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ABSTRACT 
Current trends in high performance computing suggest that users 
will soon have widespread access to clusters of multiprocessors 
with hundreds, if not thousands, of processors. This 
unprecedented degree of parallelism will undoubtedly expose 
scalability limitations in existing applications, where scalability is 
the ability of a parallel algorithm on a parallel architecture to 
effectively utilize an increasing number of processors. Users will 
need precise and automated techniques for detecting the cause of 
limited scalability. This paper addresses this dilemma. First, we 
argue that users face numerous challenges in understanding 
application scalability: managing substantial amounts of 
experiment data, extracting useful trends from this data, and 
reconciling performance information with their application’s 
design. Second, we propose a solution to automate this data 
analysis problem by applying fundamental statistical techniques 
to scalability experiment data. Finally, we evaluate our 
operational prototype on several applications, and show that 
statistical techniques offer an effective strategy for assessing 
application scalability. In particular, we find that non-parametric 
correlation of the number of tasks to the ratio of the time for 
individual communication operations to overall communication 
time provides a reliable measure for identifying communication 
operations that scale poorly. 

1 INTRODUCTION 
Current trends in high performance computing suggest that users 
will be running their applications on scalable clusters of 
multiprocessors with hundreds, if not thousands, of processors in 
the near future [3, 15]. This unprecedented availability of 
computing resources motivates the need for precise and 
meaningful scalability analysis of these applications. By 
scalability, we mean the ability of a parallel algorithm on a 

parallel architecture to effectively utilize an increasing number of 
processors [6, 7, 13]. Undoubtedly, this new, high degree of 
concurrency will expose scalability limitations of applications 
that, at lower levels of concurrency, might have been shrouded by 
other application or system characteristics. Furthermore, perpetual 
improvements in single node performance will continue to direct 
users' attention on the scalability limitations of communication 
operations in their distributed memory applications.  

Although metrics like execution time, speedup, and efficiency 
[14] help quantify scalability on an abstract level, users need 
precise information about the communication operations in their 
application that scale poorly. In addition, for any analysis to help 
users understand their application’s scalability, the technology 
should be able to explain scalability phenomena in terms of 
decisions a user makes while designing their application. 

To this end, we propose an automated technique that uses familiar 
statistical techniques to direct a user's attention on poorly scaling 
communication operations in their application. Our method 
digests the results of multiple application experiments and 
suggests communication operations whose growth has a positive 
correlation with the number of tasks. We empirically evaluate the 
usefulness of these techniques on nine applications with both 
fixed and scaled problem sizes. Our results show that, in every 
case, our method quickly identifies the communication operations 
that grow to dominate the application's execution time during 
highly parallel experiments. More importantly, our technique 
selects operations that a user might not normally locate when 
using simpler methods.  

1.1 Background 
The analysis of scalability is not a new concept [6, 14]. Yet many 
users find scalability analysis of their applications difficult, time-
consuming, and inconclusive. Despite the fact that investigators 
have proposed numerous metrics, such as speedup, scaled 
speedup, efficiency, and iso-efficiency, these metrics provide only 
an abstract and broad view of application scalability behavior. 
They do not provide specific evidence that allows users to 
understand and optimize their applications. Worse, the 
experimental process of measuring application scalability, in 
practice, can generate an intractable amount of data that can 
hinder a user's attempts at understanding scalability, because users 
are simply inundated with lots of uninteresting, redundant data. 

Aside from this work, investigators have also proposed scalable 
visualization techniques for understanding performance data [5, 
10, 21]; however, many of these techniques have not been 
extended to help users understand application scalability. 
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Essentially, this previous work has focused on helping users 
understand the performance data of one application experiment, 
whereas scalability analysis forces users to integrate performance 
data from many experiments. 

The goal of this work, in contrast, is to develop techniques that 
promptly and reliably focus a user’s attention on the 
communication operations of their application that limit 
scalability. With this guidance, a user can easily locate scalability 
problems and modify their application, if necessary. Our work is 
empirically driven and directly relevant to existing applications. 
In fact, our analysis focuses on the Message Passing Interface 
(MPI) [9, 20] because it serves as an important foundation for a 
large group of high performance applications and communication 
scalability will become an increasingly important problem as the 
size of computing systems continues to increase [4, 18, 23]. 

1.2 Paper Organization 
The remainder of this paper discusses these issues in more detail. 
In Section 2, we motivate scalability analysis with a case study 
and observe that users need automated techniques for scalability 
analysis. Following this, in Section 3, we introduce our approach 
to analyzing scalability data with statistical techniques. Then, in 
Section 0, we evaluate these techniques on numerous MPI 
applications. Finally, Section 5 concludes the paper with a 
summary and some interesting research directions. 

2 MOTIVATING EXAMPLE 
To motivate the demands of scalability analysis, we consider a 
case study of NAS BT [1]. (Section 0 provides complete details of 
the experimental evaluation.) The goal of this example is to 
outline the process of manual scalability analysis and to argue for 
an automated technique. 
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Figure 1: NAS BT Communication Time. 

As a first step in analyzing the scalability of BT, we look first at 
the aggregate runtime of BT from 4 tasks up to 225 tasks as 
illustrated in Figure 1. More specifically, we divide the time in 
each task into communication, Tcomm, and computation, Tcomp. We 
capture these values empirically. Using this approach, each task i 
has a Ti,comm, and Ti,comp  that together create Ti,app, the execution 
time of task i. Also, we define Tagg as the processor-time 
summation across all tasks:  

∑∑
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Likewise, we define the aggregate time for communication across 
all tasks as Tagg,comm:  

∑
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Noting that we use the fixed problem size of Class B for this 
experiment, Figure 1 shows the breakdown of communication 
time as part of the aggregate application runtime for each 
experiment size. This analysis quickly illustrates that, for this 
problem size, BT effectively uses an increasing number of 
processors up to 81. However, at this point, BT’s communication 
time drives the application time. 

Noticeably, some portion of the communication in BT is 
increasing; however, this resolution remains too coarse. It is 
unclear whether all communication operations degrade evenly, or 
whether one or two communication operations are causing the 
dramatic increase in communication time. 

Number of Tasks

10 100

A
gg

re
ga

te
 T

im
e 

(m
ill

is
ec

s)

0.0

2.0e+6

4.0e+6

6.0e+6

8.0e+6

1.0e+7

1.2e+7

1.4e+7

1.6e+7
Allreduce 
Barrier 
Comm_dup 
Comm_rank 
Comm_size 
Comm_split 
Irecv 
Isend 
Reduce 
Wait 
Waitall 

 

Figure 2: NAS BT Communication Time by Type. 

As a next step, we decompose the communication time by 
operation (e.g., barrier, reduction, send). Many MPI performance 
analysis tools capture data by the type of MPI call and they do not 
distinguish among different callsites to the same MPI library 
routine. Restated, we now have  

∑=
allops

j
jicommi TT ,,
 

where Ti,op provides the total time that task i spent in the op type 
of communication operation. Figure 2 shows the breakdown of 
communication operations by type for BT. Viewed in this light, 
we can focus our scalability analysis on one type of 
communication operation in BT: Wait, Barrier, Waitall, and 
Comm_split. Up to 81 tasks, Tagg,wait remains the largest 
component, but relatively flat; yet beyond 81 tasks, Tagg,wait visibly 
dominates the communication time. Also, Barrier, Waitall, and 
Comm_split emerge from the group as the number of tasks 
increase. 

Realistically, however, applications call these operations from 
multiple callsites. So, as a final step, we split Tagg,wait into 
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individual callsites. Recasting Ti,wait as Ti,wait,callsite where  

∑=
esallcallsit

j
jwaitiwaiti TT ,,,
, 

we find that not all Wait operations perform similarly as Figure 3 
indicates for several select callsites. Indeed, two of the four Waits 
scale admirably while the other two waits, at x_solve.f:71 and 
y_solve.f:70, perform much worse.  
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Figure 3: NAS BT communication time for select callsites. 

In fact, this decomposition of the communication time by callsite 
divulges several interesting characteristics about BT. First, many 
of the data points are quite noisy. Take, for instance, the 
Comm_split data in Figure 3. These sample points oscillate wildly 
even though the communication time increases steadily in Figure 
1. Our experience indicates that this noise is commonplace, 
especially on large, production computing systems. Second, the 
shape of the curves in Figure 3 is strikingly similar to the 
communication time in Figure 1. All the callsites are relatively 
flat up to 81 tasks. 

In any case, given this information, a user could begin a detailed 
investigation into why these operations scale poorly, especially 
when considering that calls to the same communication operation 
perform distinctively different. The reason for poor scaling could 
have a number of causes including poor load balance and 
algorithm design. Also, using this collection of evidence from all 
callsites, a user could compare calls to the same communication 
routine and rule out implementation problems, except for the most 
pathological cases. 

2.1 Observations 
This example illustrates the basic problems encountered by any 
user when they try to analyze application scalability. First, 
although the analysis provides some information about scalability, 
it only provides precise evidence once the user has manually 
searched through the data to harvest the offensive communication 
operations. We selected the BT example because it was 
illustrative; other real world applications will force users to 
manage similar data for hundreds of MPI callsites across 
thousands of tasks. 

Consider that for one experiment, with P processors executing n 
communication operations, the analysis can spawn data at the rate 
of approximately n × P events at any time t. Furthermore, 

scalability analysis requires data from E experiments, leading to at 
least n × P × E data points. Taken together, these factors can, over 
a very short period of time, overwhelm most users. 

Furthermore, any analysis must account for statistical variations in 
the experiments as illustrated in our BT example. In this analysis, 
we ran four experiments at every size of N, and then selected the 
experiment with the smallest running time as the representative 
for that experiment group. Alternatively, a quantitative analysis 
should use this additional data to verify and support the 
conclusions rather than discard it. 

3 STATISTICAL SCALABILITY 
ANALYSIS 

Given the issues of manual scalability analysis as exposed in 
Section 2, we propose an alternative solution that relies on 
statistical analysis [11, 16] to extract meaningful relationships 
from the data. With our solution, users can easily distill the results 
of their scalability experiments, automatically revealing 
communication operations that scale poorly.  
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Figure 4: Process for statistical scalability analysis. 

Figure 4 illustrates our process for statistical scalability analysis. 
Our process is composed of two stages. First, the user 
performance multiple scalability experiments varying the number 
of tasks, and possibly, the problem size. During the experiment, 
we record specific timing information about callsites for all 
communication operations. The user can perform multiple 
experiments at each configuration; and, in fact, we encourage this. 

The next step in our process merges all of the scalability 
experiment files and then harvests timing information about each 
callsite. With this information in hand, we calculate the ratio of 
the aggregate time in each callsite to the aggregate 
communication time. We, then, rank transform both this ratio and 
the number of tasks for each experiment. Finally, our process 
calculates the correlation between the ranked ratio and the ranked 
number of tasks. 

As we will show in Section 4, we find that this non-parametric (or 
rank) correlation of the ratio of the aggregate time for individual 
communication operations to aggregate communication time with 
the number of tasks provides an accurate and stable predictor for 
identifying communication operations that scale poorly.  

3.1 Performance Data Management 
We organize our data to reflect the stages of scalability analysis 
presented in Section 2. Since we need callsite information to map 
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communication operations to specific locations in the code, our 
analysis assumes that for all callsites across all tasks in the 
application, we have the count, cumulative time, and minimum 
and maximum time. Table 1 shows an example of this 
performance data from MG.  

 
Op Callsite Task Count Max Mean Min 

Send mg.f:1201 0 487 7658 963 11 
Send mg.f:1201 1 487 6907 946 12 
Send mg.f:1201 2 487 5674 925 11 
Send mg.f:1201 3 487 5707 963 11 
Send mg.f:1201 All 1948 7658 949 11 
Allreduce mg.f:2099 0 20 244 132 36 
Allreduce mg.f:2099 1 20 484 340 230 
Allreduce mg.f:2099 2 20 252 157 65 
Allreduce mg.f:2099 3 20 434 355 218 
Allreduce mg.f:2099 All 80 484 246 36 

Table 1: Callsite data for one experiment on NAS MG. 

We have constructed a software tool, using the MPI profiling 
layer [9], to provide straightforward access to this type of data. In 
addition, we capture the runtime of each task, from start to finish. 
With this limited information from each experiment, we can do all 
of the analysis presented in Section 2 and we can easily compute 
derived values, such as speedup.  

For scalability analysis, we have several options for organizing 
the data. One alternative is to compare callsite values for each task 
in one experiment to the same callsite in other experiments. This 
option has the disadvantage that, by definition, experiments have 
different numbers of tasks, so it does not make sense to compare 
callsite values task-wise across experiments. As a result, we chose 
our second strategy for analyzing callsite data: we aggregate the 
callsite values across all tasks for each experiment and compare 
the aggregation with similar aggregations for other experiments. 
Table 2 shows aggregate callsite data for three BT experiments. 

 
NUMBER OF TASKS 

CALLSITE 9 16 25 
Barrier:bt.f:193 11.7 26.56 58.75 
Waitall:copy_faces.f:207 137440.8 232704 358045 
Wait:y_solve.f:70 122610 24240.6 44461.2 
Comm_split:setup_mpi.f:50 23.04 39.84 81.5 

Table 2: Select aggregate callsite data for three BT 
experiments. 

This choice has numerous implications. First, by aggregating the 
time, we suppress subtle differences across tasks. Second, this 
aggregation has different results for scaled or fixed problem sizes. 
As an application scales up with a fixed problem size, the size of 
messages generally decreases; however, the total number of 
messages increases. By contrast, as an application scales up with a 
scaled problem size, the message size remains, generally 
speaking, constant while the total number of message increases. 

3.2 Correlation Coefficient 
For our data analysis, we turn to the correlation coefficient for two 
reasons. First, correlation is a relatively simple and well-
understood technique. It is equally easy to apply many statistical 
techniques to performance data; however, relating the results of 
complex statistical measures to source code can be challenging. 

Second, other techniques, such as curve fitting, are often difficult 
to calculate for non-linear functions or noisy sample data, as is 
regularly the case with performance data.  

The sample correlation coefficient, r, measures the linear 
association between two variables and does not depend on the 
units of measurements. The standard equation for the linear 
correlation coefficient is 
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∑
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The value of r must be between -1 and +1. Quantitatively, r 
measures the strength of the linear association between two 
variables. If r is near 0, it implies no association between the 
variables, or that they are uncorrelated. Otherwise, the sign of r 
specifies the direction of the association. If r is negative, it implies 
an inclination for one value in the pair to be larger than its average 
when the other is smaller than its average. If r is positive, it 
suggests a tendency for one value of the pair to be large when the 
other value is large and also for both values to be small together. 

Disappointingly, however, the linear correlation coefficient 
suffers several limitations. First, it assumes that the underlying 
distributions are normal. Second, nonlinear associations can exist 
that are not revealed by the linear correlation coefficient. Third, 
linear correlation can be very sensitive to outliers, showing an 
association between variables when it does not exist. Finally, 
correlation does not imply causality in the association. We address 
these limitations by using rank transformation and by applying the 
correlation computation in a very restricted way.  

In addition to rank transformation, we can argue that, in our 
context, our data does not have nonlinear relationships and that it 
does imply causality. Our argument relies on the fact that, as we 
have designed it, the application’s total communication time is the 
sum of all the application’s communications operations. An 
increase in any operation’s time directly increases the total 
communication time. So, it is a linear and casual relationship by 
design. 

Another important point is that correlation can accept any number 
of scalability experiments, including experiments with identical 
configurations. This only improves the analysis either by 
strengthening or weakening the relationship between individual 
communication operations and the total communication time. That 
is, if two identically configured experiments have the same 
communication times yet produce drastically different 
measurements for one callsite, then any conclusion about that 
callsite must be interpreted carefully. 

3.3 Rank Transformation 
Because we are concerned about the normality assumption of the 
linear correlation technique and the effect of outliers in our 
measurements, we perform non-parametric or rank correlation 
[11, 16] on our data. Rank transformation is the process of 
replacing the actual observations by their ranks. Assume that we 
are given N pairs of measurements: X, Y. The key notion of non-
parametric correlation is that by replacing the value of each x by 
the value of its rank among all other xs in the sample. The 
transformed list will be drawn from a uniform distribution 
function from the integers between 1 and N, inclusive. The values 
for Y are transformed in the same way. When some of the values 
are identical, we assign these values the midrank for their range: 
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the mean of the ranks of that these values would have occupied if 
their values were different. In particular, we use the Spearman 
rank correlation coefficient: 
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We prefer the rank transformed correlation because it is less likely 
to be distorted by non-normality and unusual observations.  
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Figure 5: Example rank scatterplot of BT callsites. 

Figure 5 illustrates a scatterplot of several BT callsites after the 
ranking. Associations clearly emerge between the number of tasks 
and several callsites in this figure. The first four callsites, 
Wait:x_solve.f:71, Comm_split:setup_mpi.f:50, Barrier:bt.f:193, and 
Wait:y_solve.f:70, are positively correlated with the number of 
tasks, while Wait:z_solve.f:95 and Wait:y_solve.f:97 are negatively 
correlated. 

4 EXPERIMENTAL EVALUATION 
To explore our hypothesis of using rank correlation to analyze 
scalability, we have constructed an operational prototype for MPI 
applications. With this prototype, we empirically evaluated nine 
applications, extracted from the NAS Parallel and the ASCI 
Compact Benchmarks. 

4.1 Experiment Overview 
To capture information about the communication operations 
within these MPI applications, we extract a limited set of 
information about each MPI call during application execution, as 
discussed in Section 3. Unlike trace-based performance analysis 
tools [8, 17, 19], our lightweight profiler captures only 
fundamental performance data about MPI callsites: number of 
times called and cumulative time spent in the call. In fact, Table 1 
shows profiler output for one NAS MG experiment. Callsite is 
location of the MPI function in the user’s the source code. Rank 
identifies each MPI task’s rank within communicator 
MPI_COMM_WORLD. All represents the aggregate values across 
all tasks for that callsite. Count provides the number of times that 
function at that callsite was called. Max, Min, and Mean capture 

the maximum, minimum, and mean duration, respectively, for 
each callsite. 

We have found that this profiling technique balances the 
requirements of low overhead and manageable data volume with 
the need for overview information about an application’s 
communication. Furthermore, the amount of data generated with 
this lightweight technique is invariant to the length of the 
application’s run time. Put another way, the amount of profiler 
output for an application experiment is effectively constant 
whether the application runs for 5 minutes or 5 days. Still, tracing 
can provide a wealth of information about application 
communication performance; its chronological description of 
application events is more general than techniques such as our 
profiling. Note, however, that users can apply the techniques 
developed here to information gathered in trace files.  

For these evaluations, we analyze each application from start to 
finish; therefore, these results contain initialization and setup 
phases that might not be included in strict algorithmic evaluations.  

4.2 Platform 
We ran our tests in the batch partition of the ASCI Blue Pacific 
combined technology refresh (CTR) SP at Lawrence Livermore 
National Laboratory. This machine is composed of 332 Mhz 604e 
4-way SMP nodes, totaling 1344 CPUs. Each compute node has a 
peak performance of 2.656 GigaOPS. The 604e processor has one 
floating-point unit and one load/store unit. Its 32KB L1 cache is 4 
way associative with 32 byte cache lines and L1 uses an LRU 
replacement scheme. The processor has a 500KB L2 cache. At the 
time of our tests, the batch partition had 305 nodes and the 
operating system was AIX 4.3.3. We compiled the various tests 
with the IBM XL compilers and used IBM’s MPI library in user-
space mode. Each SMP node contains 1.5 GB main memory for a 
total of 504 GB system memory. Node to node bi-directional 
bandwidth is 150 Mbyte/s. Our test jobs ran on dedicated nodes, 
although other jobs were concurrently using the network. 

4.3 Application Results 
We tested six of the benchmarks from NAS Parallel Benchmark 
2.3 suite [1]: BT, SP, MG, FT, LU, and CG. These NAS 
benchmarks are fixed-problem size; our experiments use class B 
problems. We also tested other applications from the ASCI 
Compact Benchmark suite: sPPM, Sweep3d, and SMG2000. 
These benchmarks scale problem sizes with the number of tasks. 
Table 4 outlines the experiment configurations for these 
applications. We performed the experiment at least three times at 
each configuration. 

Table 3 presents the rank correlation results for all the 
applications we studied. We limited the callsites included in the 
table to those callsites that exceeded a threshold of 1% for at least 
one of the experiments on that application. 

For clarity, we graph only the data points for each experiment 
configuration whose aggregate execution time was the minimum 
for that configuration.  

4.3.1 NAS Parallel Benchmarks 

Figure 6 shows our scaling results for NAS benchmarks. All of 
the NAS benchmarks scale well, given that they are constrained 
by their fixed problem size. As other researchers have noted [24], 
these benchmarks effectively utilize an increasing number of 
processors up to a limit where they suffer from their inevitable 
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growth in communication overhead and from their shrinking local 
problem size. 

The benchmark applications NAS SP and BT represent 
computational fluid dynamics (CFD) applications that solve 
systems of equations resulting from an approximately factored 
implicit finite-difference discretization of the Navier–Stokes 

equations. The SP and BT algorithms have a similar structure; 
each solves three sets of uncoupled systems of equations. BT 
solves block-tridiagonal systems of 5x5 blocks; SP solves scalar 
pentadiagonal systems resulting from full diagonalization of the 
approximately factored scheme.  

 

bt.B rs  mg.B rs  lu.B rs 
Wait:x_solve.f:71 0.93  Wait:mg.f:1315 0.89  Allreduce:l2norm.f:55 0.75 
Comm_split:setup_mpi.f:50 0.90  Wait:mg.f:1542 0.70  Bcast:bcast_inputs.f:28 0.73 
Barrier:bt.f:193 0.89  Barrier:mg.f:99 0.67  Send:exchange_3.f:275 0.46 
Wait:y_solve.f:70 0.64  Barrier:mg.f:2089 0.62  Recv:exchange_1.f:30 0.45 
Wait:y_solve.f:0 0.44  Allreduce:mg.f:1004 0.48  Send:exchange_3.f:209 0.41 
Wait:z_solve.f:68 0.42  Allreduce:mg.f:2139 0.43  Send:exchange_1.f:149 0.30 
Wait:x_solve.f:0 -0.06  Allreduce:mg.f:1001 0.41  Send:exchange_1.f:130 -0.01 
Wait:x_solve.f:99 -0.07  Allreduce:mg.f:2099 0.41  Recv:exchange_1.f:48 -0.04 
Wait:y_solve.f:69 -0.32  Allreduce:mg.f:2115 0.39  Send:exchange_1.f:166 -0.08 
Wait:z_solve.f:0 -0.32  Allreduce:mg.f:2123 0.33  Send:exchange_1.f:113 -0.13 
Barrier:bt.f:147 -0.44  Barrier:mg.f:233 0.09  Recv:exchange_1.f:86 -0.13 
Wait:x_solve.f:70 -0.47  Reduce:mg.f:256 0.01  Send:exchange_3.f:139 -0.18 
Wait:y_solve.f:98 -0.53  Bcast:mg.f:133 -0.06  Recv:exchange_1.f:68 -0.21 
Wait:z_solve.f:96 -0.56  Send:mg.f:1215 -0.11  Send:exchange_3.f:73 -0.25 
Wait:z_solve.f:67 -0.86  Irecv:mg.f:1160 -0.13  Wait:exchange_3.f:288 -0.44 
Wait:x_solve.f:98 -0.92  Send:mg.f:1247 -0.15  Wait:exchange_3.f:222 -0.46 
Waitall:copy_faces.f:207 -0.95  Send:mg.f:1233 -0.27  Wait:exchange_3.f:152 -0.83 
Wait:z_solve.f:95 -0.96  Send:mg.f:1265 -0.33  Wait:exchange_3.f:86 -0.92 
Wait:y_solve.f:97 -0.97  Comm_rank:mg.f:86 -0.36    

   Send:mg.f:1201 -0.41    
   Send:mg.f:1279 -0.48  cg.B rs 

sp.B rs     Barrier:cg.f:411 0.91 
Comm_split:setup_mpi.f:51 0.85     Wait:cg.f:1221 0.90 
Barrier:sp.f:189 0.77  sppm rs  Wait:cg.f:1275 0.90 
Waitall:y_solve.f:74 0.71  Allreduce:main.f:1392 0.81  Wait:cg.f:1397 0.85 
Bcast:sp.f:102 0.65  Wait:bdrys.f:1247 0.75  Wait:cg.f:1059 0.58 
Allreduce:error.f:50 0.35  Wait:bdrys.f:1248 0.73  Wait:cg.f:1150 0.44 
Isend:x_solve.f:335 0.18  Wait:bdrys.f:928 0.72  Irecv:cg.f:1318 0.43 
Waitall:x_solve.f:81 -0.03  Wait:bdrys.f:3596 0.63  Wait:cg.f:1177 -0.23 
Barrier:sp.f:143 -0.19  Wait:bdrys.f:2421 0.54  Send:cg.f:1326 -0.66 
Waitall:z_solve.f:73 -0.39  Allreduce:main.f:1025 0.48  Send:cg.f:1143 -0.76 
Waitall:y_solve.f:380 -0.78  Wait:bdrys.f:2422 0.46  Send:cg.f:1354 -0.76 
Waitall:z_solve.f:377 -0.91  Wait:bdrys.f:2953 0.45  Send:cg.f:1170 -0.79 
Waitall:x_solve.f:388 -0.92  Wait:bdrys.f:2954 0.34    
Waitall:copy_faces.f:208 -0.94  Wait:bdrys.f:2102 -0.03    
   Wait:bdrys.f:1780 -0.24  smg2000 rs 
   Wait:bdrys.f:3595 -0.24  Allreduce:timing.c:419 0.93 

ft.B rs  Wait:bdrys.f:927 -0.28  Allreduce:struinprod.c:107 0.92 
Bcast:ft.f:443 0.87  Wait:bdrys.f:1779 -0.33  Waitall:coarsen.c:542 0.83 
Comm_split:ft.f:506 0.86  Wait:bdrys.f:3276 -0.50  Waitall:coarsen.c:491 0.80 
Barrier:ft.f:118 -0.41  Wait:bdrys.f:3275 -0.82  Barrier:smg2000.c:227 0.71 
Alltoall:ft.f:1283 -0.91  Wait:bdrys.f:2477 -0.84  Allgather:struct_grid.c:366 0.62 
Reduce:ft.f:1662 -0.94  Wait:bdrys.f:606 -0.85  Waitall:comm.c:667 -0.27 
   Wait:bdrys.f:3651 -0.88  Irecv:comm.c:485 -0.98 
   Wait:bdrys.f:605 -0.88  Isend:comm.c:492 -0.99 

sweep3d rs  Wait:bdrys.f:2101 -0.94  Type_commit:comm.c:1487 -0.99 
Barrier:mpi_stuff.f:337 0.50     Type_free:comm.c:1405 -0.99 
Bcast:mpi_stuff.f:248 0.09     Type_free:comm.c:1413 -0.99 
Send:mpi_stuff.f:128 -0.10       
Recv:mpi_stuff.f:155 -0.33       
Allreduce:mpi_stuff.f:270 -0.36       
Allreduce:mpi_stuff.f:316 -0.73       
Comm_size:mpi_stuff.f:36 -0.86       

Table 3: Rank Correlation Results. 
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Application Scaled problem, 
Problem size 

Experiment  
range 

NAS BT No, Class B 4 - 225 
NAS CG No, Class B 2 - 256 
NAS FT No, Class B 8 - 256 
NAS LU No, Class B 4 - 256 
NAS MG No, Class B 2 - 256 
NAS SP No, Class B 4 - 225 
SMG2000
[0] 

Yes, 10x10x10 per task 2 - 1024 

sPPM Yes, 1283  per task 2 - 768 
Sweep3D Yes, 6x6x300 per task 2 - 512 

Table 4: Applications. 

The analysis of our motivating example, BT, exposes that a Wait, 
a Comm_split, and a Barrier grow considerably with the number of 
tasks. The strongest correlation is Wait:x_solve.f:71. Referring 
back to Figure 3, we can see that this Wait is consistently 
increasing as the number of tasks increases. Upon closer 
examination, this Wait completes the first Irecv of the solver for 
the X-direction. This is the first message passing operation in the 
sequence, so any load-imbalance up to that point is credited 
toward this Wait. The other two operations, Comm_split and 
Barrier, increase as the number of tasks increase as well. Note that 
although they do consume more time than the Wait, they are much 
less consistent. Hence, they have a lower rank correlation.  
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Figure 6: NAS NPB Class B Scaling. 

Interestingly, the rank correlation for SP also positions a 
Comm_split, a Barrier, and a Waitall as the most closely correlated 
with the number of tasks. It structure is very similar to BT. 

NAS CG computes an approximation to the smallest eigenvalue 
of a large, sparse, symmetric positive definite matrix, which is 
characteristic of unstructured grid computations.  

Our analysis of CG rates a Barrier and several Wait operations as 
the main culprits that scale poorly. As Table 3 and Figure 7 show, 
the remaining Wait operations have a strong positive correlation 
with the number of tasks. On the other hand, the Barrier call is 
used for initialization and it increases from about 1 millisecond 
for 2 tasks up to 80 seconds for one experiment at 256 tasks (not 
shown). 

NAS FT, which solves a 3-D partial differential equation using 

FFTs, has few MPI calls, relying entirely on collective operations. 
FT relies mainly on one Alltoall for periodic exchanges of data 
among tasks for the FFT. As the number of tasks grows, though, 
two relatively obscure collective operations dominate 
communication time: a Bcast and a Comm_split. This example 
demonstrates one of the most important features of our analysis 
technique. The Alltoall operation is a very important operation for 
the FFT as shown in Figure 8; however, its contribution to the 
communication time remains relatively constant when scaling 
from 2 to 256 tasks. Instead, our rank correlation technique clearly 
identifies the two other collectives, Bcast and Comm_split, as the 
callsites that increase with the number of tasks. 
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Figure 7: Aggregate time for select CG callsites. 
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Figure 8: Aggregate time for FT callsites. 

NAS LU solves a regular-sparse, block 5x5 lower and upper 
triangular system using a symmetric successive over-relaxation 
(SSOR) numerical scheme. 

Again, collective operations dominate the top two spots for our 
evaluation for LU: an Allreduce and a Bcast. More importantly, 
only 6 of 18 listed communication operations have a positive 
correlation to the number of tasks. Figure 9 helps make this result 
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understandable. Once more, we see these two collectives have a 
very small portion of the communication time at 4 tasks. They, 
then, grow consistently to hold a large portion of the 
communication time at 256 tasks. Contrast this result with 
Wait:exchange_3.f:86 and the result is more conspicuous. For this 
particular Wait, the aggregate time remains almost constant during 
our scaling experiments, even though, it holds a large portion of 
the communication time. 
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Figure 9: Aggregate time for select LU callsites 
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Figure 10: Aggregate time for select MG callsites 

NAS MG is a kernel benchmark that runs a simplified multigrid 
solver to compute a three-dimensional potential field. MG has 
only two positively correlated communication operations that are 
not collectives: two Waits. The remaining operations include three 
Barriers and six Allreduces. 

As Figure 10 demonstrates, Wait:mg.f:1315 consumes most of the 
communication time and it grows steadily with the number of 
tasks. Wait:mg.f:1542 also holds a top position and maintains that 
position as the number of tasks grows. This callsite begins at 16 
tasks because the problem decomposition at smaller task sizes did 

not explore all the control flow paths. Compare these positively 
correlated callsites with Comm_rank:mg.f:86, which also increases 
as does the number of tasks. Comm_rank:mg.f:86 is negatively 
correlated at -0.36 with the nubmer of tasks because as the 
communication time increases dramatically from 128 to 256 tasks 
(from Figure 6), the aggregate time for this callsite does not 
change noticeably and its portion of the communication time 
shrinks. 

4.3.2 ASCI Benchmarks 

Figure 11 illustrates the results of our scaling experiments for the 
three ASCI Benchmarks. All three of these benchmarks have 
scaled problem sizes, so we were able to run much larger 
problems and in the case of SMG, we ran up to 1024 tasks. 
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Figure 11: ASCI Benchmark Scaling. 

sPPM [15] solves a 3D gas dynamics problem on a uniform 
Cartesian mesh, using a simplified version of the Piecewise 
Parabolic Method. The algorithm makes use of a split scheme of 
X, Y, and Z Lagrangian and remap steps, which are computed as 
three separate sweeps through the mesh per timestep. Message 
passing provides updates to ghost cells from neighboring domains 
three times per timestep. The sPPM code is written in Fortran 77 
with some C routines. The code uses the asynchronous message 
operations: MPI_Irecv and MPI_Isend. 

Our analysis of sPPM confirmed our earlier investigation [22] and 
reinforced the experience of others [15]: sPPM scales very well. 
As illustrated in Table 3, our rank correlation identifies 
Allreduce:main.f:1392 main culprit while a host of Waits dominate 
the other positively correlated operations. As Figure 12 illustrates, 
Allreduce:main.f:1392 rockets from a very small portion of the 
communication time at 2 tasks up to practically dominating the 
communication time at 768 tasks. Closer scrutiny of the code 
reveals that the two Allreduces are called in sequence with the first 
one, Allreduce:main.f:1392, bearing the brunt of any load 
imbalance. sPPM calls the second Allreduce at 
Allreduce:main.f:1025 immediately after the first one. 

SMG2000 [2] is a parallel semicoarsening multigrid solver for the 
linear systems arising from finite difference, finite volume, or 
finite element discretizations of the diffusion equation, 

fuuD =+∇⋅∇ σ)( on logically rectangular grids. The code 

solves both 2D and 3D problems with discretization stencils of up 
to 9-point in 2D and up to 27-point in 3D. This code is a 



� ��

distributed memory application based on C and MPI.  
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Figure 12: Select callsites for SPPM. 
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Figure 13: Select callsites for SMG2000. 

SMG2000 scaling suffers from several collective operations. Four 
of the six operations are collectives with two Waitalls also having 
a strong positive correlation. Surprisingly, the SMG2000 rank 
correlation shows a large gap between positive and negative 
correlated operations. Six communication operations are strongly 
correlated to the number of tasks, where the lowest positive 
coefficient is 0.62. Figure 13 clarifies this difference. As before, 
these collective operations consume a very small portion of the 
communication time at 2 tasks and then they rise to the top 
positions at 1024 tasks. Once again, rank correlation has helped to 
identify the callsites that grow to consume more communication 
time as the number of tasks group. 

Sweep3D [12] is a solver for the 3-D, time-independent, particle 
transport equation on an orthogonal mesh. The solver computes 
along wavefronts in the mesh in eight diagonal directions through 
the cube. This code is built on FORTRAN and MPI. 

Sweep3D scaling mirrors our earlier analysis where two 

collectives emerge to dominate practically the communication 
time. Unfortunately, Sweep3D wraps MPI communication 
routines in its own communication abstraction procedures, so all 
of the communication performance data is mapped into seven 
operations. Effectively, our data needs one more level of from the 
stack, so that it can discriminate among calls to these user-defined 
abstractions. We are currently implementing this feature. 
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Figure 14: Select callsites for Sweep3D. 

4.4 Observations 
The evaluation of our proposed technique for scalability analysis 
on nine applications produces several interesting observations. 
First, rank correlation of the number of tasks with the ratio of 
callsite times to the overall communication time clearly identifies 
trends in the communication operations of the applications we 
evaluated. In every case, this automated technique highlighted the 
communication operations that grow to dominate communication 
time as the number of tasks increase.  

Second, this type of correlation identifies callsites that simpler 
methods of analysis would not. Simply put, our analysis extracts 
trends from the data that could be easily overlooked by just 
looking at one experiment at a large task count. We can apply 
rank correlation to a large set of experiments and allow it to grade 
callsites based on all the evidence it is presented. 

Third, rank correlation is necessary in our example; however, the 
rank transformation discards some useful information including 
the magnitude of the variance. For instance, this conversion 
makes two sets of monotonically-increasing data samples exactly 
the same even though one set might change by a factor of 100 
more than the other set. Still, the rank transformation eliminates 
more concerns than it introduces. It safely guarantees a normal 
distribution and it controls outliers. 

Finally, it is important to note that both positive and negative 
correlation provides useful information. For instance, in the case 
of NAS FT, these correlations unmistakably separated the 
collective operations into two groups. 

On reflection, our technique could benefit from several 
improvements as well. In particular, our analysis of Sweep3D was 
thwarted by the aliasing of performance data into the user-defined 
communication wrappers. 
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Our experiences also indicate that although this analysis uses only 
timing data, it can serve as a first-order approximation at 
scalability and other performance problems. With this information 
a user can easily interrogate the original data, or perform a trace 
of the offensive operations for more detailed performance data. 

5 CONCLUSIONS 
In this paper, we have proposed and evaluated a novel technique 
for identifying communication operations that scale poorly. Our 
technique uses non-parametric (or rank) correlation of the number 
of tasks to the ratio of the time for individual communication 
operations to the overall communication time. Our initial results 
with these applications on up to 1024 processors show that our 
correlation technique automatically and correctly identifies the 
poorly scaling operations in every case. We have also successfully 
used this technique to analysis applications with 1536 processors 
on the ASCI White initial delivery system and with over two 
hundred individual MPI callsites. More importantly, our technique 
identifies performance problems in a way that a user can easily 
relate to the design of their application. Our experiments showed 
that our technique extracts trends from the performance data that 
are very important, but not obvious. Our experiments also show 
that similar communication operations do not scale similarly.  

We believe that this technique is applicable to other types of 
performance analysis. We are beginning to explore, for example, 
the use of this technique on data analysis for hardware 
performance counters across hundreds or thousands of concurrent 
application regions. Accordingly, we are also investigating 
automated techniques that robustly discover other phenomena 
including load-balancing problems. 
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