the 26th Annual ACM Symposium on
the Principles of Programming Languages, San
Antonio, TX, Jan. 1999.

[9] D. Gay and A. Aiken. Language support for regions.
In Proceedings of the SIGPLAN ’01 Conference on
Program Language Design and Implementation,
Snowbird, UT, June 2001.

[10] D. Grunwald and H. Srinivasan. Data flow equations
for explicitly parallel programs. In Proceedings of the
4th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, San Diego, CA,
May 1993.

[11] C. Hauser, C. Jacobi, M. Theimer, B. Welch, and
M. Weiser. Using threads in interactive systems: A
case study. In Proceedings of the Fourteenth
Symposium on Operating Systems Principles,
Asheville, NC, Dec. 1993.

[12] J. Knoop, B. Steffen, and J. Vollmer. Parallelism for
free: Efficient and optimal bitvector analyses for
parallel programs. ACM Transactions on Programming
Languages and Systems, 18(3):268–299, May 1996.

[13] D. Lea. Concurrent Programming in Java: Design
Principles and Patterns. Addison-Wesley, Reading,
Mass., 2000.

[14] F. Nielson, H. Nielson, and C. Hankin. Principles of
Program Analysis. Springer-Verlag, 1999.

[15] V. Pai, P. Druschel, and W. Zwaenepol. Flash: An
efficient and portable web server. In Proceedings of the
Usenix 1999 Annual Technical Conference, June 1999.

[16] J. Reppy. Higher–order Concurrency. PhD thesis,
Dept. of Computer Science, Cornell Univ., Ithaca,
N.Y., June 1992.

[17] M. Rinard. Analysis of multithreaded programs. In
Proceedings of 8th Static Analysis Symposium, Paris,
France, July 2001.

[18] E. Ruf. Effective synchronization removal for Java. In
Proceedings of the SIGPLAN ’00 Conference on
Program Language Design and Implementation,
Vancouver, Canada, June 2000.

[19] R. Rugina and M. Rinard. Pointer analysis for
multithreaded programs. In Proceedings of the
SIGPLAN ’99 Conference on Program Language
Design and Implementation, Atlanta, GA, May 1999.

[20] A. Sălcianu. Pointer analysis and its applications for
Java programs. Master’s thesis, Dept. of Electrical
Engineering and Computer Science, Massachusetts
Institute of Technology, In preparation.

[21] M. Tofte and L. Birkedal. A region inference
algorithm. ACM Transactions on Programming
Languages and Systems, 20(4), July 1998.

[22] J. Whaley and M. Rinard. Compositional pointer and
escape analysis for Java programs. In Proceedings of
the 14th Annual Conference on Object-Oriented
Programming Systems, Languages and Applications,
Denver, CO, Nov. 1999.

[23] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and
methodological considerations. In Proceedings of the
22nd International Symposium on Computer
Architecture. ACM, New York, June 1995.

