

Approved for public release; further dissemination unlimited

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

Preprint
UCRL-JC-142611

Statistical Scalability
Analysis of Communication
Operations in Distributed
Applications

J. S. Vetter, M. O. McCracken

This article was submitted to
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, Snowbird, UT, June 18- 20, 2000

February 27, 2001

Statistical Scalability
Analysis of Communication
Operations in Distributed

Statistical Scalability
Analysis of Communication
Operations in Distributed

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced directly from the best available copy.

Available electronically at http://www.doc.gov/bridge

Available for a processing fee to U.S. Department of Energy

And its contractors in paper from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reports@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

http://www.doc.gov/bridge
mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/ordering.htm

� ��

Statistical Scalability Analysis of Communication
Operations in Distributed Applications

 Jeffrey S. Vetter Michael O. McCracken

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, California, USA 94551

{vetter3,mccracken6}@llnl.gov

ABSTRACT
Current trends in high performance computing suggest that users
will soon have widespread access to clusters of multiprocessors
with hundreds, if not thousands, of processors. This
unprecedented degree of parallelism will undoubtedly expose
scalability limitations in existing applications, where scalability is
the ability of a parallel algorithm on a parallel architecture to
effectively utilize an increasing number of processors. Users will
need precise and automated techniques for detecting the cause of
limited scalability. This paper addresses this dilemma. First, we
argue that users face numerous challenges in understanding
application scalability: managing substantial amounts of
experiment data, extracting useful trends from this data, and
reconciling performance information with their application’s
design. Second, we propose a solution to automate this data
analysis problem by applying fundamental statistical techniques
to scalability experiment data. Finally, we evaluate our
operational prototype on several applications, and show that
statistical techniques offer an effective strategy for assessing
application scalability. In particular, we find that non-parametric
correlation of the number of tasks to the ratio of the time for
individual communication operations to overall communication
time provides a reliable measure for identifying communication
operations that scale poorly.

1 INTRODUCTION
Current trends in high performance computing suggest that users
will be running their applications on scalable clusters of
multiprocessors with hundreds, if not thousands, of processors in
the near future [3, 15]. This unprecedented availability of
computing resources motivates the need for precise and
meaningful scalability analysis of these applications. By
scalability, we mean the ability of a parallel algorithm on a

parallel architecture to effectively utilize an increasing number of
processors [6, 7, 13]. Undoubtedly, this new, high degree of
concurrency will expose scalability limitations of applications
that, at lower levels of concurrency, might have been shrouded by
other application or system characteristics. Furthermore, perpetual
improvements in single node performance will continue to direct
users' attention on the scalability limitations of communication
operations in their distributed memory applications.

Although metrics like execution time, speedup, and efficiency
[14] help quantify scalability on an abstract level, users need
precise information about the communication operations in their
application that scale poorly. In addition, for any analysis to help
users understand their application’s scalability, the technology
should be able to explain scalability phenomena in terms of
decisions a user makes while designing their application.

To this end, we propose an automated technique that uses familiar
statistical techniques to direct a user's attention on poorly scaling
communication operations in their application. Our method
digests the results of multiple application experiments and
suggests communication operations whose growth has a positive
correlation with the number of tasks. We empirically evaluate the
usefulness of these techniques on nine applications with both
fixed and scaled problem sizes. Our results show that, in every
case, our method quickly identifies the communication operations
that grow to dominate the application's execution time during
highly parallel experiments. More importantly, our technique
selects operations that a user might not normally locate when
using simpler methods.

1.1 Background
The analysis of scalability is not a new concept [6, 14]. Yet many
users find scalability analysis of their applications difficult, time-
consuming, and inconclusive. Despite the fact that investigators
have proposed numerous metrics, such as speedup, scaled
speedup, efficiency, and iso-efficiency, these metrics provide only
an abstract and broad view of application scalability behavior.
They do not provide specific evidence that allows users to
understand and optimize their applications. Worse, the
experimental process of measuring application scalability, in
practice, can generate an intractable amount of data that can
hinder a user's attempts at understanding scalability, because users
are simply inundated with lots of uninteresting, redundant data.

Aside from this work, investigators have also proposed scalable
visualization techniques for understanding performance data [5,
10, 21]; however, many of these techniques have not been
extended to help users understand application scalability.

Submitted to ACM PPOPP 2001.

� ��

Essentially, this previous work has focused on helping users
understand the performance data of one application experiment,
whereas scalability analysis forces users to integrate performance
data from many experiments.

The goal of this work, in contrast, is to develop techniques that
promptly and reliably focus a user’s attention on the
communication operations of their application that limit
scalability. With this guidance, a user can easily locate scalability
problems and modify their application, if necessary. Our work is
empirically driven and directly relevant to existing applications.
In fact, our analysis focuses on the Message Passing Interface
(MPI) [9, 20] because it serves as an important foundation for a
large group of high performance applications and communication
scalability will become an increasingly important problem as the
size of computing systems continues to increase [4, 18, 23].

1.2 Paper Organization
The remainder of this paper discusses these issues in more detail.
In Section 2, we motivate scalability analysis with a case study
and observe that users need automated techniques for scalability
analysis. Following this, in Section 3, we introduce our approach
to analyzing scalability data with statistical techniques. Then, in
Section 0, we evaluate these techniques on numerous MPI
applications. Finally, Section 5 concludes the paper with a
summary and some interesting research directions.

2 MOTIVATING EXAMPLE
To motivate the demands of scalability analysis, we consider a
case study of NAS BT [1]. (Section 0 provides complete details of
the experimental evaluation.) The goal of this example is to
outline the process of manual scalability analysis and to argue for
an automated technique.

1XPEHU�RI�7DVNV

�� ���

$
J
J
UH
J
D
WH
�7
LP
H
��
V
H
F
V
�

�

�H��

�H��

�H��

�H��

�H��

$SSOLFDWLRQ

03,

Figure 1: NAS BT Communication Time.

As a first step in analyzing the scalability of BT, we look first at
the aggregate runtime of BT from 4 tasks up to 225 tasks as
illustrated in Figure 1. More specifically, we divide the time in
each task into communication, Tcomm, and computation, Tcomp. We
capture these values empirically. Using this approach, each task i
has a Ti,comm, and Ti,comp that together create Ti,app, the execution
time of task i. Also, we define Tagg as the processor-time
summation across all tasks:

∑∑
==

+==
N

i
compicommi

N

i
iagg TTTT

1
,,

1

)(

Likewise, we define the aggregate time for communication across
all tasks as Tagg,comm:

∑
=

=
N

i
commicommagg TT

1
,,

Noting that we use the fixed problem size of Class B for this
experiment, Figure 1 shows the breakdown of communication
time as part of the aggregate application runtime for each
experiment size. This analysis quickly illustrates that, for this
problem size, BT effectively uses an increasing number of
processors up to 81. However, at this point, BT’s communication
time drives the application time.

Noticeably, some portion of the communication in BT is
increasing; however, this resolution remains too coarse. It is
unclear whether all communication operations degrade evenly, or
whether one or two communication operations are causing the
dramatic increase in communication time.

Number of Tasks

10 100

A
gg

re
ga

te
 T

im
e

(m
ill

is
ec

s)

0.0

2.0e+6

4.0e+6

6.0e+6

8.0e+6

1.0e+7

1.2e+7

1.4e+7

1.6e+7
Allreduce
Barrier
Comm_dup
Comm_rank
Comm_size
Comm_split
Irecv
Isend
Reduce
Wait
Waitall

Figure 2: NAS BT Communication Time by Type.

As a next step, we decompose the communication time by
operation (e.g., barrier, reduction, send). Many MPI performance
analysis tools capture data by the type of MPI call and they do not
distinguish among different callsites to the same MPI library
routine. Restated, we now have

∑=
allops

j
jicommi TT ,,

where Ti,op provides the total time that task i spent in the op type
of communication operation. Figure 2 shows the breakdown of
communication operations by type for BT. Viewed in this light,
we can focus our scalability analysis on one type of
communication operation in BT: Wait, Barrier, Waitall, and
Comm_split. Up to 81 tasks, Tagg,wait remains the largest
component, but relatively flat; yet beyond 81 tasks, Tagg,wait visibly
dominates the communication time. Also, Barrier, Waitall, and
Comm_split emerge from the group as the number of tasks
increase.

Realistically, however, applications call these operations from
multiple callsites. So, as a final step, we split Tagg,wait into

� ��

individual callsites. Recasting Ti,wait as Ti,wait,callsite where

∑=
esallcallsit

j
jwaitiwaiti TT ,,,
,

we find that not all Wait operations perform similarly as Figure 3
indicates for several select callsites. Indeed, two of the four Waits
scale admirably while the other two waits, at x_solve.f:71 and
y_solve.f:70, perform much worse.

1XPEHU�RI�7DVNV

�� ���

$
J
J
UH
J
D
WH
�7
LP
H
��
P
LO
OL
V
H
F
V
�

���H��

���H��

���H��

���H��

���H��

:DLW�[BVROYH�I����

&RPPBVSOLW�VHWXS�I����

%DUULHU�EW�I�����

:DLW�\BVROYH�I����

:DLW�]BVROYH�I����

:DLW�\BVROYH�I����

Figure 3: NAS BT communication time for select callsites.

In fact, this decomposition of the communication time by callsite
divulges several interesting characteristics about BT. First, many
of the data points are quite noisy. Take, for instance, the
Comm_split data in Figure 3. These sample points oscillate wildly
even though the communication time increases steadily in Figure
1. Our experience indicates that this noise is commonplace,
especially on large, production computing systems. Second, the
shape of the curves in Figure 3 is strikingly similar to the
communication time in Figure 1. All the callsites are relatively
flat up to 81 tasks.

In any case, given this information, a user could begin a detailed
investigation into why these operations scale poorly, especially
when considering that calls to the same communication operation
perform distinctively different. The reason for poor scaling could
have a number of causes including poor load balance and
algorithm design. Also, using this collection of evidence from all
callsites, a user could compare calls to the same communication
routine and rule out implementation problems, except for the most
pathological cases.

2.1 Observations
This example illustrates the basic problems encountered by any
user when they try to analyze application scalability. First,
although the analysis provides some information about scalability,
it only provides precise evidence once the user has manually
searched through the data to harvest the offensive communication
operations. We selected the BT example because it was
illustrative; other real world applications will force users to
manage similar data for hundreds of MPI callsites across
thousands of tasks.

Consider that for one experiment, with P processors executing n
communication operations, the analysis can spawn data at the rate
of approximately n × P events at any time t. Furthermore,

scalability analysis requires data from E experiments, leading to at
least n × P × E data points. Taken together, these factors can, over
a very short period of time, overwhelm most users.

Furthermore, any analysis must account for statistical variations in
the experiments as illustrated in our BT example. In this analysis,
we ran four experiments at every size of N, and then selected the
experiment with the smallest running time as the representative
for that experiment group. Alternatively, a quantitative analysis
should use this additional data to verify and support the
conclusions rather than discard it.

3 STATISTICAL SCALABILITY
ANALYSIS

Given the issues of manual scalability analysis as exposed in
Section 2, we propose an alternative solution that relies on
statistical analysis [11, 16] to extract meaningful relationships
from the data. With our solution, users can easily distill the results
of their scalability experiments, automatically revealing
communication operations that scale poorly.

Scalability AnalysisExperiments

16

4

8

Clean and Merge
Comm Data
By Callsite

Calculate Ratios

Rank
Transformation

Calculate
Correlation
Coefficient

Select Poorly
Scaling Ops

Figure 4: Process for statistical scalability analysis.

Figure 4 illustrates our process for statistical scalability analysis.
Our process is composed of two stages. First, the user
performance multiple scalability experiments varying the number
of tasks, and possibly, the problem size. During the experiment,
we record specific timing information about callsites for all
communication operations. The user can perform multiple
experiments at each configuration; and, in fact, we encourage this.

The next step in our process merges all of the scalability
experiment files and then harvests timing information about each
callsite. With this information in hand, we calculate the ratio of
the aggregate time in each callsite to the aggregate
communication time. We, then, rank transform both this ratio and
the number of tasks for each experiment. Finally, our process
calculates the correlation between the ranked ratio and the ranked
number of tasks.

As we will show in Section 4, we find that this non-parametric (or
rank) correlation of the ratio of the aggregate time for individual
communication operations to aggregate communication time with
the number of tasks provides an accurate and stable predictor for
identifying communication operations that scale poorly.

3.1 Performance Data Management
We organize our data to reflect the stages of scalability analysis
presented in Section 2. Since we need callsite information to map

� ��

communication operations to specific locations in the code, our
analysis assumes that for all callsites across all tasks in the
application, we have the count, cumulative time, and minimum
and maximum time. Table 1 shows an example of this
performance data from MG.

Op Callsite Task Count Max Mean Min

Send mg.f:1201 0 487 7658 963 11
Send mg.f:1201 1 487 6907 946 12
Send mg.f:1201 2 487 5674 925 11
Send mg.f:1201 3 487 5707 963 11
Send mg.f:1201 All 1948 7658 949 11
Allreduce mg.f:2099 0 20 244 132 36
Allreduce mg.f:2099 1 20 484 340 230
Allreduce mg.f:2099 2 20 252 157 65
Allreduce mg.f:2099 3 20 434 355 218
Allreduce mg.f:2099 All 80 484 246 36

Table 1: Callsite data for one experiment on NAS MG.

We have constructed a software tool, using the MPI profiling
layer [9], to provide straightforward access to this type of data. In
addition, we capture the runtime of each task, from start to finish.
With this limited information from each experiment, we can do all
of the analysis presented in Section 2 and we can easily compute
derived values, such as speedup.

For scalability analysis, we have several options for organizing
the data. One alternative is to compare callsite values for each task
in one experiment to the same callsite in other experiments. This
option has the disadvantage that, by definition, experiments have
different numbers of tasks, so it does not make sense to compare
callsite values task-wise across experiments. As a result, we chose
our second strategy for analyzing callsite data: we aggregate the
callsite values across all tasks for each experiment and compare
the aggregation with similar aggregations for other experiments.
Table 2 shows aggregate callsite data for three BT experiments.

NUMBER OF TASKS

CALLSITE 9 16 25
Barrier:bt.f:193 11.7 26.56 58.75
Waitall:copy_faces.f:207 137440.8 232704 358045
Wait:y_solve.f:70 122610 24240.6 44461.2
Comm_split:setup_mpi.f:50 23.04 39.84 81.5

Table 2: Select aggregate callsite data for three BT
experiments.

This choice has numerous implications. First, by aggregating the
time, we suppress subtle differences across tasks. Second, this
aggregation has different results for scaled or fixed problem sizes.
As an application scales up with a fixed problem size, the size of
messages generally decreases; however, the total number of
messages increases. By contrast, as an application scales up with a
scaled problem size, the message size remains, generally
speaking, constant while the total number of message increases.

3.2 Correlation Coefficient
For our data analysis, we turn to the correlation coefficient for two
reasons. First, correlation is a relatively simple and well-
understood technique. It is equally easy to apply many statistical
techniques to performance data; however, relating the results of
complex statistical measures to source code can be challenging.

Second, other techniques, such as curve fitting, are often difficult
to calculate for non-linear functions or noisy sample data, as is
regularly the case with performance data.

The sample correlation coefficient, r, measures the linear
association between two variables and does not depend on the
units of measurements. The standard equation for the linear
correlation coefficient is

∑∑
∑

−−

−−
=

i
i

i
i

i
ii

yyxx

yyxx
r

22)()(

))((.

The value of r must be between -1 and +1. Quantitatively, r
measures the strength of the linear association between two
variables. If r is near 0, it implies no association between the
variables, or that they are uncorrelated. Otherwise, the sign of r
specifies the direction of the association. If r is negative, it implies
an inclination for one value in the pair to be larger than its average
when the other is smaller than its average. If r is positive, it
suggests a tendency for one value of the pair to be large when the
other value is large and also for both values to be small together.

Disappointingly, however, the linear correlation coefficient
suffers several limitations. First, it assumes that the underlying
distributions are normal. Second, nonlinear associations can exist
that are not revealed by the linear correlation coefficient. Third,
linear correlation can be very sensitive to outliers, showing an
association between variables when it does not exist. Finally,
correlation does not imply causality in the association. We address
these limitations by using rank transformation and by applying the
correlation computation in a very restricted way.

In addition to rank transformation, we can argue that, in our
context, our data does not have nonlinear relationships and that it
does imply causality. Our argument relies on the fact that, as we
have designed it, the application’s total communication time is the
sum of all the application’s communications operations. An
increase in any operation’s time directly increases the total
communication time. So, it is a linear and casual relationship by
design.

Another important point is that correlation can accept any number
of scalability experiments, including experiments with identical
configurations. This only improves the analysis either by
strengthening or weakening the relationship between individual
communication operations and the total communication time. That
is, if two identically configured experiments have the same
communication times yet produce drastically different
measurements for one callsite, then any conclusion about that
callsite must be interpreted carefully.

3.3 Rank Transformation
Because we are concerned about the normality assumption of the
linear correlation technique and the effect of outliers in our
measurements, we perform non-parametric or rank correlation
[11, 16] on our data. Rank transformation is the process of
replacing the actual observations by their ranks. Assume that we
are given N pairs of measurements: X, Y. The key notion of non-
parametric correlation is that by replacing the value of each x by
the value of its rank among all other xs in the sample. The
transformed list will be drawn from a uniform distribution
function from the integers between 1 and N, inclusive. The values
for Y are transformed in the same way. When some of the values
are identical, we assign these values the midrank for their range:

� ��

the mean of the ranks of that these values would have occupied if
their values were different. In particular, we use the Spearman
rank correlation coefficient:

∑∑
∑

−−

−−
=

i
i

i
i

i
ii

s
SSRR

SSRR
r

22)()(

))((
.

We prefer the rank transformed correlation because it is less likely
to be distorted by non-normality and unusual observations.

1XPEHU�RI�7DVNV�5DQN

� � � � � �� �� ��

5
D
Q
N
�R
I�
5
D
WL
R
�R
I�
&
D
OO
V
LW
H
�7
LP
H
�W
R
�0
3
,�
7
LP
H

�

�

�

�

�

��

��

��

Wait:x_solve.f:71
Comm_split:setup_mpi.f:50
Barrier:bt.f:193
Wait:y_solve.f:70
Wait:z_solve.f:95
Wait:y_solve.f:97

Figure 5: Example rank scatterplot of BT callsites.

Figure 5 illustrates a scatterplot of several BT callsites after the
ranking. Associations clearly emerge between the number of tasks
and several callsites in this figure. The first four callsites,
Wait:x_solve.f:71, Comm_split:setup_mpi.f:50, Barrier:bt.f:193, and
Wait:y_solve.f:70, are positively correlated with the number of
tasks, while Wait:z_solve.f:95 and Wait:y_solve.f:97 are negatively
correlated.

4 EXPERIMENTAL EVALUATION
To explore our hypothesis of using rank correlation to analyze
scalability, we have constructed an operational prototype for MPI
applications. With this prototype, we empirically evaluated nine
applications, extracted from the NAS Parallel and the ASCI
Compact Benchmarks.

4.1 Experiment Overview
To capture information about the communication operations
within these MPI applications, we extract a limited set of
information about each MPI call during application execution, as
discussed in Section 3. Unlike trace-based performance analysis
tools [8, 17, 19], our lightweight profiler captures only
fundamental performance data about MPI callsites: number of
times called and cumulative time spent in the call. In fact, Table 1
shows profiler output for one NAS MG experiment. Callsite is
location of the MPI function in the user’s the source code. Rank
identifies each MPI task’s rank within communicator
MPI_COMM_WORLD. All represents the aggregate values across
all tasks for that callsite. Count provides the number of times that
function at that callsite was called. Max, Min, and Mean capture

the maximum, minimum, and mean duration, respectively, for
each callsite.

We have found that this profiling technique balances the
requirements of low overhead and manageable data volume with
the need for overview information about an application’s
communication. Furthermore, the amount of data generated with
this lightweight technique is invariant to the length of the
application’s run time. Put another way, the amount of profiler
output for an application experiment is effectively constant
whether the application runs for 5 minutes or 5 days. Still, tracing
can provide a wealth of information about application
communication performance; its chronological description of
application events is more general than techniques such as our
profiling. Note, however, that users can apply the techniques
developed here to information gathered in trace files.

For these evaluations, we analyze each application from start to
finish; therefore, these results contain initialization and setup
phases that might not be included in strict algorithmic evaluations.

4.2 Platform
We ran our tests in the batch partition of the ASCI Blue Pacific
combined technology refresh (CTR) SP at Lawrence Livermore
National Laboratory. This machine is composed of 332 Mhz 604e
4-way SMP nodes, totaling 1344 CPUs. Each compute node has a
peak performance of 2.656 GigaOPS. The 604e processor has one
floating-point unit and one load/store unit. Its 32KB L1 cache is 4
way associative with 32 byte cache lines and L1 uses an LRU
replacement scheme. The processor has a 500KB L2 cache. At the
time of our tests, the batch partition had 305 nodes and the
operating system was AIX 4.3.3. We compiled the various tests
with the IBM XL compilers and used IBM’s MPI library in user-
space mode. Each SMP node contains 1.5 GB main memory for a
total of 504 GB system memory. Node to node bi-directional
bandwidth is 150 Mbyte/s. Our test jobs ran on dedicated nodes,
although other jobs were concurrently using the network.

4.3 Application Results
We tested six of the benchmarks from NAS Parallel Benchmark
2.3 suite [1]: BT, SP, MG, FT, LU, and CG. These NAS
benchmarks are fixed-problem size; our experiments use class B
problems. We also tested other applications from the ASCI
Compact Benchmark suite: sPPM, Sweep3d, and SMG2000.
These benchmarks scale problem sizes with the number of tasks.
Table 4 outlines the experiment configurations for these
applications. We performed the experiment at least three times at
each configuration.

Table 3 presents the rank correlation results for all the
applications we studied. We limited the callsites included in the
table to those callsites that exceeded a threshold of 1% for at least
one of the experiments on that application.

For clarity, we graph only the data points for each experiment
configuration whose aggregate execution time was the minimum
for that configuration.

4.3.1 NAS Parallel Benchmarks

Figure 6 shows our scaling results for NAS benchmarks. All of
the NAS benchmarks scale well, given that they are constrained
by their fixed problem size. As other researchers have noted [24],
these benchmarks effectively utilize an increasing number of
processors up to a limit where they suffer from their inevitable

� ��

growth in communication overhead and from their shrinking local
problem size.

The benchmark applications NAS SP and BT represent
computational fluid dynamics (CFD) applications that solve
systems of equations resulting from an approximately factored
implicit finite-difference discretization of the Navier–Stokes

equations. The SP and BT algorithms have a similar structure;
each solves three sets of uncoupled systems of equations. BT
solves block-tridiagonal systems of 5x5 blocks; SP solves scalar
pentadiagonal systems resulting from full diagonalization of the
approximately factored scheme.

bt.B rs mg.B rs lu.B rs
Wait:x_solve.f:71 0.93 Wait:mg.f:1315 0.89 Allreduce:l2norm.f:55 0.75
Comm_split:setup_mpi.f:50 0.90 Wait:mg.f:1542 0.70 Bcast:bcast_inputs.f:28 0.73
Barrier:bt.f:193 0.89 Barrier:mg.f:99 0.67 Send:exchange_3.f:275 0.46
Wait:y_solve.f:70 0.64 Barrier:mg.f:2089 0.62 Recv:exchange_1.f:30 0.45
Wait:y_solve.f:0 0.44 Allreduce:mg.f:1004 0.48 Send:exchange_3.f:209 0.41
Wait:z_solve.f:68 0.42 Allreduce:mg.f:2139 0.43 Send:exchange_1.f:149 0.30
Wait:x_solve.f:0 -0.06 Allreduce:mg.f:1001 0.41 Send:exchange_1.f:130 -0.01
Wait:x_solve.f:99 -0.07 Allreduce:mg.f:2099 0.41 Recv:exchange_1.f:48 -0.04
Wait:y_solve.f:69 -0.32 Allreduce:mg.f:2115 0.39 Send:exchange_1.f:166 -0.08
Wait:z_solve.f:0 -0.32 Allreduce:mg.f:2123 0.33 Send:exchange_1.f:113 -0.13
Barrier:bt.f:147 -0.44 Barrier:mg.f:233 0.09 Recv:exchange_1.f:86 -0.13
Wait:x_solve.f:70 -0.47 Reduce:mg.f:256 0.01 Send:exchange_3.f:139 -0.18
Wait:y_solve.f:98 -0.53 Bcast:mg.f:133 -0.06 Recv:exchange_1.f:68 -0.21
Wait:z_solve.f:96 -0.56 Send:mg.f:1215 -0.11 Send:exchange_3.f:73 -0.25
Wait:z_solve.f:67 -0.86 Irecv:mg.f:1160 -0.13 Wait:exchange_3.f:288 -0.44
Wait:x_solve.f:98 -0.92 Send:mg.f:1247 -0.15 Wait:exchange_3.f:222 -0.46
Waitall:copy_faces.f:207 -0.95 Send:mg.f:1233 -0.27 Wait:exchange_3.f:152 -0.83
Wait:z_solve.f:95 -0.96 Send:mg.f:1265 -0.33 Wait:exchange_3.f:86 -0.92
Wait:y_solve.f:97 -0.97 Comm_rank:mg.f:86 -0.36

 Send:mg.f:1201 -0.41
 Send:mg.f:1279 -0.48 cg.B rs

sp.B rs Barrier:cg.f:411 0.91
Comm_split:setup_mpi.f:51 0.85 Wait:cg.f:1221 0.90
Barrier:sp.f:189 0.77 sppm rs Wait:cg.f:1275 0.90
Waitall:y_solve.f:74 0.71 Allreduce:main.f:1392 0.81 Wait:cg.f:1397 0.85
Bcast:sp.f:102 0.65 Wait:bdrys.f:1247 0.75 Wait:cg.f:1059 0.58
Allreduce:error.f:50 0.35 Wait:bdrys.f:1248 0.73 Wait:cg.f:1150 0.44
Isend:x_solve.f:335 0.18 Wait:bdrys.f:928 0.72 Irecv:cg.f:1318 0.43
Waitall:x_solve.f:81 -0.03 Wait:bdrys.f:3596 0.63 Wait:cg.f:1177 -0.23
Barrier:sp.f:143 -0.19 Wait:bdrys.f:2421 0.54 Send:cg.f:1326 -0.66
Waitall:z_solve.f:73 -0.39 Allreduce:main.f:1025 0.48 Send:cg.f:1143 -0.76
Waitall:y_solve.f:380 -0.78 Wait:bdrys.f:2422 0.46 Send:cg.f:1354 -0.76
Waitall:z_solve.f:377 -0.91 Wait:bdrys.f:2953 0.45 Send:cg.f:1170 -0.79
Waitall:x_solve.f:388 -0.92 Wait:bdrys.f:2954 0.34
Waitall:copy_faces.f:208 -0.94 Wait:bdrys.f:2102 -0.03
 Wait:bdrys.f:1780 -0.24 smg2000 rs
 Wait:bdrys.f:3595 -0.24 Allreduce:timing.c:419 0.93

ft.B rs Wait:bdrys.f:927 -0.28 Allreduce:struinprod.c:107 0.92
Bcast:ft.f:443 0.87 Wait:bdrys.f:1779 -0.33 Waitall:coarsen.c:542 0.83
Comm_split:ft.f:506 0.86 Wait:bdrys.f:3276 -0.50 Waitall:coarsen.c:491 0.80
Barrier:ft.f:118 -0.41 Wait:bdrys.f:3275 -0.82 Barrier:smg2000.c:227 0.71
Alltoall:ft.f:1283 -0.91 Wait:bdrys.f:2477 -0.84 Allgather:struct_grid.c:366 0.62
Reduce:ft.f:1662 -0.94 Wait:bdrys.f:606 -0.85 Waitall:comm.c:667 -0.27
 Wait:bdrys.f:3651 -0.88 Irecv:comm.c:485 -0.98
 Wait:bdrys.f:605 -0.88 Isend:comm.c:492 -0.99

sweep3d rs Wait:bdrys.f:2101 -0.94 Type_commit:comm.c:1487 -0.99
Barrier:mpi_stuff.f:337 0.50 Type_free:comm.c:1405 -0.99
Bcast:mpi_stuff.f:248 0.09 Type_free:comm.c:1413 -0.99
Send:mpi_stuff.f:128 -0.10
Recv:mpi_stuff.f:155 -0.33
Allreduce:mpi_stuff.f:270 -0.36
Allreduce:mpi_stuff.f:316 -0.73
Comm_size:mpi_stuff.f:36 -0.86

Table 3: Rank Correlation Results.

� ��

Application Scaled problem,
Problem size

Experiment
range

NAS BT No, Class B 4 - 225
NAS CG No, Class B 2 - 256
NAS FT No, Class B 8 - 256
NAS LU No, Class B 4 - 256
NAS MG No, Class B 2 - 256
NAS SP No, Class B 4 - 225
SMG2000
[0]

Yes, 10x10x10 per task 2 - 1024

sPPM Yes, 1283 per task 2 - 768
Sweep3D Yes, 6x6x300 per task 2 - 512

Table 4: Applications.

The analysis of our motivating example, BT, exposes that a Wait,
a Comm_split, and a Barrier grow considerably with the number of
tasks. The strongest correlation is Wait:x_solve.f:71. Referring
back to Figure 3, we can see that this Wait is consistently
increasing as the number of tasks increases. Upon closer
examination, this Wait completes the first Irecv of the solver for
the X-direction. This is the first message passing operation in the
sequence, so any load-imbalance up to that point is credited
toward this Wait. The other two operations, Comm_split and
Barrier, increase as the number of tasks increase as well. Note that
although they do consume more time than the Wait, they are much
less consistent. Hence, they have a lower rank correlation.

Number of Tasks

1 10 100

A
g

gr
eg

at
e

Ti
m

e
(s

ec
s)

0

1e+4

2e+4

3e+4

4e+4

BT
CG
FT
LU
MG
SP

Figure 6: NAS NPB Class B Scaling.

Interestingly, the rank correlation for SP also positions a
Comm_split, a Barrier, and a Waitall as the most closely correlated
with the number of tasks. It structure is very similar to BT.

NAS CG computes an approximation to the smallest eigenvalue
of a large, sparse, symmetric positive definite matrix, which is
characteristic of unstructured grid computations.

Our analysis of CG rates a Barrier and several Wait operations as
the main culprits that scale poorly. As Table 3 and Figure 7 show,
the remaining Wait operations have a strong positive correlation
with the number of tasks. On the other hand, the Barrier call is
used for initialization and it increases from about 1 millisecond
for 2 tasks up to 80 seconds for one experiment at 256 tasks (not
shown).

NAS FT, which solves a 3-D partial differential equation using

FFTs, has few MPI calls, relying entirely on collective operations.
FT relies mainly on one Alltoall for periodic exchanges of data
among tasks for the FFT. As the number of tasks grows, though,
two relatively obscure collective operations dominate
communication time: a Bcast and a Comm_split. This example
demonstrates one of the most important features of our analysis
technique. The Alltoall operation is a very important operation for
the FFT as shown in Figure 8; however, its contribution to the
communication time remains relatively constant when scaling
from 2 to 256 tasks. Instead, our rank correlation technique clearly
identifies the two other collectives, Bcast and Comm_split, as the
callsites that increase with the number of tasks.

Number of Tasks

10 100

A
gg

re
ga

te
 T

im
e

(m
ill

is
ec

s)

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1e+8

Barrier:cg.f:411
Wait:cg.f:1221
Wait:cg.f:1275
Wait:cg.f:1397
Wait:cg.f:1059

Figure 7: Aggregate time for select CG callsites.

Number of Tasks

10 100

A
gg

re
ga

te
 T

im
e

(m
ill

is
ec

s)

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

Bcast:ft.f:443
Comm_split:ft.f:506
Barrier:ft.f:118
Alltoall:ft.f:1283
Reduce:ft.f:1662

Figure 8: Aggregate time for FT callsites.

NAS LU solves a regular-sparse, block 5x5 lower and upper
triangular system using a symmetric successive over-relaxation
(SSOR) numerical scheme.

Again, collective operations dominate the top two spots for our
evaluation for LU: an Allreduce and a Bcast. More importantly,
only 6 of 18 listed communication operations have a positive
correlation to the number of tasks. Figure 9 helps make this result

� ��

understandable. Once more, we see these two collectives have a
very small portion of the communication time at 4 tasks. They,
then, grow consistently to hold a large portion of the
communication time at 256 tasks. Contrast this result with
Wait:exchange_3.f:86 and the result is more conspicuous. For this
particular Wait, the aggregate time remains almost constant during
our scaling experiments, even though, it holds a large portion of
the communication time.

Number of Tasks

10 100

A
gg

re
ga

te
 T

im
e

(m
ill

is
ec

s)

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1e+8

Allreduce:l2norm.f:55
Bcast:bcast_inputs.f:28
Send:exchange_3.f:275
Recv:exchange_1.f:30
Wait:exchange_3.f:86

Figure 9: Aggregate time for select LU callsites

Number of Tasks

1 10 100

A
gg

re
ga

te
 T

im
e

(m
ill

is
ec

s)

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

Wait:mg.f:1315
Wait:mg.f:1542
Barrier:mg.f:99
Barrier:mg.f:2089
Allreduce:mg.f:1004
Comm_rank:mg.f:86

Figure 10: Aggregate time for select MG callsites

NAS MG is a kernel benchmark that runs a simplified multigrid
solver to compute a three-dimensional potential field. MG has
only two positively correlated communication operations that are
not collectives: two Waits. The remaining operations include three
Barriers and six Allreduces.

As Figure 10 demonstrates, Wait:mg.f:1315 consumes most of the
communication time and it grows steadily with the number of
tasks. Wait:mg.f:1542 also holds a top position and maintains that
position as the number of tasks grows. This callsite begins at 16
tasks because the problem decomposition at smaller task sizes did

not explore all the control flow paths. Compare these positively
correlated callsites with Comm_rank:mg.f:86, which also increases
as does the number of tasks. Comm_rank:mg.f:86 is negatively
correlated at -0.36 with the nubmer of tasks because as the
communication time increases dramatically from 128 to 256 tasks
(from Figure 6), the aggregate time for this callsite does not
change noticeably and its portion of the communication time
shrinks.

4.3.2 ASCI Benchmarks

Figure 11 illustrates the results of our scaling experiments for the
three ASCI Benchmarks. All three of these benchmarks have
scaled problem sizes, so we were able to run much larger
problems and in the case of SMG, we ran up to 1024 tasks.

Number of Tasks

1 10 100 1000

A
vg

 T
im

e
P

er
 T

as
k

(s
ec

s)

10

100

Sweep
SPPM
SMG

Figure 11: ASCI Benchmark Scaling.

sPPM [15] solves a 3D gas dynamics problem on a uniform
Cartesian mesh, using a simplified version of the Piecewise
Parabolic Method. The algorithm makes use of a split scheme of
X, Y, and Z Lagrangian and remap steps, which are computed as
three separate sweeps through the mesh per timestep. Message
passing provides updates to ghost cells from neighboring domains
three times per timestep. The sPPM code is written in Fortran 77
with some C routines. The code uses the asynchronous message
operations: MPI_Irecv and MPI_Isend.

Our analysis of sPPM confirmed our earlier investigation [22] and
reinforced the experience of others [15]: sPPM scales very well.
As illustrated in Table 3, our rank correlation identifies
Allreduce:main.f:1392 main culprit while a host of Waits dominate
the other positively correlated operations. As Figure 12 illustrates,
Allreduce:main.f:1392 rockets from a very small portion of the
communication time at 2 tasks up to practically dominating the
communication time at 768 tasks. Closer scrutiny of the code
reveals that the two Allreduces are called in sequence with the first
one, Allreduce:main.f:1392, bearing the brunt of any load
imbalance. sPPM calls the second Allreduce at
Allreduce:main.f:1025 immediately after the first one.

SMG2000 [2] is a parallel semicoarsening multigrid solver for the
linear systems arising from finite difference, finite volume, or
finite element discretizations of the diffusion equation,

fuuD =+∇⋅∇ σ)(on logically rectangular grids. The code

solves both 2D and 3D problems with discretization stencils of up
to 9-point in 2D and up to 27-point in 3D. This code is a

� ��

distributed memory application based on C and MPI.

Number of Tasks

1 10 100 1000

A
gg

re
ga

te
 T

im
e

(m
ill

is
ec

s)

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

Allreduce:main.f:1392

Wait:bdrys.f:1247

Wait:bdrys.f:1248

Allreduce:main.f:1025

Wait:bdrys.f:2101

Figure 12: Select callsites for SPPM.

Number of Tasks

1 10 100 1000

A
gg

re
ga

te
 T

im
e

(m
ill

is
ec

s)

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1e+8

1e+9

Allreduce:timing.c:419
Allreduce:struct_innerprod.c:107
Waitall:coarsen.c:542
Waitall:coarsen.c:491
Type_free:communication.c:1405
Type_free:communication.c:1413

Figure 13: Select callsites for SMG2000.

SMG2000 scaling suffers from several collective operations. Four
of the six operations are collectives with two Waitalls also having
a strong positive correlation. Surprisingly, the SMG2000 rank
correlation shows a large gap between positive and negative
correlated operations. Six communication operations are strongly
correlated to the number of tasks, where the lowest positive
coefficient is 0.62. Figure 13 clarifies this difference. As before,
these collective operations consume a very small portion of the
communication time at 2 tasks and then they rise to the top
positions at 1024 tasks. Once again, rank correlation has helped to
identify the callsites that grow to consume more communication
time as the number of tasks group.

Sweep3D [12] is a solver for the 3-D, time-independent, particle
transport equation on an orthogonal mesh. The solver computes
along wavefronts in the mesh in eight diagonal directions through
the cube. This code is built on FORTRAN and MPI.

Sweep3D scaling mirrors our earlier analysis where two

collectives emerge to dominate practically the communication
time. Unfortunately, Sweep3D wraps MPI communication
routines in its own communication abstraction procedures, so all
of the communication performance data is mapped into seven
operations. Effectively, our data needs one more level of from the
stack, so that it can discriminate among calls to these user-defined
abstractions. We are currently implementing this feature.

Number of Tasks

1 10 100 1000
A

gg
re

ga
te

 T
im

e
(m

ill
is

ec
s)

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1e+8
Barrier:mpi_stuff.f:337

Bcast:mpi_stuff.f:248

Send:mpi_stuff.f:128

Recv:mpi_stuff.f:155

Comm_size:mpi_stuff.f:36

Figure 14: Select callsites for Sweep3D.

4.4 Observations
The evaluation of our proposed technique for scalability analysis
on nine applications produces several interesting observations.
First, rank correlation of the number of tasks with the ratio of
callsite times to the overall communication time clearly identifies
trends in the communication operations of the applications we
evaluated. In every case, this automated technique highlighted the
communication operations that grow to dominate communication
time as the number of tasks increase.

Second, this type of correlation identifies callsites that simpler
methods of analysis would not. Simply put, our analysis extracts
trends from the data that could be easily overlooked by just
looking at one experiment at a large task count. We can apply
rank correlation to a large set of experiments and allow it to grade
callsites based on all the evidence it is presented.

Third, rank correlation is necessary in our example; however, the
rank transformation discards some useful information including
the magnitude of the variance. For instance, this conversion
makes two sets of monotonically-increasing data samples exactly
the same even though one set might change by a factor of 100
more than the other set. Still, the rank transformation eliminates
more concerns than it introduces. It safely guarantees a normal
distribution and it controls outliers.

Finally, it is important to note that both positive and negative
correlation provides useful information. For instance, in the case
of NAS FT, these correlations unmistakably separated the
collective operations into two groups.

On reflection, our technique could benefit from several
improvements as well. In particular, our analysis of Sweep3D was
thwarted by the aliasing of performance data into the user-defined
communication wrappers.

� ���

Our experiences also indicate that although this analysis uses only
timing data, it can serve as a first-order approximation at
scalability and other performance problems. With this information
a user can easily interrogate the original data, or perform a trace
of the offensive operations for more detailed performance data.

5 CONCLUSIONS
In this paper, we have proposed and evaluated a novel technique
for identifying communication operations that scale poorly. Our
technique uses non-parametric (or rank) correlation of the number
of tasks to the ratio of the time for individual communication
operations to the overall communication time. Our initial results
with these applications on up to 1024 processors show that our
correlation technique automatically and correctly identifies the
poorly scaling operations in every case. We have also successfully
used this technique to analysis applications with 1536 processors
on the ASCI White initial delivery system and with over two
hundred individual MPI callsites. More importantly, our technique
identifies performance problems in a way that a user can easily
relate to the design of their application. Our experiments showed
that our technique extracts trends from the performance data that
are very important, but not obvious. Our experiments also show
that similar communication operations do not scale similarly.

We believe that this technique is applicable to other types of
performance analysis. We are beginning to explore, for example,
the use of this technique on data analysis for hardware
performance counters across hundreds or thousands of concurrent
application regions. Accordingly, we are also investigating
automated techniques that robustly discover other phenomena
including load-balancing problems.

ACKNOWLEDGEMENTS
This work was performed under the auspices of the U.S. Dept. of
Energy by University of California LLNL under contract W-7405-
Eng-48. LLNL Document Number UCRL-JC-142611.

REFERENCES
[1] D. Bailey, E. Barszcz et al., “The Nas Parallel Benchmarks

(94),” NASA Ames Research Center, RNR Technical
Report RNR-94-007, 1994.

[2] P.N. Brown, R.D. Falgout et al., “Semicoarsening Multigrid
on Distributed Memory Machines,” SIAM Journal on
Scientific Computing, 21(5):1823-34, 2000.

[3] A.C. Calder, B.C. Curtis et al., “High-Performance Reactive
Fluid Flow Simulations Using Adaptive Mesh Refinement
on Thousands of Processors,” Proc. SC2000: High
Performance Networking and Computing Conf. (electronic
publication), 2000.

[4] M. Calzarossa, L. Massari et al., “Parallel Performance
Evaluation: The Medea Tool,” Proc. High-Performance
Computing and Networking (HPCN Europe 1996), 1996,
pp. 522-9.

[5] S.K. Card, B. Shneiderman et al., Readings in Information
Visualization: Using Vision to Think. San Francisco, CA:
Morgan Kaufmann Publishers, 1999.

[6] D.E. Culler, J.P. Singh et al., Parallel Computer
Architecture: A Hardware Software Approach. San
Francisco: Morgan Kaufmann Publishers, 1999.

[7] I. Foster, Designing and Building Parallel Programs:
Concepts and Tools for Parallel Software Engineering.
Reading, MA: Addison-Wesley, 1995.

[8] G.A. Geist, M.T. Heath et al., “A Users' Guide to Picl - a
Portable Instrumented Communication Library,” Oak Ridge
National Laboratory, P.O.Box 2009, Bldg. 9207-A, Oak
Ridge, TN 37831-8083 1991.

[9] W. Gropp, E. Lusk et al., Using Mpi: Portable Parallel
Programming with the Message-Passing Interface, 2nd ed.
Cambridge, MA: MIT Press, 1999.

[10] M.T. Heath, A.D. Malony et al., “Parallel Performance
Visualization: From Practice to Theory,” IEEE Parallel &
Distributed Technology: Systems & Applications, 3(4):44-
60, 1995.

[11] R.A. Johnson and D.W. Wichern, Applied Multivariate
Statistical Analysis, 4 ed. Englewood Cliffs, New Jersey,
USA: Prentice-Hall, 1998.

[12] K.R. Koch, R.S. Baker et al., “Solution of the First-Order
Form of the 3-D Discrete Ordinates Equation on a
Massively Parallel Processor,” Trans. Amer. Nuc. Soc.,
65(198), 1992.

[13] V. Kumar, A. Grama et al., Introduction to Parallel
Computing: Design and Analysis of Algorithms. Redwood
City, Calif.: Benjamin/Cummings Pub. Co., 1994.

[14] V. Kumar and A. Gupta, “Analyzing Scalability of Parallel
Algorithms and Architectures,” Journal of Parallel and
Distributed Computing, 22(3):379-91, 1994.

[15] A.A. Mirin, R.H. Cohen et al., “Very High Resolution
Simulation of Compressible Turbulence on the Ibm-Sp
System,” Proc. SC99: High Performance Networking and
Computing Conf. (electronic publication), 1999.

[16] W.H. Press, S.A. Teukolsky et al., Numerical Recipes in C:
The Art of Scientific Computing, 2nd , rev. ed. Cambridge
Cambridgeshire; New York: Cambridge University Press,
1997.

[17] D.A. Reed, R.A. Aydt et al., “An Overview of the Pablo
Performance Analysis Environment,” Department of
Computer Science, University of Illinois, 1304 West
Springfield Avenue, Urbana, IL 61801 1992.

[18] D.A. Reed, O.Y. Nickolayev et al., “Real-Time Statistical
Clustering and for Event Trace Reduction,” J.
Supercomputing Applications and High-Performance
Computing, 11(2):144-59, 1997.

[19] S. Shende, A.D. Malony et al., “Portable Profiling and
Tracing for Parallel, Scientific Applications Using C++,”
Proc. SIGMETRICS Symp. Parallel and Distributed Tools
(SPDT), 1998, pp. 134-45.

[20] M. Snir, S. Otto et al., Eds., Mpi--the Complete Reference,
2nd ed. Cambridge, MA: MIT Press, 1998.

[21] J. Stasko, J. Domingue et al., Eds., Software Visualization:
Programming as a Multimedia Experience,. Cambridge,
MA: MIT Press, 1998.

[22] J.S. Vetter, “Performance Analysis of Distributed
Applications Using Automatic Classification of
Communication Inefficiencies,” Proc. ACM Int'l Conf.
Supercomputing (ICS), 2000.

[23] J.S. Vetter and D. Reed, “Managing Performance Analysis
with Dynamic Statistical Projection Pursuit,” Proc. SC99:
High Performance Networking and Computing Conf.
(electronic publication), 1999.

[24] F. Wong, R. Martin et al., “Architectural Requirements and
Scalability of the Nas Parallel Benchmarks,” Proc. SC99:
High Performance Networking and Computing Conf.
(electronic publication), 1999.

