Conditions on Input Vectors for Consensus Solvability
in Asynchronous Distributed Systems

ACHOUR MOSTEFAOUI

Irisa/lfsic, Universié de Rennes, France

SERGIO RAJSBAUM

Instituto de Materaticas, UNAM, Mexico
AND
MICHEL RAYNAL

Irisa/lfsic, Universié de Rennes, France

Abstract. This article introduces and explores toadition-base@pproach to solve the consensus
problem in asynchronous systems. The approach stadigditionsthat identify sets of input vectors

for which it is possible to solve consensus despite the occurrence of fipptocess crashes. The

first main result defineacceptableconditions and shows that these are exactly the conditions for
which a consensus protocol exists. Two examples of realistic acceptable conditions are presented,
and proved to be maximal, in the sense that they cannot be extended and remain acceptable. The
second main result is a generic consensus shared-memory protocol for any acceptable condition. The
protocol always guarantees agreement and validity, and terminates (at least) when the inputs satisfy
the condition with which the protocol has been instantiated, or when there are no crashes. An efficient
version of the protocol is then designed for the message passing model that works wing@, and

it is shown that no such protocol exists whén= n/2. It is also shown how the protocol’s safety can

be traded for its liveness.

Categories and Subject Descriptors: C.22binputer-Communication Networks]: Distributed
systems—distributed applications network operating system€.4 [Performance of Systemp
fault tolerance reliability, availability, and serviceability D.1.3 [Programming Techniqueg:
Concurrent Programmingsistributed programmingD.4.5 [Operating System$: Reliability—
fault-tolerance F.1.1 [Computation by Abstract Device§: Models of Computation-relations

A preliminary version of this article appearedimceedings of the 33rd ACM Symposium on Theory
of ComputingCrete, Greece, July). ACM, New York, 2001, pp. 153-162.

Part of this work was done while S. Rajsbaum was at HP Research Lab, One Cambridge Center,
Cambridge, MA 02139.

Authors’ addresses: A. Mostefaoui and M. Raynal, IRISA, Campus de Beaulieu, Universite de
Rennes 1, Avenue du General Leclerc, 35042 Rennes Cedex, France, e-mail: raynal@irisa.fr;
S. Rajsbaum, Instituto de Matextiicas, UNAM, Mexico.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
afee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York,
NY 10036 USA, fax+1 (212) 869-0481, or permissions@acm.org.

© 2003 ACM 0004-5411/03/1100-0922 $5.00

Journal of the ACM, Vol. 50, No. 6, November 2003, pp. 922—-954.

Conditions on Consensus Solvability 923

between modelscomputability theory F.1.2 [Computation by Abstract Device§: Modes of
Computation—parallelism and concurrengyalternation and nondeterminisni.2.m [Analysis of
Algorithms and Problem Complexity]: Miscellaneous

General Terms: Algorithms, Reliability, Theory, Performance

Additional Key Words and Phrases: Asynchronous systems, consensus problem, crash failures, fault-
tolerance, message-passing, atomic registers, shared memory

1. Introduction

Context of the study. Agreement and coordination problems are crucial for the
design of fault-tolerant applications on top of asynchronous distributed systems
prone to failures. Among agreement probleo@)sensuss considered fundamen-
tal, and many papers have been written on both its practical and its theoretical aspects
[Attiya and Welch 1998; Lynch 1996]. It has gained a leadership position as it can
be seen as the “greatest common agreement subproblem.” Intuitively, this means
that particular agreement problems (e.g., atomic broadcast [Chandra and Toueg
1996], shared memory objects [Herlihy 1991]), can be implemented using a solu-
tion to the consensus problem. Informally, this problem can be defined in terms of
two requirements: each process proposes a value, and each correct process has to
(liveness) decide a value such that (safety) there is a single decided value, and the
decided value is a proposed value.

Consensus being such an important problem, it is remarkable that it cannot be
solved in an asynchronous system where only one process may crash (Fischer et al.
[1985] proved the result for message passing systems, and Loui and Abu-Amara
[1987] extended it to shared memory systems). Therefore, researchers started inves-
tigating ways of circumventing the impossibility result. Two main directions were
explored: relaxing the requirements of the consensus problem, and strengthening
the assumptions on the system. Of course, most interesting are problems weaker
than consensus that are still interesting for applications, and stronger computation
models that still reflect realistic distributed systems.

At least two ways of relaxing the consensus requirements have been investigated.
An active research area has been on ways of solving the problem using random-
ization, so that termination is achieved only with high probability (e.g., Ben-Or
[1983], or Aumann [1997] for a more recent work, and references herein). Another
approach is to require that processes agree with each other only approximately;
either processes must eventually decide on real values which are withigach
other (e.g., Dolev et al. [1986]), or processes can decide on at kndistinct
proposed values (e.g., Chaudhuri [1993]).

Also, at least two ways of strengthening the assumptions on the system have been
considered. One major research direction consists of adding synchrony assumptions
to the system. This is motivated by the fact that real systems often have access
to approximately synchronized clocks, and can make use of timeouts to avoid
waiting for a message that has been lost, or for a process that has crashed. Partially
synchronous systems where delays and relative processor speeds are bounded have
been studied in works such as Dolev et al. [1987] and Dwork et al. [1988]. An
interesting direction is thenreliable Failure Detectoconcept [Chandra and Toueg
1996], that abstracts away from the details of how a processor suspects a failure has
occurred, without referring to particular synchrony assumptions. This is achieved

924 A. MOSTEFAOQUI ET AL.

by equipping processes with an oracle that provides them with a list of processes
suspected to have crashed. Several failure detector-based consensus protocols have
been designed (e.g., Chandra and Toueg [1996] and Mostefaoui and Raynal [1999]).
The other major research direction consists of assuming that the system includes
communication primitives that are stronger than point-to-point message channels
or read/write shared registers. A seminal paper in this approach is Herlihy [1991]
where itis shown that there are objects that can be used to solve wait-free (tolerating
any number of failures) consensus foprocesses but not for+ 1 processes, and

that some objects can be used to solve wait-free consensus for any number of
processes. For example, while read/write registers cannot be used to solve wait-
free consensus even for just two processes, test&set objects can be used to solve
wait-free consensus for two, and no more than two, processes.

Some papers try to circumvent the consensus impossibility result combining the
two previous approaches, to benefit from the best of “both worlds.” Combining
failure detection and randomization is explored in Aguilera and Toueg [1998] and
Mostefaoui et al. [2000]. Combining relaxation of the termination requirement with
stronger assumptions on the system, so that processes rely on “luck” to terminate,
is explored in Aspnes [2000].

Results presented in the articleThis article introduces and investigates a new
approach to tackle the consensus problem. This approach considers the set of pos-
sible vectors of values that can be proposed by the processes, and focuses on
conditions that identify sets of vectors allowingrocesses to solve the consensus
problem despite up td process crashes, in a standard asynchronous model. The
intuition that underlies the approach is simple and natural. To illustrate it, let us
consider the extreme case where it is a priori known that all the processes propose
the same value. Then, consensus is trivially solved (at no cost!), each process de-
ciding the value it proposes. As a less trivial example, consider the condition “more
than a majority of the processes propose the same value.” It is not hard to see that
consensus can be solved in this case, whenal. It is plausible to imagine an
application that in some real system satisfies this condition most of the time; only
when something goes wrong, the processes proposals get evenly divided.

More generally, for a given set of input valuds and particular values af
and f, aconditionis defined to be the set of all vectors ovwéthat can be pro-
posed by the processes under normal operating conditions. We are interested in
protocols that (1) solve consensus when such a condition holds, and (2) are al-
ways safe. Safe means that the protocol guarantees agreement (and a decided
value is a proposed value), whether the proposed input vector is allowed by the
condition or not. In addition, the protocol must terminate in well-behaved sce-
narios (e.g., failure-free runs) even if the input vector is not in the condition.
This is the best we can hope for, since the consensus impossibility result says
we cannot require that a consensus protocol terminates always, for every input
vector. By guaranteeing that safety is never violated, the hope is that such a pro-
tocol should be useful in applications (e.g., Guerraoui and Raynal [2003] and
Lamport [1998]).

After having introduced theondition-base@pproach, we present our first main
result: a generic condition-based consensus protocol. This protocol uses a predicate
P and a functionS, that have to be instantiated for each particular condi@on
Intuitively, the predicateP tells a process if the input vector could belongGo

Conditions on Consensus Solvability 925

(in general, due to failures and asynchrony, the process is able to find out only
part of the input vector), and if s@ tells it what value to decide. This protocol

has various desirable features. First, it is simple and efficient, and its parameters
P and S can be efficiently computed from the conditi@n If the conditionC it

is based on contains the actual input vector and there are atfmosishes then

the protocol solves the consensus problem. When the actual input vector does not
belong toC the protocol still terminates in many cases, guaranteeing agreement;

it terminates when no process crashes, or when one process decides. Thus, the
protocol is attractive from both theoretical and practical points of view.

Clearly, our protocol could not possibly work wiglverycondition. For example,
the condition that includes every input vector reduces the problem to the original
consensus problem, which we know by Fischer et al. [1985] that cannot be solved.
Our second main result is identifying the class of conditions for which the proposed
protocol solves the consensus problem, cadleceptable conditionsnd observing
that it is an efficiently decidable class. Moreover, we prove that if theaaygro-
tocol solving the consensus problem for a conditiyrthenC must be acceptable.
Thus, it is somewhat surprising that such a simple and efficient protocol as the one
we propose, solves the problem for any condition for which a solution does exist.

Our characterization is in terms of an intermediate notion that wecoatition
legality. This notion is based on a graph defined by the input vectors of the condition,
as explained below. Given a conditi@h(and a value off andV), we show that
the four following assertions are equivalen&l(C is acceptable A2) there exists
a consensus algorithm f&, (A3) there exists amonsafealgorithm that solves
consensus provided it only gets inputs belongin@iqA4) C is legal. We prove
this by proving the implicationAl = A2 = A3 = A4 = Al. The part
A2 = A3 s trivial, since the requirements for a nonsafe algorithm are weaker
than for its safe counterpart. More interestingly, the characterization implies that
A3 = A2, which means that the safety requirement (2) above does not limit the set
of conditions for which a condition-based consensus protocol exists. We present
also a direct proof of this fact: we describe how to transform a protocol that solves
consensus assuming that only inputs in a condi@oare given, to a protocol that
also allows inputs outside & and guarantees the safety requirement.

An intuition for the characterization can be seen through the legality definition.
Basically, the input vectors are represented as vertices of a graph, where two input
vectors are connected if they differ in at mdsntries. Hence, a particular condition
C defines disconnected components of this input graph, by eliminating input vectors
outside ofC. Different conditions define different ways to produce disconnected
components. A condition ikegal if each connected component of its associated
graph, has a value that appears in all the input vectors of that component. The
intuition is that, according to the particular condition it is supplied with, the generic
protocol maps each connected component to an output vector with all entries equal
to the same value—a value that occurs in each input vector of the corresponding
component.

The protocol is first described in a very simple model (following a methodology
advocated in Gafni [1998]): a shared memory model with atomic snapshots. Then,
an efficientimplementation is discussed for a message passing systemamt/2,
that avoids automatic, but less efficient translations such as those of Attiya [2000]
and Attiya and Rachman [1998]. It is also shown that no such protocol exists when
f>n/2.

926 A. MOSTEFAOUI ET AL

This article also investigates two particular conditidb&,andC2. Both are very
natural, and are proved to be acceptable. Cond@ibris the following one. Given
an input vector , let a be the most often proposed value, anddéte the second
most often proposed value. Lets#l) (#na(l)) be the number of timea (b) has
been proposed. The@1 accepts all vectorswith #15:(1) — #ong(l) > f + 1. Itis
shown that, whei€1 is satisfied, consensus can be solved by having each process
decide the value it sees the most often. Conditdhassumes that the proposed
values are ordered and is the following: the largest proposed vakieroposed
by at least ¢ + 1) processes. In this case, all processes can see this value, and can
decide on it. Many other conditions can be defined,@iitandC2, are in a sense
dual and realistic. Moreover, we prove that a slightly refined versio@Ifand
C2 are maximal in the sense that any attempt to extend them results in a condition
which is not acceptable.

Related work. Following the publication of an extended abstract of this article
[Mostefaoui et al. 2001], several works have continued exploring the condition-
based approach. In this article we seek to establish the foundations of the condition-
based approach, mainly from the computability point of view, and applied to the
consensus problem in asynchronous systems. The case of synchronous systems is
explored in Mostefaoui et al. [2003] and Zibin [2003]. All the following works
are for asynchronous systems. Efficiency aspects of the approach are studied in a
companion paper [Mostefaoui et al. 2001b] where it is shown that the acceptable
conditions form a hierarchy, more precisely, the efficiency of the consensus proto-
cols depends of the position of the condition in the hierarchy. In Attiya and Avidor
[2002] and Mostefaoui et al. [2002] the condition-based approach is appheskb
agreement problems. In this article, we give two natural examples of conditions for
consensus;1 andC2. Other conditions are explored in Mostefaoui et al. [2001a].

A formulation of conditions in terms of error correcting codes has been proposed
in Friedman et al. [2002].

The idea of considering restricted set of inputs to a problem is very natural and
has appeared in various contexts; just to mention a few examples, it has appeared
in on-line algorithms [Azar et al. 1993], adaptive sorting [Castro and Wood 1992],
etc. Agreement problems with a restricted set of inputs vectors were considered
in Taubenfeld et al. [1994] and Taubenfeld and Moran [1996], where possibility
and impossibility results in a shared memory system and a hierarchy of problems
that can be solved with up tb failures but not for ¢ 4 1) failures are introduced.

More generally, an approach for designing algorithms in situations where there
is some information about the typical conditions that are encountered when the
respective problemis solved s presentedin Berman and Garay [1998]. In this article,
the consensus problem in a synchronous setting is analyzed taking as parameter
the difference between the number of 0’s and 1’s in the input vector.

The foundation underlying the proposed condition-based approach can be for-
malized using topology (e.g., Herlihy and Rajsbaum [1999]). Our setting is not
exactly that of the previous topology papers, because those codsitision tasks
where processes have to terminate always, with an output vector satisfying the task
specification. We can call our notion of problesafe taskywhere in addition to the
requirements of a decision task, processors are required to satisfy a safety property
when inputs are illegal, without necessarily terminating. From this point of view,
our article is a study of the class of all safe tasks, with a particular kind of output

Conditions on Consensus Solvability 927

vectors: all decisions are equal. Thus, our result is an efficiently decidable char-
acterization of thef -fault tolerant solvability of these safe tasks. In Section 3.2,
we explore the relation between safe tasks and decision tasks, and show that our
notion of safe task is equivalent (for consensus solvability) to a common notion of
decision task.

Ingeneral, the study df-faulttolerant decision tasks requires higher dimensional
topology (except for the case 6f= 1 which uses only graphs [Biran et al. 1990a]),
and leads to undecidable characterizations [Gafni and Koutsoupias 1999; Herlihy
and Rajsbaum 1997] (NP-Hard fér= 1 [Biran etal. 1990b]). We are able to derive
an efficiently decidable characterization of the acceptable conditions (and hence
of solvability of consensus safe tasks) using only graph connectivity, due to the
simplicity of the allowed output vectors (all entries are equal). For the necessary
part of the characterization we use ideas introduced in Biran et al. [1990a] and
Moran and Wolfstahl [1987] fof = 1, and apply them for any.

Organization of the article. The paper is made up of 10 sections. After this
introduction, Section 2 introduces the computation model, and the consensus prob-
lem. Section 3 presents the condition-based approach. Section 4 defines the generic
condition-based consensus protocol, proving that it works for all acceptable condi-
tions. Section 5 shows the other direction of this claim, providing a characterization
of the conditions allowing to solve the consensus problem. Section 6 studies the
conditionsC1 andC2. Section 7 shows the maximality Gf1' (a refined version
of C1) andC2. Section 8 explains the adaptation to the message passing model.
Section 9 describes the possibility of trading safety for liveness. Finally, Section 10
concludes the article.

2. Preliminaries

2.1. THE MoDEL. For most of the article we consider the usual asynchronous
shared-memory system withn > 1, processesp;, ..., pn, Wwhere at mosf, 0 <
f < n, processes can crash. The shared memory consists of single-writer, multi-
reader atomic registers. The executions are assumed to be linearizable [Herlihy and
Wing 1990]. For details of this model, see any standard textbook such as Attiya
and Welch [1998] and Lynch [1996]. In Section 8, we extend some of our results
to a message-passing model.

The shared memory is organized into arrays. Jiieentry of an array[1 - - n]
can be read by any procegs with an operationread(X[j]). Only p; can write
to theith componentX[i], and it uses the operatiatrite(v, X[i]) when it wants
to write valuev. To simplify the description of our algorithms, we assume that
processes can take atomic snapshots of any of the shared arraysiapitiot(X)
a process; atomically reads the content of all the registers of the aKayhis
assumption is made without loss of generality, since it is known [Afek et al. 1993]
that atomic snapshots can be wait-free implemented from single-writer multi-reader
registers (although there is a cost in terms of efficiency: the best known simulation
hasO(nlogn) complexity [Attiya and Rachman 1998]).

In addition to the shared memory, each process has a local memory. The subindex
i is used to denotg;’s local variables.

2.2. THE CONSENSUSPROBLEM. The classic consensus problem has been in-
formally stated in the introduction: every correct procesproposesa valuey;

928 A. MOSTEFAOUI ET AL

and all correct processes havadecideon the same value, that has to be one of
the proposed values. More precisely, there is &s#tvalues that can be proposed
by the processes, ¢ V, and|V| > 2. Each process starts an execution with an
arbitrary input value frony, the value it proposes, and has to irrevocably decide
some value. We sagn f-fault tolerant protocol solves the consensus prolfem
all its executions satisfy the following properties:

—Validity. A decided value is a proposed value.
—Agreement. No two processes decide differently.

—Termination. If no more thanf processes crash, each correct process eventually
decides some value.

A consensus problem Bnarywhen|V| = 2. Otherwise, it isnultivalued The set
VY may be a priori known by the processes or not.

3. The Condition-Based Approach

Given a distributed problem, theondition-basedapproach analyzes restrictions

of the problem to subsets of its inputs. For each such restriction we obtain a new
distributed problem, which is possibly easier than the original problem, since a
protocol has to deal only with a subset of the possible inputs; indeed, a protocol
that solves the original problem also solves the restricted problem. We are interested
in computability and efficiency aspects of this approach:

—Given an unsolvable problem, for what restrictions of its inputs does the problem
become solvable?

—Given a solvable problem, for what restrictions of its inputs the problem becomes
easier to solve?

In this article, we consider only the first question, for restrictions of the consensus
problem. In Mostefaoui et al. [2001b], we investigate the second question, and in
Mostefaoui et al. [2002], we consider restrictions of the set agreement problem.

As explained in the Introduction, the motivation for the condition-based approach
is to study problems in environments where not all inputs have the same probability
of occurring. If we can identify a set of inputs that arrive much more frequently
than others, it might be possible to design a protocol that solves the problem more
efficiently. Now, to be more useful in practice, it is desirable to design a protocol
that solves the restricted problem irsafeway. Namely, we want the protocol to
be able to deal with the other inputs, which, although improbable, can nevertheless
occur from time to time. In those rare situations we do not want the protocol to
output arbitrary values. Also, if there are no faults, we would like the protocol to
terminate even in those rare situations.

We proceed in the next section to define formally the condition-based approach
for consensus, and its safe version. In the following section, we define it for general
problems, and prove that a safe version of a subproblem is solvable if and only if
the nonsafe version is solvable.

! This property is sometimes named “Uniform Agreement,” in contrast to the “agreement” property
requiring only that no two correct processes decide differently. These two properties are equivalent
in the asynchronous systems we consider [Guerraoui 1995].

Conditions on Consensus Solvability 929

3.1. GONSENSUS AND THECONDITION-BASED APPROACH The input values of
a protocol define a vector with one component per process, representing its private
(unknown to the other processes) input to the computation. In particular, for the
consensus problem, the proposed values in an execution are representigbat an
vector,such that theéth entry contains the value proposedfyyor L if p; did not
take any steps in the execution. We usually denote Wiin input vector with all
entries inY, and withJ an input vector that may have some entries equdl.ttf
at most f processes can crash, we consider only input vectossth at most f
entries equal td_, calledviews.Let V" be the set of all possible input vectors with
all entries inV, andV{ be the set of all the vectors with at mdsentries equal to
L.Forl € V", letZ; be the set of possible views, that is, the set of all input vectors
J with at mostf entries equal td_, and such thakt agrees withJ in all the non-L
entries ofJ. For a seC, C € V", letCs be the union of th&€’s over alll € C.
Thus, in the consensus problem, every vedter VY is a possible input vector.

In thecondition-basedpproach, we consider subs€tsf V", calledconditions
that represent the common input vectors of a particular distributed application. We
are interested in conditior@S that, when satisfied (i.e., when the proposed input
vector does belong t6¢), make the consensus problem solvable, despite up to
process crashes. In the classic consensus problem, the trivial cor@ition" is
assumed, and this problem is unsolvable for every 1 [Fischer et al. 1985], and
trivially solvable for f = 0. Other conditions make the problem solvable for every
value of f, such a1 andC2 mentioned in the introduction (studied in more detail
in Section 6).

We say that anf -fault tolerant protocol solves the consensus problem for a
condition Cif in every execution whose input vectdrbelongs to/'?, the protocol
satisfies the following properties:

—Validity. A decided value is a proposed value.
—Agreement. No two processes decide different values.

—Guaranteed_Termination. If (1) J € C¢ and no more tharf processes crash,
or (2.a) all processes are correct, or (2.b) a process decides, then every correct
process decides.

The first two are the validif/and agreement requirements of the classic consen-
sus problem, and are independent of a particular cond@iomhe third require-
ment, requires termination under “normal” operating scenarios, including inputs
belonging toC, and failure-free executions. Part (1), requires termination even in
executions where some processes crash initially and their inputs are unknown to the
other processes. This is represented by a viemith _L entries for those processes.
Termination is required if it is possible that the full input vector belongS tthat
is, if J can be extended to an input vectoe C. Part (2) defines two well-behaved
scenéarios where a protocol should terminate even if the input vector does not belong
toC.

2 That s, if J € V] then the decided value is equal to one of the entries. iim Attiya and Avidor
[2002], a process is allowed to decide a vadumt in J provided every extension dfin C containsa.

3 One could envision other termination requirements for inputs rdt In fact, Theorem 4.8 describes
other scenarios where our protocol terminates. More about this in the Conclusion section.

930 A. MOSTEFAOUI ET AL

3.2. SAFE VS. NONSAFEVERSIONS OF APROBLEM. In this article, we are inter-
ested in characterizing the conditioBsfor which there exists arf -fault tolerant
protocol that solves the consensus problem. Thissafaversion of the problem
because the protocol is required to deal also with input vectors it @onsider
thenonsafeversion of the problem where it is assumed that the protocol never gets
inputs outside ofC. This means that the protocol satisfies agreement, validity and
termination in every execution of the protocol whose input vedtdrelongs to
C: (and these are the only input vectors allowed). We show here that consensus is
solvable forC in the safe version of the problem if and only if it is solvable for
the nonsafe version of the problem. It is not hard to generalize this result for set-
consensus [Chaudhuri 1993] and other convergence tasks [Borowsky et al. 2001,
Herlihy and Rajsbaum 1997], but for the purposes of this article it is sufficient to
present the result for consensus only.

This equivalence of safe and nonsafe versions of the prdtimplies that the
additional safety requirements to condition based consensus (to deal with inputs not
in C) do not change the characterization of solvable conditions. Thus, the condition-
based approach for consensus (and for other agreement tasks, since the proof is
similar) can in principle be studied with techniques that have been developed for
decision tasks. Forinstance, to find out if consensus is solvable for a given condition,
in the wait-free case, we could use the characterization theorem of Herlihy and
Shavit [1999] that tells which decision tasks are wait-free solvable. However, this
is in general undecidable [Gafni and Koutsoupias 1999; Herlihy and Rajsbaum
1997]. As we show in this article, for condition-based consensus problems, there
is a simple decidable solvability characterization, for any valué.of

We proceed to show how to transform a protocol that solves the nonsafe version
of consensus fo€, into a protocol that solves it safely. We use a similar technique
later on in our general condition-based consensus protocol.

THEOREM 3.1. Consensus is solvable for C if and only if it is solvable for the
nonsafe version of the problem.

PrROOF. Ifthereis anf -fault tolerant protocol solving consensus for a condition
C, then the same protocol nonsafely solves consensi@ fince the requirements
for nonsafe consensus are weaker. Next we prove that if there is a prBtsobling
nonsafely consensus f@r, there is also a safe solution.

The argument consists of modifying the nonsafe protétals follows (for the
purpose of the proof, we do not make any efforts of making it efficient). The idea
is to execute? while the input vector belongs ta If at some point it is discovered
that it does not belong t6, P should not be executed anymore, sirR&vas not
designed to deal with inputs outside@flf a process discovers that the input does
not belong ta’, it announces to everybody that it is unable to decide uBingnd
the control jumps to a subroutine that waits until (i) somebody decides (and if so
decides that value), or until (ii) every process announces that it is unable to decide
usingP. In case (ii), the full input vector is known and the process decided)
using some fixed functiof that returns one of the valuesinsuch as say max.

4 This equivalence does not hold for other forms of non-safe tasks, such as the one in Attiya and
Avidor [2002], where a process; is allowed to decide a valienot in the input vectod whenever
pi knows thata must be proposed (if nobody fails), that is, if every extendiaf J in C containsa.

Conditions on Consensus Solvability 931

Function SafetyRoutine
(1) repeat forall j € [1--n] doWi[]j] < read(O[j]) enddog

2 if (3] :WI[j]#L,T)thenreturn(Wi[j]) endif
(3) until (L &W) endrepeat

(4) forall j €[1--n]doYi[j] < read(I[]]) enddg,

(5) return(F(Y;))

Fic. 1. Safety routine (for a process when it discovers that the input does not belGjg to

In more detail, in the modified protocoR’, a processy; first writes its input
value to a shared variablg]i] (assumed not to be used B and initialized with
1), before executind®. Then p; executesP, and whenp; decides on a value, it
writes it to a shared variabl®[i] (assumed not to be used B, and initialized
with 1). While p; is executingP, each time it executes an instructionPfit first
shapshots the shared aridg- - n]. If it contains a viewdJ in C¢ (or J contains more
than f entries equal ta.), it continues executin®. Otherwise, it stops executing
P, does not decide according By and writesT to O[i], and jumps to the code in
Figure 1.

When the process is about to take a decision according,teayd, it first
shapshots the shared arddg- - n] of the input values written so far. If the outcome
is aviewJ, andJ € Cs, then the process decidésand writes the value tO[i].

To prove the correctness &f, first notice thawalidity follows easily from the
fact thatP satisfies validity, and thdt returns one of the values in its argument.

Agreement property of P’ for input vectors irC¢ follows from agreement oP,
and the fact that in this case, the processesRuand do not jump to the safety
routine. If the inputJ is not inCy, it may still be the case that a process sees
a view of J that does belong t@. Any two such process will have views of
the input vector that are ordered by containment, and hence corresponding to an
execution ofP where the input vector belongs@e. Thus, they decide on the same
value, by the agreement property Bf Moreover, a process that sees a view of
J (possibly J itself) that does not belong 1, will jump to the safety routine,
which guarantees that the decision value will be equal to a decision taken by a
process in the first case. Or if there is no such process, and every process sees
a view of J that does not belong t6;, they will all decide according t&, the
same value.

Guaranteed_Termination iS proved in a similar way. Processes that see an input
vector that belongs 6+ terminate becaude satisfieSTermination. Other processes
terminate if either some process decide®iror no process was able to decide in
P and nobody fails (so everybody writes its input valué Yo [J

4. Acceptability and a Generic Protocol

We start by identifying a class of conditions, called acceptable conditions, and then
describe a protocol that solves consensus for any conditiorthis class. Given a
conditionC for n processes, a fault-tolerance paramédteand a set of input values

V, P is a predicate defined oi!, andSis a function defined on (not necessarily

all of) V7. A conditionC is acceptable if there exift and S satisfying the three
conditions defined below. Our condition-based consensus protocol works for any
acceptable conditio@, when instantiated with correspondifRgand S.

932 A. MOSTEFAOUI ET AL

The following notation will be useful in the rest of the article. Consider the partial
order on vectors off defined as followsl1 < J2if vk : J1[K] # L = J1[K] =
J2[K]. Then|J| denotes the number of entriesJdrdifferent from L.

4.1. AcCePTABILITY. Here we define the three acceptability properties such
that, if a conditionC has a predicat® and a functionS that satisfy them, then
C is acceptable. Intuitively, our protocol usBsand S to solve consensus for an
acceptableC, and the acceptability properties help it to enforce Huaranteed_
Termination, Agreement, and Validity requirements of condition-based consensus.
In the first acceptability property, a process uses its current Jief the input
vector to test (by evaluating(J)) if the input vector could belong t6. Thus,P
returns true at least for each vectbwith at mostf unknown entries, and such
that J can be extended to a vectbrl € C. The second property states that if two
processes decide based on their vielts J2, usingS, and J2 contains at least
as many inputs a3l (and agree in the noh-coordinates), then the decision will
be the same, providdd(J1), P(J2) hold. The third property enforces the validity
requirement of consensus. Given a condityrthe properties that it andShave
to satisfy are formally defined as follows:

—Property t.p: 1l €eC= VI eZ;: PQ).

—Property A_,s: ¥J1,J2 € V7 : (J1 < J2) A P(J1) A P(J2) = S(J1) =
$(J2).

—Property b_.s: VJ € V} : P(J) = S(J)=anon-L value ofJ.

Definition 4.1. A conditionC is f-acceptabléf there exist a predicatP and
a functionSsatisfying the propertiek-_. p, Ap_.sandVp_ sfor f. Any suchP, S
are said to bassociatedvith C for f.

When clear from the context, we sometimes omit mentioning the pararheter

Notice that acceptability (although motivated by the three consensus require-
ments) is a purely combinatorial property of the GetFor example, it is not hard
to check that there are nB, S satisfying the three acceptability properties for
C=V"whenf #0. Indeed, if such & was an acceptable condition, then the pro-
tocol proposed next would solve the consensus problem despite process crashes,
contradicting the impossibility result of Fischer et al. [1985].

Our first main result is the following theorem. It is proved in the next section, by
presenting a generic protocol and proving it correct.

THEOREM 4.2. If C is f-acceptable, then there exists an f-fault tolerant pro-
tocol solving consensus for C.

4.2. THE PrOTOCOL The protocol in Figure 2 solves consensus for day
acceptable conditio@ with associated parametdPsandsS. It has to be instantiated
with P and S. In addition, the protocol has to be instantiated with a functon
from V" to V which returns a fixed, arbitrary value of the input vedtoAny such
function will do. Thus,F does not depend on the particular value®a&ndS. The
protocol uses shared registers and local variables. Those are first introduced. Then,
the protocol behavior is described and proved correct.

Shared memory. The shared memory is made up of two arrays of atomic
registersV[1.-n] and W[1.-n], both initialized to [L, ..., L]. Their meaning

Conditions on Consensus Solvability 933

Function SM_.Consensuys;)

(1) write(vi, V[i]);

(2) repeatV; < snapshot(V) until (#(Vi[j] # L) > (n — f)) endrepeat
(3) if P(Vi)thenw; « S(V;) elsew; < T endif;

(4) write(w;, WIi]);

(5) repeat forall j € [1--n]doW[j] < read(W[j]) enddg,

(6) if (3] :W[j]# L, T)thenreturn(Wi[j]) endif

(7) untl (L &€W) endrepeat

(8) forall j €[1--n]doYi[j] < read(V[j]) enddg

(9) return(F(Y;))

FIG. 2. A generic condition-based consensus protocol.

is the following:

—V/[i] is the shared register whepg deposits its input value, (line 1).

—WI[j] is the shared register wheig deposits (in line 4)p;’s estimate of the
decision valueW;). If the local view ofp; does not allow for the possibility that
the input vector is irC then p;’s estimate is set to a default valldeg V U {1}
(line 3).

Local variables. Each procesp; manages three arrays of local variables where
it stores a local copy of its current view of the state of the shared memory.

—Vi[1--n]is an array wherg; builds its local view.
A processp; can find out the current state of proposals by invokimgpshot(V).
At line 2, #\i[j] # L) denotes the number of nah-entries ofV;. We
say that a process gets its “local view,” when it gets an array where at least
(n — f) values are different from_ (so the local view of a process is unigue,
if any).
—Wi[1 - -n]is an array contains the decision value estimates of each prpg¢ess
—Yi[1--n]is an array used by; to store the values proposed by each process.

The protocol has a three-part structure.

Part1 (lines1-2). A proces%; first writes its input value; to its entry of the
shared array . Then p; repeatedly snapshots until at least (— f) processes
(including itself) have written their input values¥y its view V; contains the result
of the last snapshot, whekg[j] is the input value ofp;, or L if p; has not yet
written its input value.

Part 2 (lines3—4). Now, p; enters its wait-free, condition-dependent, part of
the protocol. With its viewv;, it tries to make a decision, by evaluatifgV;). If
true, p; will be able to decideS(V;) = w; after having written the value it decides
w; (or T if it could not decide) in the shared arr&y[i] to help other processes
decide in the next part.

Part 3 (lines5-9). Finally,p; enters a loop to look for a decision value (i.e., a
value different fromL, T) provided by a procesg; (possibly itself) in the shared
array W[j]. If, while waiting for a decisionp; discovers that every process has
written a value tdWV, and no process can directly decide (all these valued are
pi concludes that every process has deposited its initial value in the share¥ array

934 A. MOSTEFAOUI ET AL

in line (1). Then,p; readsV (line (8)) to get the full input vector, and proceed to
decide according to the fixed, deterministic réde

4.3. @RRECTNESS We proceed to prove Theorem 4.2 by showing that the
generic protocol solves the consensus problem for any acceptable cor@jtion
assuming it has been instantiated with associ®e8. That is, we show that it
satisfiesvalidity, Agreement andGuaranteed_Termination.

Termination

LEMMA 4.3. The protocol satisfies pafl) of Guaranteed_Termination (namely,
if the input vector Je C; and there are at most f crashes, then each correct
process decides in lin@).

PROOF Let p; be a correct process. As there are at least (f) correct pro-
cessesp; does not block forever at line 2, and consequeptlgets a local view;,
Vi < J. Sinced e Cy¢, alsoV; € C¢, and it follows from T_, p that P(V;) is true,
and from line (3) thaw; % L, T. Hence W[i] # L, T. Consequently, at line (6),
Wi[i] # L, T holds, and this allows; to decide in this line. [J

LEMMA 4.4. The protocol satisfies pafR) of Guaranteed_Termination (namely,
if (2)(a)all processes are correct, dR)(b) a process decides, then every correct
process decides).

PROOF. Let us first assume that all processes are correct. They all execute line
(1), and hence they all exit the loop of line (2). If all processes evaluate to false
P in line (3), then they all eventually read everywhere in line (5), and they all
eventually decide in line (9).

Let us assume that a procggsdecides. Therp; exits the loop of line (2), and
hence at least — f processes execute line (1). Thus, every correct process exits
the loop of line (2). Now, ifp; decides in line (6), then some procgssfinished
executing line (4) with a value different from, T. Thus, every correct process will
eventually see this value in line (5), and decide in line (6) (if not before). Otherwise,
pi decides in line (9), and hence it seE®verywhere in its local array, which
implies that every process has executed line (4) wrilingnd every correct process
will eventually see all these values, and terminate also in line (9).

Agreement
LEMmA 4.5. Either all processes that decide do it in li(@) or in line (9).

PROOF We consider two cases. A procgsglecides in line (6) in the first case,
and in line (9) in the second case.

—Inthe first case, process sees a value different frorh, T in line (6), and hence
forsomej, W[j] # L, T. AsW][j]isinitialized to_L, andW][j] is written only
once, no processor will ever see a valudor position j in line (6). Now, a
process exists the loop in line (7) only when it s&em all the positions of its
variableW, and therefore no process will exit the loop in this line. It follows that
if a process decides, it will do it in line (6).

—In the second case, a process does exit the loop in line (7), and hence every
process has evaluated to faRBen line (3) and writtenT in the shared array
in the next line. Thus, no process will decide in line (6]

Conditions on Consensus Solvability 935

LEMMA 4.6. The protocol satisfiesgreement (no two processes decide differ-
ent values).

PROOF. Let us consider two processpsand p; that decide. By Lemma 4.5,
they decide in the same line.

—Let us assume that both processes decide at linep(6JecidesW;[¢] = wy,
while p; decidesW,[k] = w. It follows that there exist two local views,
andV such thatp, has compute®(V,) = w, # L, T, while px has computed
S(Vk) = wg # L, T. This means that botR(V,) and P(V) are satisfied (11).

The last invocations afnapshot(V) in line (2) by p, and px have defined their
local viewsV, andV, respectively. Moreover, since snapshots can always be
ordered by containment, we concludge < Vi or Vi < V, (12). It follows from
(12), (12) and the property A s that S(V,) = (W), that is,w, = wy.

—Assume that botlp; and p; decide at line (9). In that case, each procgsbhas
executed line (4) and consequen®¥¢] # L. As p, executes line (1) before
line (4), it follows thatV[¢] = v, when p; (or p;) executes line (8). Hence,

Yi = Yj = (v1,...,Vn). Since both processes apply the same deterministic
function F to the same vector, they get the same result valleé.

Validity

LEMMA 4.7. The protocol satisfieyalidity (a decided value is a proposed
value).

PROOF. There are two cases according to the line at which a process decides.

—Let us first consider the case of a procesthat decides at line (6) by returning
the valuew;[j]. As we haveW,[j] = w; # L, T, we conclude thav, the local
view of p;, is such thaP(V;) is true andv; = S(V;). The validity follows from
the property \b_, s, associated with® andS.

—Let us now consider the case of a processhat decides at line (9). Then, we
havevj : Wi[j] # L (line (7)) from which we conclude that each procggs
has deposited its valug into V[j]. Hence, we hav®; = [vy, ..., vy] atline 8.
As F outputs a value oY;, the validity property is satisfied.[]

This completes the proof of Theorem 4.2.

4.4. MORE ONTERMINATION. We have shown in Lemmas 4.3 and 4.4 that, for
any givenf -acceptable conditio@ with associatedP, S, the generic protocol of
Figure 2 terminates in all cases described byGheranteed_Termination property.
Actually, there are other situations where correct processes terminate, even if the
input vector does not belong @ or the number of failures exceeds

First, it is easy to conclude from the protocol text that if all the processes deposit
avalue in the shared arrdy (i.e., each process executes line (4)), then the correct
process decide, no matter what the number of failures is (processes that crash will
do so after line (4)), and even if the input vector does not belor@) to

Second, consider an input veclothat does not belong 18, but that it contains
avectord, J € Z¢, with an extensiorl’ in C: J < |’ € C. There are executions
where the protocol will terminate, even if some processes know that the input vector
| is notinC. Correct processes will terminate in all executions where at least one

936 A. MOSTEFAOUI ET AL

process does not know thhtis not in C. More precisely, correct processes will
terminate in all executions where the local vigiy of a proces; in line (2) is
equal toJ, andp; executes line (4) (so at this poipt considers possible that the
input vector isl’ instead ofl). This follows from the code and because Property
Tc_ p implies thatP(J) is true.

After the previous discussion it is not hard to prove the next theorem.

THEOREM 4.8. P-More_Termination. All correct processes decide if and only if
(a) all the processes execute lif@), or (b) the local view of a process; phat
executes lin¢4) has an extension in C.

The termination conditions of this theorem are about a particular protocol, while
theGuaranteed_Termination conditions are about the consensus problem. Notice that
these two conditions are related as follows:

—Guaranteed_Termination (2a) or (1) implies (a) or (b), and
—Guaranteed_Termination (2b) implies (a) or (b)”

For an example of the second termination situation in the theorem, consider
the following situation:)={0, 1,2}, n=6, f=2,1=[1,1,0,0, 2, 2], and the
condition is C2 (this condition, presented in the Introduction and studied in
Section 6.3, favors the maximal value present in the vector). More precisely,
| eC2 iff [a=max() = #(l)> f] (where #(l) denotes the number of
occurrences ad in the vectorl). Thus,| ¢ C2. Assume that a procegs gets the
local viewV; =[1,1,0,0, L, 1]. Sincel’ = [1,1,0,0, 1, 0] is an extension of
Vj that belongs t€2, p; evaluates(V;) = trueand decides the valUgV;) = 1
accordingly. Consequently, all the correct processes also decide.

These additional termination situations are interesting from both practical and
theoretical points of view, showing that the correct processes “almost always”
terminate in this protocol. Interestingly, the more entries of a local Wewhat
are equal tal, the more possibilities fo¥; to have an extension that belongs to
C and hence for processes to terminate. Less information—slow processes—can
help processes decide! For example, notice that in conditbandC1’ described
below, a process that gets a local view wittentries equal td_ alwaysdecides.

5. A Characterization of the Conditions for Consensus Solvability
In this section we prove our second main result, the converse to Theorem 4.2:

THEOREM 5.1. If there exists an f-fault tolerant protocol solving consensus
for C, then C is f-acceptable.

Proving this theorem completes a characterization of the conditions allowing a
consensus solution. We prove this theorem using an alternative form of the accept-
ability definition, called legality. The final result is stated in Theorem 5.7 (which
implies Theorem 5.1).

5.1. THENOTION OFLEGALITY. Givenaconditior€ and a value foif , consider
the graphGin(C, f) (close to the graph defined in Biran et al. [1990a] fo 1):
Its vertices ar€¢, that is, the input vectorsof C plus all their views,J € Z;. Two
viewsJ1, J2 € C are connected by an edge L < J2. Hence, two verticekl,
I 2 of C are connected (by a path) if their Hamming distad¢el, 1 2) < f.

Conditions on Consensus Solvability 937

The graphGin(C, f)is made up of one or more connected components, namely,

1y cc ey X

Definition 5.2. A conditionC is f-legal if, for each connected component of
Gin(C, f), all the vertices that belong to this component have at least one input
value in common.

LEMMA 5.3. Let C be a finite condition. It is decidable in polynomial time if
Cis f-legal.

PROOF. Let us consider the graghi(C, f)whose vertices are the vectors®f
andthereis anedge connectirfgandl 2ifd(I 1, 1 2) < f.TheverticesoH(C, f)
are the subset of vertices Gin(C, f) that do not include any entries equal_to
Two vertices are connected ith(C, f) if and only if the corresponding vertices are
connected irGin(C, f). Also, a connected component@fn(C, f) has one input
value in common to all its vertices if and only if the corresponding component of
H(C, f) has at least one input value in common, and this value apears
times in each one of its vertices. Hence, given a condi@ioishowing thatC is
f-legal (in accordance with Definition 5.2) amounts to show that every connected
component oH (C, f) has at least one input value in common, and that this value
appearsf + 1 times in each one of its vertices.

The graphH (C, f) can be constructed in tim@(n - |C|?): the edges are defined
by comparing then entries of each pair of vectors Gf, the graph hafC| vertices
andO(|C|?) edges. Once the graph is constructed, the connected components can
be identified in timeD(|C|?), using say, BFS. Finally, the intersection of the values
appearing in the vectors of a connected compokkmian be computed in polyno-
mial time. A straightforward way of doing this is by sorting the valiesf one of
its vertices, and then, for every other vertex of the component, binary seat¢hing
for each of the values of the vertex. If a value does not appeXr ihis removed
from X. This procedure takes tim@(nlogn - |H;|), where|H;| is the number of
vertices inH;. Finally, one checks that at least one of these values appears
times in every vector of the component]

Assuming a legal condition, for evefy; of Gin(C, f), there is a nonempty set,
d(G;j), of input values that appear in each input vector of the connected component
Gj. As we shall see, wheh € G;j, the protocol actually forces the processes to
deterministically decide the same value, ond(@;). Moreover, ifa € d(G;), then
#2(1) = f 4+ 1 for everyl e G; with #,(I) = 0. Otherwise, we can replace all
occurrences oa in | by L and obtaind with #,(J) < f, and #(J) = 0, which
is impossible, since € G; anda € d(G;j). Thus, it is no coincidence that this
property holds folC1 andC2.

5.2. ROM A CONDITION-BASED PROTOCOL TO ALEGAL CONDITION. In ade-
cision taskeach process starts with an input value, and has to eventually decide on
an output value. A decision task specifies the input vectors that can be an initial
configuration for the processes, and for each one, a set of output vectors, that corre-
spond to correct final configurations. Given a protocol that solves an arbitrary task
f -resiliently, we can consider the output vectonafilues decided by the processes
in an execution where at mostprocesses crash. If the task is a consensus task, then
all the non-L entries of the vector are equal, by the agreement requiremerX.thest
a set of input vectors for the task. We are interested in the ggaph(X, f), whose

938 A. MOSTEFAOUI ET AL

vertices are all decision vectors over all executions starting on inuasd where

two vectorsJ1, J2 are connected by an edgedit < J2. We use the following
theorem, a simple extension of Theorem 3.5 in Moran and Wolfstahl [1987] (used
later in Biran et al. [1990a] to characterize the solvable problems fvithl). The

proof in this paper is for the message passing modelfardl, but the extension

to our shared memory model with > 1 is easy. We present this extension here for
completeness, almost verbatim from Moran and Wolfstahl [1987]. We could have
proved the theorem using other techniques; for example, see Moses and Rajsbaum
[2002] for a proof technique that does not use a reduction to the FLP impossiblity
result [Fischer et al. 1985].

THEOREM 5.4. If Gout(X, f) is the graph of decision vectors of an f-fault
tolerant protocol on a connected input graph Gy f), then GoutX, f) is
connected.

ProOOF The proof is by reduction to the following well-known form of the
FLP impossiblity result [Fischer et al. 1985]. This form of the impossibility result
is for a variant of the consensus problem where the possible decision values of
the processes are 0 and 1. The set of input vecXors arbitrary, as long as it
defines a connected gra@in(X, f). The validity requirement is that there are
two input vectors that lead to different decision values. Agreement and termination
requirements are as usual.

The proof that this form of the consensus problem is not solvabld fer 0
follows the same arguments of the proof in Fischer et al. [1985]:1L.ét be
two input vectors that lead to different decision values. Since the input graph is
connected, there is a path frohto |’. On this path, there must be two adjacent
input vectors that might lead to different decision values. From this point, the proof
is identical to the one of Fischer et al. [1985] is for= 1 but the generalization to
f > 0 is obvious).

To prove the theorem, assume for contradiction there is a prof®oshose
graph of decision vectoiGou((X, f)is not connected. L&g,, G, ..., G be the
connected components@but(X, f), p > 2. We construct a protoc®® based on
P that solves the above consensus problem in spite fafults on the same input
graphGin(X, f).

The protocolP¢ works asP except that when a processor is about to return a
decision value according 1, it first writes the decision to the shared memory. Call
this value arintermidiatedecision value. Then, the process enters a loop where it
reads the shared-memory until it sees at l@ast f intermidiate decision values.
SinceP solves the task in spite df faults, eventuallyn — f processes will write
to the shared memory their intermidiate values. Thus, each correct pqgosgk
eventually construct a view of intermidiate decision values, with at least- f
non-L entries. Thus), is a vertex ofGout(X, f). Moreover, any two such views,

J, Jj are in the same connected compon€nt of Gou(X, f), since both are
views of the same output vector J < I, Jj < I, wherel is a vertex ofG, that
corresponds to the decision vector in the corresponding executirildfe process
will return as decision foP°¢ the parity bit ofm and halt. Since all processes agree
on the same connected compon&t, they will all decide on the same parity bit.
Therefore,P° solves the above variant of consensus, a contradiction.

Conditions on Consensus Solvability 939

For the case of a nonsafe consensus problem for a condi{iection 3.2), the
set of input vectors correspondsde, while the set of output vectors contains one
output vector for each possible decision value V), with all its entries equal tw,
and joined by an edge to all its views.

LEMMA 5.5, If the nonsafe consensus problem for a condition C is f-fault
tolerant solvable, then C is f-legal.

PROOF. Assume there is ah-fault tolerant protocol solving nonsafe consensus
for C. For each connected componégt of the input graph, consider the graph
Gout of decision vectors of the protocol, on all executions starting with inputs of
this component with at modt failures. By the termination requirement of consen-
sus, all correct processes decide in such executions, and hence the corresponding
decision vectors have at moksentries equal td_. Notice that every vertex iGout
corresponds to a decision vector of the protocol, which must contain allLnem-
tries equal to the same value, by the agreement requirement of consensus. It follows
from Theorem 5.4 that the graj@out is connected.

We now show that all vertices dbout contain just one input value, sal
Consider two vertices, |1’ of Gout, and assume for contradiction that every (non-
1) entry ofl is equal tca while every (nond.) entry ofl’ is equal tdb. SinceGout
is connected, there is a path fromto |’. Thus, there are two adjecent vertices,
J, J/, in this path, one with (non-) entries equal ta and the other equal tm By
definition of Gout, J < J' or J’ < J. This is a contradiction, sincé has onlya’s
andJ’ has onlyb’s (in addition to_L's) anda # b.

We have shown thaBout contains vertices with only one decision value, say
d. By the validity property of decision consensdsnust be a value in every input
vector ofG;. And sinceG; is an arbitrary connected component of the input graph,
thenC is f-legal. [J

5.3. ROMLEGALITY TO ACCEPTABILITY. We now show how, given afi-legal
conditionC, there is an efficient way of constructing its actual predidatand
function Sused by the generic protocol, and heies f-acceptable.

LetJ € V¥ (i.e., avector with at most entries equal td_.) We say that an input
vector| is alegal extensiorof J, if J € Z; andl e C. Notice that several input
vectors can be legal extensions of the salme

For a given legal conditio€, P and S are constructed as follows. For every
JeVh:

—P(J) is true if there exists a legal extensionhf

—(J) = a deterministically chosen value dfG;), whereG; is the connected
component including all legal extensionsbf

Notice thatSis well defined. FirstS(J) has to be defined only whé®(J) is true.
Second, ifl; andl; are two legal extensions df they belong to the same connected
componen(; as they differ in at most values. Third, sinc€ is f-legal, d(G;)
is not empty. Also, it is easy to see that all this can be executed in polynomial time,
using ideas similar to the ones described for Lemma 5.3. Thus, it is easy to show
the following result.

LEMMA 5.6. Any f-legal condition C is f-acceptable, and associated P and
S can be computed in polynomial time.

940 A. MOSTEFAOUI ET AL

PrROOF Let P and S be parameters as defined above. Trivialysatisfies
property Te_.p. For Ap_, s, notice that forJ1, J2, there is a legal extensidnof
both vectors, sincd1l < J2. Thus, the valu&(J1) is equal to a deterministically
chosen value ofl(G;), whereG; is the connected component includihgand
therefore,S(J2) is equal to the same value. Finallyp\/ s follows from the fact
that J is in Gj, the connected component including any of its legal extendions
sinceJ and| are joined by an edge. Also, it is not hard to check (as in Lemma 5.3)
that P and S can be computed in polynomial timel]

5.4. MAIN THEOREM. The following summarizes our main results.

THEOREM 5.7. Main Theorem. The following three assertions are equivalent,
and decidable in polynomial time.

—AL. Condition C is f-acceptable.
—AZ2. Condition C is f-legal.

—AS3. The nonsafe version of the consensus problem for C is f-fault tolerant
solvable.

—A4. The consensus problem for C is f-fault tolerant solvable.

PROOF Theorem 4.2 shows that A2 A4, and itis easy to see that A4 A3,
since the same protocol that solves a consensus problem solves its nonsafe version.
Lemma 5.5 shows that A3> A2, Lemma 5.6 shows that A2 Al. Lemma 5.3
shows that A2 is decidable in polynomial time, and hence so are the two other
assertions. [

It is interesting that consensus solvability can be decided in polynomial time for
everyC and f, while the general problem of deciding if a distributed problem is
f -fault tolerant solvable is undecidable [Gafni and Koutsoupias 1999; Herlihy and
Rajsbaum 1997] wheli > 1. Even in the case of = 1 the general decidability
problem is difficult: it was shown to be NP-hard in Biran et al. [1990b].

The previous theorem is analogous to the characterization of the class of weakest
failure detectors for consensus [Chandra et al. 1996], in the sense that this class
identifies the minimal properties that a failure dete®@onust satisfy for consensus
to be solvable. The previous theorem does the same for conditions: it characterizes
the largest set of conditions for consensus to be solvable.

6. Two Conditions

This section presents the two conditions described in the introdu@ibandC2,
and proves them to be acceptable, by defining associated predicatelfunctions

S. Both conditions are parameterized byOnce we have developed the required
tools of Section 5C1’ (a slight refinement o£1) andC2 are proved to be maximal
in Section 7.

Notation #,(J) denotes the number of entries dthat are equal ta, where
Jis avectorinV?, anda e V U {L}.
6.1. @NDITION C1. We use the following definitions fa2 1, whereJ € V¥,

andJ is the vector obtained frord by choosing a nonk valuea of J that appears
the most often, and replacing it bly.

Conditions on Consensus Solvability 941

—thst(J) = Madacy #a(J).
_#an(J) = #1st(\])-

That is, #s¢(J) returns the number of occurrencesJdrof a non-L value that
appears the most often ih. Notice that there may be more than one value that
appears the most often ih, if such values appear equal number of times. In this
case #s(J) returns that number (for one of those values, such as the smallest, for
instance). Thus, il is a vector with at least one nah-entry, we have:

—J contains a single non- value iff #,4(J) = 0 (hence #(J) = n — #.(J)).

—There are several nah-values that appear the most oftendriff #,,4(J) =
#st(J).

—J contains at least two different values and there is a single (novelue that
appears the most often hiff # ,,4(J) returns the number of occurrencesliof
a non-L value that appears the second most ofted {thus, #nq4(J) < #1st(J)).

With these notation€1 for f is stated as follows, for any vectbre V":
(1 eCL) iff [st(1) — H#ana(1) > T]. |

The intuition is that, when this condition is satisfied, a process can decide the
value it has seen most often, despite ug tprocess crashes.
Letl € Y"andJ € Z¢. ConditionC1 has associated parameters:

—P1(J) = #hs(J) — #ona(J) > f —#.(J).
—S1(J) = a: #(J) =#su(J).

The following theorem shows th&1 and S1 can be used to instantiate the
consensus protocol, and hence that the problem is solvabi&lfand f .

THEOREM 6.1. Clis f-acceptable with associated parameters, B1.
PROOF Tci.p1: We have to showthdte C1 = VJ € Z : P1(J). Thatis,
tet(1) —#ona(l) > f =V J el @ #s(J) —#na(J) > T —#.(J).

Assumel satisfies #:(l) — #nq(l) > f, and consider @ € Z;. Assume
there arex; vector positions such that id they are equal ta., while in | they
are equal to the value that is most common irSimilarly, assume there are
vector positions such that id they are equal tal, while in | they are equal
to a value that is the second most commor inThus,x; + x; < #,(J) < f.
Now, notice that ifa is a value that is the most common in it will still be
most common inJ, since #s(l) — #ng(l) > f and at mostf entries ofl are
changed tal in J. Thus, #s:(J) > #ist(1) — X1. Also, #na(J) = #ong(l) — Xo.
Hence, #st(J) — #ond(J) > #1st(l) — #ong(1) — X1 + X2. And we are assuming
#ist(l) — #ona(1) > T, SO #st(J) — #ona(J) > f — X3 + Xo. This gives the result
sincex, > 0 andx; < #,(J), as observed above.

Api_.si: Consider two vectord1 andJ2 of V{ such that {1 < J2)A P1(J1)A
P1(J2). We have to show th&1(J1) = S1(J2).

If ais a value that is the most common 2, it will still be most common
in J1, and the proof follows. To see this, first notice that sidde< J2, some
numberx of entries 0fJ2 are changed ta to createl1. Clearly,x < f —#,(J2),

942 A. MOSTEFAOQUI ET AL.

since in J2 already #(J2) entries equallL. Therefore, P(J2)=#(J2) —
#na(J2) > f —#,(J2) implies thaia is also the most common value a1.

Vpi1s1: This property is trivially satisfied becau§&(J) = the most common
non-L value ofJ (recall thatf <n). O

The case of binary consensudn the binary consensus problemy |= 2. In
this case, #hq(1) = n — #15¢(1). Thus,C1 can be written af € Cly;, = #is(l) >
(n+ £)/25 Also, since #s:(J) = n — #nq(J) — #.(J), the associated parameters
P1, S1 can be written aP1,i,(J) = #nq(J) < (n—)/2, andSl,n(J) = #ist(J).
Thus, inthe binary case, Theorem 6.1 shows@1a}, is acceptable with associated
parameter$ 1,;, and Sly;,.

6.2. C1: A REfiNEMENT OFC1. Given a conditiorC, a natural question is if
C can be extended to include more vectors, and still allowing a consensus solution.
Alternately, we would like to be able to prove that a conditi®ris maximalin
this sense. We will answer this question later on, but meanwhile we can see that
C1 is not maximal, because there is a condit©ff that is f-acceptable with
associated parametdPd’, S1’ (the proofis similar and is omitted), all c C1'.
In Section 7, we prove th& 1’ is maximal. This refined condition assumes a total
order (denoted<) on the values o . It is formally defined as follows. For any
vectorl € V™

(I eCY) iff [(I eCl)v
((#lst(l) _#an(l) =f= O) Vv
((ast(1) — #ana(l) = f > 0) A
)[Va, b (#a(l) = #1st(1)) A (#(1) = #ana(l)) = a < b))
].

The intuition is thatC1 can be refined in the case where ties are encountered,
by preferring smaller values. In the cabkas such that #(1) — #nq(l) = f,
it is possible that a process does not geentries ofl with valuea such that
#a(1) = #15¢(1). In this situation, the process has a vidwhere #s(J) = #2n4(J),
and it does not know if the missing entries are equal.telence, it does not know
if the original input vector wad, or the missing entries are equal lip where
#5(J) = #na(J), and the input vector was another vectarThe solution inC1'" is
to include only one of these input vectorsaand notl ’, with an additional constraint
onaandb:a < b.

Arguments similar to the ones f@1 can be used to show that the parameters
associated witlC1’ are:

_P1(J) = PI1(J)V
[(#1st(J) — #ona(J) = F —=#.(J) =0) Vv
((Fst(J) —#na(J) = T —=#.(J) > 0) A [Va,b: (#(J) = #1st(J) A #(J) =
#nd(J)) = a < b])].

—SI(J) = min a : #(J) = #u(J).

Notice that whenf = O every vector isirC1 andP1’ is always true.

5 Taubenfeld and Moran [1996] showed that binary consensus is solvable using a condition equivalent
to this one.

Conditions on Consensus Solvability 943

6.3. THE ConDITION C2. The idea forC2 is to guarantee that all processes
have the same extremal (e.g., largest or smallest) value in their local views. We
(arbitrarily) consider the largest value, and includ€mhevery vector whose largest
input value appears more thdrimes. The formal definition is the following, where
max(l) denotes the largest (nah} value contained in the input vector

(1 €C2) iff Pmaxy(1) > 1. |

To defineP2 andS2 we fix a value off , and consider vectord € V7.

—P2(J) = #nax@(J) > f —#.(J).
—S2(J) = max(J).

THEOREM 6.2. C2is f-acceptable with associated parameter2 dhd 2.

PROOF Tco.,p2: Assumel € C2. Hence #(l) > f for the largest nonk
valuea € |. Consider anyl € Z;. Notice thaix values are changed tbfrom | to
J, x =#,(J). Thus, in particular, #J) > #,(1) — x = #a(1) — #.(J). Therefore,
#.(J) > f —#,(J), since #(1) > f,andP2(J) holds.

Apo_. . Considedd1, J2 € V{. We showthatifll < J2AP2(J1)AP2(J2),
then max(@1) = max(J?2), i.e., the largest non-values inJ1 andJ?2 are the same.
SinceS2 chooses this valu&2(J1) = S2(J2). Assumea = max(J2). The claim
will follow if we prove that #(J1) > 0, becausd1 < J2.

SinceP2(J2), we have #(J2) > f —#,(J2). Notice thatx values are changed
to L from J2 to J1, x = #,(J1) — #,(J2). Thus, #(J1) > #,(J2) — x =
#a(J2) — #,(J1) + #,(32). Since #(J2) > f — #,(J2), we have #J1) >
f—#,(J2)—#,.(J1)+#,(J2) = f —#,(J1). And the claim follows, because
#.(J1) < f implies#(J1) > f —#,(J1) > 0.

Vpo,s. Follows directly from the fact thatJ < VY, J includes a nont
value (recall thatf < n). O

6.4. NONCOMPOSABILITY OF CONDITIONS. The following theorem shows that
the set off -acceptable conditions is not union-closed: the uniori -@fcceptable
conditions does not always define &racceptable condition. This is not surprising.
We show in Section 7 thatl’ andC2 are maximal: thus there union cannot be
acceptable. Nevertheless, we provide here a different proof, that in addition shows
thatC1 andC2 may be complementary in the sense of the following lemma.

LEMMA 6.3. LetV = {a, b}, and consider any nf such that f< n/3. Then
foralll € V"we havethatle Clorl € C2.

PROOF Letl € V"suchthat ¢ C1. We show that € C2.1 ¢ Cl1 =
#a(1)—#p(1) < T A#p(l)—#a(1) < f.Thismeansthat f < #,(1)—#,(1) < f.
Let

#a(l) = #o(l) + X)

with —f < x < f and without loss of generality let > b. We have #(I) +
#,(1) = n > 3f from which we get #(1) > 3f — #,(1). This equation combined
with (1) gives: #(1) > 3f — #a(l) + x or equivalently 2#(1) > 3f 4+ x. Since
—f <x < f,wehave 24(1) > 2f and consequently#) > f. O

944 A. MOSTEFAOUI ET AL

THEOREM 6.4. Letn > 3f. The set of f-acceptable conditions is not union-
closed.

PROOF. Let us assume that-acceptable conditions can be composed with
union. It then follows (due to Lemma 6.3) that consensus is solvable foral",
with V = {a,b}, n > 3 andf = 1. But this is known to be impossible (FLP
impossibility result [Fischer et al. 1985])[]

7. Maximality of Cl' and C2

In this section, we prove th&l’ (the refined version o£1) andC2 are maximal

in the sense that consensus is hdtault tolerant solvable when adding to them any
new input vectoll . By Theorem 5.7, this notion of maximality can be equivalently
stated in terms of legality, and also in terms of acceptability. Here is the statement
in terms of acceptability:

Definition 7.1. Given anf -acceptable conditio@, we say thaC is maximal
if any vector added t€ makes it nonf -acceptable.

Notice that this definition makes sense because any subset of an acceptable
condition is also acceptable.

7.1. MAXIMALITY OF C1. In Section 6.1, we definedl, and, in Section 6.2,
we presented a refined versior@if,C1’ with C1 ¢ C1' and associated parameters
P1’, SI'. Since both conditions are-acceptableC 1 is not maximal. We show here
thatC1’ is maximal.

THEOREM 7.2. Condition Cl’ is maximal.

PrROOF To prove thatC1' is maximal we first need to check th@tl’ is f-
acceptable. This has been argued in Section 6.2.

Now, to prove thaC1' is maximal, we may use (by Theorem 5.7) the legality
version of Definition 7.1: we show that for any vecigrl ¢ C1, C1' U {l }is not
f-legal. We assumé > 0 because otherwise the theorem is trivially trud: i 0
there is nal with | ¢ C1'.

Consider the grapin(C1, f). SinceC1l' is f-legal, for each connected com-
ponent ofGin(C1/, f) there is a value that appears in everyone of its vectors. In
fact, there is exactly one such value. This follows directly from the easy to check
fact that every connected componéntof Gin(C1/, f) contains exactly oneorner
vectorwith all entries equal to the same value, that s, of the fafnfor some value
a. To see this, for any giveh € C1', take ara such that #(1) = #1s:(1) (which is
unique sincef > 0). Then there is a path Bin(C1’, f) from | toa", which can
be obtained by switching one at a time each one of the entriegdifferent from
a to a. This means that the only value in common to all vectors of the connected
componeniG; that containd is a, the most common value df. Indeed, this is
consistent with the fact th&1(1) = a : #,(1) = #1s:(1).

The technique to prove th&1 U {l}, | ¢ C1, is not f-legal consists of
showing thatl has edges to two different connected componentSinfC1’, f).
Hence, these two connected components belong to the same connected component
of Gin(CY U {1},), which implies thatC1' U {I} is not f-legal (because two
corner vectors cannot be in the same connected component of a legal condition).

Conditions on Consensus Solvability 945

That is, we show thalt differs in at mostf entries with vectors$q, I, € C1’' such
that their most common input values are differesity(11) # S1'(1,).

Notice that #st(1) — #ng(l) < f, becausd ¢ C1'. Also, | contains at least
two different values, becaudeg C1’ (i.e., every corner vector is i61). Let us
denote bya the value such that#l) = #15:(1), and byb the smallest value such
that #(1) = #nq(l). We consider two cases.

—Let us first assume thatis such that (1) —#xnq(1) = f. Asl ¢ C1/,itis not
the case thatb : #,(1) = #nq(l) it holdsa < b. Thus,b is the smallest value
such that #(1) = #n4(1), and we we have that < a.

—Let |, be the vector obtained froinby switching one entry different fromto
a. We have that £11) = #a(1) + 1, and hencé; € C1" with S1'(1;) = a.

—On the other hand, It be the vector obtained froinby switching f entries
from a to b (notice that thosef entries equal t@ do exist). It follows that
#o(12) = #ist(12) and #si(12) — #and(12) > f, with b being smaller than those
appearing second (if any) in. Hence,l, € C1’ with S1'(I,) = b.

—Let us now assume thatis such that (1) — #nq(1) < f. Sincel contains at
least two different values, we have<l#i(1) — #ana(l).

—If X = n—#(1), let 11 be the vector obtained fromby switching mink, f)
entries different frona to a. Thus, |; differs from | in at mostf entries.
Also, S1'(I;) = a, because either includesf entries different frormma, and
#1st(11) — #ond(11) > f (since 1< #5(1) — #ng(1)), or elsel, includes only
a’s.

—Let I, be the vector obtained from by switching f entries different fronb
to b, choosing first entries equal & That is, if there ard entries equal ta,
switch them tdb; else, switch all entries equal &to b and then switch other
entries different fronb to b until we reachf switched entries or all entries
become equal tb. Thus, |, differs from| in at mostf entries. To prove that
S1'(1,) = b, observe that either (i) all entries frolpare equal td or else (ii)
#ist(l2) — #ong(l2) = f. In case (i), clearh81'(l,) = b and we are done. For
case (ii), there are two subcases; it is clear that in both dageshe single
value that appears the most often jn

(il.a) #nd(12) = #a(l2), i.e.ais a value that appears the second most often
in 1,. In this case, from £1) — #,(1) < f, #(12) = max(#(l) — f,0) and
#o(12) = min(#(1)+f, n), we get#(l2)—#a(l2) > 2f —(#a(l)—#(1)) = f+1.

If follows 1, € C1(c C1'), and consequentll'(l,) = b.

(ii.b) ais not a value that appears the second most oftén inet c be such
avalue, #n4(l2) = #:(I2). In this case, we have,fl,) — #.(l,) > f. Recall that
b was the smallest value that appears the second most ofterHienceb < c.
We conclude from g1,) — #:(l,) > f andb < c, thatl, belongs toC1" and
SU(l)=b. O

7.2. MAXIMALITY OF C2. RecallthaC2, P2 andS2 are defined as follows:

—P2Q3) = #nax)(J) > f —#.(J).
—S2(J) =max(J), the largest nonkt value of J.

THEOREM 7.3. Condition Q2 is maximal.

946 A. MOSTEFAOUI ET AL

ProOF The structure of the proof is similar to the proof of Theorem 7.2. To
prove thaiC2 is maximal, we first need to check th@2 is f -acceptable. This has
been argued in Theorem 6.2.

Now, to prove thalC2 is maximal we may use (by Theorem 5.7) the legality
version of Definition 7.1: we show that for any veclarl ¢ C2,C2U {l} is not
f-legal. We assumé > 0 because otherwise the theorem is trivially trud’: i= 0
there is nol with | ¢ C2.

Consider the grapkin(C2, f). SinceC2 is f-legal, for each connected com-
ponent ofGin(C2, f) there is a value that appears in everyone of its vectors. In
fact, there is exactly one such value. This follows directly from the easy to check
fact that every connected componéhtof Gin(C2, f) contains exactly oneorner
vectorwith all entries equal to the same value, i.e., of the fafimfor some value
a. Moreover, the only value in common to all vectors of the connected component
Gj that containg is a, the largest value df. Indeed, this is consistent with the fact
that S2(1) = max(l).

We now show that i ¢ C2,thenC2U {I}is not f-legal. As in Theorem 7.2,
we prove this by showing thatdiffers in at mostf entries with vectors;, 1, € C2
suchthaB2(l,) # S2(l,), thatis, in different connected component&afi(C2, f),
and hence these two components are joine&im(C2 U {1}, f). A contradic-
tion because the new connected componef@iofC2 U {1}, f) has two different
corner vectors, and henc&in(C2 U {1}, f) is not f-legal. This is done as fol-
lows (this part of the proof is different from the corresponding part in the proof
for C1').

Notice that, ifa is the largest value df, then #(1) < f, sincel ¢ C2 (and this
makes sense because we assurhed 0). Letb be the second largest value lof
(which exists sincef < n). Lety be the number of entries dfthat are different
froma. Duetof < nandy+#,(l) = n, we conclude thay > f —#,(1)+ 1. Let
us now defind; as the vector obtained fromby switching f — #,(1) + 1 entries
different froma to a (due to the previous observation gnthose entries do exist).
Moreover, as 1) > 1, we havef —#,(1) + 1 < f, hencel 1 differs from| in
at mostf entries. We havegfl,)) = #.(1)+ f —#,(1)+ 1= f + 1, and hence
I, € C2 with S2(1;) = a. On the other hand, ldb be the vector obtained froiin
by switching first all entries equal #oto b (the number of these entriesssf), and
then others until a total of — #,(1) + 1 entries different froni are changed tb.
As#,(1) > 1, itfollows thatf —#,(1)+1 < f.Hence|] 2 differs froml in at most
f entries. We have thatfl,) = 0, and #(l,) =#(1) + f —#()+1=f +1
with b being the largest such value. It follows tHate C2 with S2(1,) = b. O

8. The Condition-Based Approach in Message Passing Systems

The condition-based consensus protocol presented in Figure 2 uses single-writer
multi-reader registers, and snapshot registers. The snapshot registers can be (wait-
free) implemented in terms of single-writer multi-reader registers using the tech-
niques of Afek et al. [1993], and hence the algorithm can be rewritten using only
read/write registers. The resulting algorithm would be less efficient, since the
simulation of eaclwrite or snapshot operation to the snapshot registers requires
O(n?) read andwrite to read/write registers. The simulation of Attiya and Rachman
[1998] is more efficient, but still has an overhe&(nlogn) per operation to a
snhapshot register.

Conditions on Consensus Solvability 947

Function MP_Consensus;)
(1) broadcast VAL (v;,i);
(2) waituntil (atleastf— f)vAaL(—, —) messages have been delivered);
(3) forall j € [1--n]doif (vAL(vj, j) has been delivered)
4) then Vi[j] < vj elseVi[j] < L endif enddg
(5) if P(Vi)thenw; < S(V;) elsew; < T endif;

(6) UR_broadcast ECHO(v;, Wi, i);

(7) repeat wait until (a newecHo(vj, wj, j) message has been delivered);

(8 WJ] < wj; Yili] < vj;

9) if (ECHO(—, w, —) messages with the same valud# 1)
(20) delivered from a majority of processes)

(11) then return (w) endif

(12) until (L ¢ W) endrepeat
(13) return (F(Y;))

FiG. 3. A message passing consensus protocof fern/2.

It is known [Attiya et al. 1995] that any wait-free algorithm in the read/write
shared memory model which uses atomic, single-writer multi-reader registers can
be executed in the message passing model vihem/2 [Gafni 1998]. Moreover,
there exists an efficient simulation [Attiya 2000], where eaeld or write opera-
tion is simulated with onlyO(n) messages. Thus, our condition-based consensus
protocol can be automatically transformed to solve the same problem in a message
passing system wheh < n/2, by first eliminatingsnapshot operations using the
simulation of Attiya and Rachman [1998] and then simulatézg/write operations
with message passing using the algorithm of Attiya [2000], with an overhead of
O(nlogn) messages. This section discusses the design of a simple message passing
condition-based consensus protocol, inspired by the protocol of Figure 2, but with-
out the overhead of an automatic transformation. In addition, we show that there
is no condition-based consensus protocol for message pasdingrif/2. Notice
that the fact that the transformations mentioned above redquir@/2 (as does any
general transformation) does not directly imply this result.

8.1. ADAPTING THEPROTOCOL TO THEMESSAGEPASSINGCONTEXT. The main
difficulty in adapting the protocol of Figure 2 to a message passing system comes
from the absence of a message passitgpshot-like primitive providing the or-
dering property 1 < J2) v (J2 < J1) whereJ1 andJ2 are the results of two
invocations to thenapshot primitive.

Figure 3 describes a message passing protocol that solves consensus when
f <n/2, for any f -acceptable conditio®. This protocol is an adaptation of the
Figure 2 protocol to the message passing model without simulatingntipshot
operation, and instead, relaying on the “majority of correct processes” assumption.
Its proof is very similar to the proof of the protocol described in Figure 2 and
is omitted.

The protocol assumdzroadcastand uniform reliable broadcastommunica-
tion facilities. Both the invocations efoadcast(m) andUR _broadcast(m) entail the
sending of the messageto all processes. Thgoadcast(m) primitive is notreliable
in the following sense: if the sender crashes while it is broadcastjiitgs possible
that only a subset of the processes receive and deivEheUR _broadcast(m) prim-
itive is more reliable: if a process receives and deliverthen all correct processes
receive and delivem. Both primitives can be implemented in the asynchronous

948 A. MOSTEFAOUI ET AL

message passing model considered, althduRtbroadcast is more costly (e.qg.,
Hadzilacos and Toueg [1993])R_broadcast is heeded to ensure that if a process
terminates, then all correct processes do terminate.

8.2. ON THE PRESENCE OF ANATOMIC SNAPSHOTPRIMITIVE. When!l e C,
both protocols rely on A_, s to ensure the agreement property. But, whea C,
they rely on different requirements. As shown in Lemma 4.6, the shared memory
protocol relies on A_, s to guarantee agreement. In contrast, the message passing
protocol relies on the assumptidn< n/2. Indeed, in the absence ofaapshot
primitive, the following scenario is possible. Assume C and p; gets the local
view J1 andP(J1) is true; p; gets the local viewd2 andP(J2) is true. As now
it is possible that-(J1 < J2) A =(J2 < J1), it follows that A-_, s alone is
insufficient to prevent to hav§(J1) # S(J2) (and guarantee agreement) when
I ¢ C. Hence, the majority of correct processes requirement. Notice that the
construction of anapshot primitive in a message passing system also requires the
f <n/2 assumptioA.

As we show in the next theorem, there is no consensus prototokif/2 does
not hold. Interestingly, theris a message passing protocol that solves consensus
for anyvalue of f when the inputs do not violate the conditi@h The protocol
of Figure 3 without the majority requirement in line (8) does the job, since as
discussed above, agreement in this case relays only on the condiiog Ahus,
the difficulty of solving consensus whein>n/2 comes from the requirement to
deal also with input vectors not @.

A conditionC is f-non-trivialif in its graphGin(C, f) (defined in Section 5.1),
the intersection of the(G;)'s over all connected componen® is empty. The
intuition behind this definition is that if this intersection contains a valuden a
trivial solution to the consensus exists, where processes choose the default value
with no communication at all. The following stands in contrast to Theorem 4.2.

THEOREM 8.1. Let C be an f-acceptable, f-non-trivial condition. There is no
f -fault tolerant protocol that solves the consensus problem for C in a message pass
ing system when £n/2. If f <n/2, then there is an f-fault tolerant consensus
protocol for any f-acceptable C.

PrROOF The second part of the theorem, wher: n/2, follows from the cor-
rectness of the protocol of Figure 3.

For the first part, assumie > n/2. Assume for contradiction that such a protocol
exists. Thus, as explained in the proof of Lemma 5.5, Theorem 5.4 implies that the
protocol decides on one valug, for each connected compondat. First notice
that there must exist two different connected componentSinfC, f), G;, Go,
where the protocol decides with inputs of Gy, andv, with inputs ofG,, where
v1 # V. Otherwise, for every connected componént the protocol decides the
same value, which by the validity condition has to be in common to every vector
of everyG;, contradicting the assumption th@tis f-non-trivial.

Consider vectorsy, 1, of G, G, respectively. Lepy, ..., pjn/2) run starting on
I, until they decide, without hearing any messages from the other processes. They

6 A more constraining result, namely, show that there is no simulation of a read/write atomic register
whenf > n/2, is the topic of the exercise 10.15 in Attiya and Welch [1998].

Conditions on Consensus Solvability 949

have to decide eventually, because it is possible that the other processes crash from
the very beginning{ > n/2), and becaush is in C. Moreover, the decision must
bevy, sincel; isin G;.

Consider the prefix of this (infinite) execution, until the point they decide, call it
a1, and do not deliver any message frgm ..., pn/2) to the others. Do the same
for 12, running only the other processogsy 2 +1. - - . . Pn, and call the prefix until
they decidevy, as.

Consider the input vectdr constructed with the firgin/2] entries froml,, and
the other entries fronh, (I is not necessarily i€). Construct the execution which
starts inl by pastingx; first, thenw,, and then delivering all messages between the
two groups. This execution violates agreementil

8.3. GOMING BACK TO THE SHARED MEMORY MODEL. Here we discuss a
shared memory protocol inspired by the previous message passing protocol that
does not use shapshots, but works only foe n/2.

The message-passing protocol described in Figure 3 can be translated to get a
shared memory protocol that does not sisgpshot operations. The shared memory
protocol we obtain (let’s call id) differs from the protocol described in Figure 2
(let’s call it B) mainly in two points:

—Arequiresf < n/2, while B assumed < n.

—Due to the use of th@hapshot operation, the local views obtained by the processes
are ordered by containmentsBn This containment property is not providedan
that basically uses@llect operation. It follows that, while bothA andB satisfy
the Vvalidity, Agreement and Guaranteed_Termination properties,B terminates in
more cases thaA when the actual input vectar ¢ C;. To illustrate this point
let us consider the case where the input vedog C¢, and there is a single
processp; that gets a local view); such thatP(J;) holds. Moreoverp; writes
wj # T inthe shared memory and then crashes.

—In B, the correct processes terminate (see Theorem 4.8).
—In A, no correct process terminates. This is due to the fact that a majority of
processes have to suggest the same_haadue before deciding it.

9. Trading Safety for Liveness

9.1. NONTERMINATION VS. TERMINATION. As far as termination is concerned,
we have seenthatthe protocol described in Figure 2 sati&fiesnteed_Termination
(defined in Section 3.1) arrlMore_Termination (defined in Theorem 4.8). Hence,
a correct process fails to decide only in rare situations.

It is actually possible to modify the protocol to guarantee that a correct process
always terminates provided there are no more thiacrashes. This has a price
that translates as a versatile tradeoff between the liveness and the safety guaran-
teed by the protocol. More precisely, the safety is weakened in the sense that the
default valuel can now be decided in some circumstances in order to prevent
nontermination [Jayanti et al. 1998; Raynal 1997].

7 collect is an operation that non-atomically executes a setzef operationstollect(X) is equivalent
toforall j: doread(X[j]) enddo.

950 A. MOSTEFAOUI ET AL

Function SM.Term.Consensus;)

(1) write(vi, V[il);

(2) repeatV; <« snapshot(V) until (#(Vi[j] # L) > (n — f)) endrepeat
(3) if P(Vi)thenw; « S(V;) elsew; < T endif;

(4) write(w;, W[i]);

(B) ri <0

(6) repeatforall j € [1--n] doWi[j] < read(W[j]) enddg
@) if (3] :WI[j]# L, T)thenreturn(Wi[j]) endif;
(8) r<ri+1

9) until ((ri =N) v (Lg£W)) endrepeat
(20) if (L ¢ W) thenforall j € [1--n]doY;[]j] < read(V[j]) enddg

(11) return (F(Y;))
12) else return(L)
(13) endif

Fic. 4. Aterminating condition-based consensus protocol.

9.2. A TERMINATING PrOTOCOL Given a conditiorC and assuming at most
f crashes, a “terminating” protocol is described in Figure 4. The local vaniable
is a counter used to limit the number of iterations executegdibi € [1-- o0) isa
tuning parameter for the trading of safety for livendds;= +oo corresponds to the
no-trading case where the valuecan never be decided (Figure 2). This protocol
guarantees the following properties (their proofs are left to the reader):

—T-Validity: A decided value is a proposed valuelor

—T-Obligation: If the input vector satisfie€, then_L cannot be decided.
—T-Agreement: No two processes decide different proposed values.
—T-Termination: When at mostf processes crash, every correct process decides.

Let us note that, when the input vectodoes not satisf, it is possible that some
processes decide a proposed value while others decide

Let us consider the propertyL p defined in Section 4. This property has been
usedin Lemma 4.3 (Section 4.3) to prove the consensus termination property of the
generic protocol described in Figure 2. In contrast, the termination of the protocol
described in Figure 4 relies only on the assumption that there are no more than
f crashes. As far as the property Tp is concerned, it is still necessary but for
another purpose: the protocol requires it in order to satisfy the obligation property.
This interesting feature constitutes another facet of the tradeoff relating the safety
and the liveness properties guaranteed by the protocol of Figure 4.

As before, this protocol can be easily adapted to the message passing context
without snapshot primitive, but with the f < n/2 assumption (see Figure 5).
Interestingly, the uniform reliable broadcast is no longer necessary.

10. Conclusion

Solving the consensus problem consists of providing each process with the same
view of a relevant part of the system. The difficulty of solving this problem in an
asynchronous system prone to process crash failures comes from the uncertainty
created by asynchrony, failures and ignorance of the actual input values proposed
by the processes in the execution [Lynch 1989]. This article has investigated a new

Conditions on Consensus Solvability 951

Function MP_Term.Consensus;)

(1) broadcast VAL (vi,i);

(2) waituntil (atleastq — f) vAL(—, —) messages have been delivered);
(3) forall j € [1--n]doif (vAL(vj, j) has been delivered)

4) then Vi[j] < vj elseVi[j] < L endif endda

(5) if P(Vi)thenw; < S(V;) elsew; « T endif;

(6) broadcast ECHO(w;);

(7) wait until (ECHO messages have been delivered from at least a majority of processes);
(8) if (the same valud # T appears in a majority GfCHO messages)
9) then return(d) else return(_L) endif

Fic. 5. Aterminating message passing consensus protocol.

condition-basedpproach, to cope with these difficulties. Two main results have
been presented. The first is a generic consensus protocol for the shared memory
model. A set ohcceptableonditions has been defined, and shown that for any such
condition the protocol has the following noteworthy properties: it always guarantees
agreement and validity, and it terminates (at least) when the inputs satisfy the
condition with which the protocol has been instantiated, or when there is no crash.
The second main result of the article is the statement of a general characterization
that captures the set of all the conditions allowing a consensus solution. These are
exactly the acceptable conditions. Thus, the characterization states the minimal
properties a condition has to satisfy for consensus to be solvable.

The article presented several additional results. It described two natural condi-
tions and proved them to be acceptable. Furthermore, it showed that these conditions
cannot be extended and remain acceptable. The article has also presented an ef-
ficient version of the generic protocol for the message passing model. It has also
shown how the protocol safety can be traded for liveness.

An interesting line of research is trying to combine the condition based approach
with other approaches that have been proposed to circumvent the FLP impossibility
result, like failure detectors, randomization, or communication objects stronger
than read/write registers. We describe some preliminary results in this direction in
Mostefaoui et al. [2002] for failure detectors and randomization.

We have defined a version of the consensus problem for the condition based ap-
proach in terms of three requirements. The first two are the agreement and validity
requirements of the classic consensus problem, and are independent of a particular
conditionC. The third requirement, requires termination under “normal” operating
scenarios, including (1) inputs belonging@oand (2) failure-free executions. Part
(1), requires termination even in executions where some processes crash initially
and their inputs are unknown to the other processes. This is represented by a view
J with L entries for those processes. Termination is required if it is possible that
the full input vector belongs t€, that is, if J can be extended to an input vec-
tor I € C. Part (2) defines two well-behaved scenarios where a protocol should
terminate even if the input vector does not belongtdn Section 4.4, we show
that our protocol terminates in other situations as well. It would be interesting to
understand better other “normal” termination conditions for input vectors not in
the condition, including randomized conditions that require processes to terminate
with high probability when the inputs do not satisfy the condition.

We remark that the set of acceptable conditions is quite rich. In a sequel article
[Mostefaoui et al. 2001a], we describe one way of producing acceptable conditions

952 A. MOSTEFAOUI ET AL

using a weight function. Also, acceptable conditions, in general, do not satisfy the
closure properties needed for the BG-simulation [Borowsky et al. 2001] to work.
This simulation shows how to transform a protocol that solves a problem with some
resiliencef into a protocol that solves the same problem with a different resilience
f’, f < f’. However, for the simulation to work, the version of the problemffor
and the version of the problem fdf have to be related in some specific way. Thus,

if an acceptable conditiafifor f and an acceptable conditiGhfor f’, satisfy this
relationship we can derive results from one level of resilience to another, and, for
example, study its wait-free solvability to derive the solvability of the condition for
generalf.

In this article, we have proved that acceptable conditions are exactly the class
of conditions that allow consensus to be solved. It may be that among the accept-
able conditions, in some sense, some are easier than others. In Mostefaoui et al.
[2001Db], we have presented a hierarchy of acceptable conditions, and presented
a protocol whose time complexity depends on the place in the hierarchy of its
condition. However, no lower bounds are known. Finally, the interested reader
can find a probabilistic evaluation of the condition-based approach in Mostefaoui
et al. [2003].

ACKNOWLEDGMENTS. We are grateful for the many comments of anonymous ref-
erees that helped improve the article significantly.

REFERENCES

AFEK, Y., ATTIYA, H., DOLEV, D., GAFNI, E., MERRITT, M., AND SHAVIT, N. 1993. Atomic snapshots
of shared memony. ACM 4Q 4, 873-890.

AGUILERA, M., AND TOUEG, S. 1998. Failure detection and randomization: a hybrid approach to solve
consensusSIAM J. Comput. 283, 890-903.

ASPNESJ. 2000. Fast deterministic consensus in a noisy environmeRtotreedings of the 19th ACM
Symposium on Principles of Distributed Comput{igoDC’00) (Portland, Calif.). ACM, New York,
299-308.

ATTIVA, H.,AND AVIDOR, Z. 2002. Wait-free n-set consensus when inputs are restrictBdoteedings
of the 16th International Symposium on DIStributed Computing (DISGT#R)louse, France). Number
2508. Springer-Verlag, New York, 326-338.

ATTIVA,H. 2000. Efficientandrobustsharing of memoryin message passing sydtatgerithms 341,
109-127.

ATTIVA, H., BAR-NOY, A., AND DOLEV, D. 1995. Sharing memory robustly in message passing systems.
J.ACM 421, 124-142.

ATTIYA, H.,AND RACHMAN, O. 1998. Atomic snapshots inrlpg n) operationsSIAM J. Comput. 272,
319-340.

ATTIVA, H., AND WELCH, J. 1998. Distributed Computing: Fundamentals, Simulations and Advanced
Topics McGraw—Hill, New York.

AUMANN, Y. 1997. Efficient asynchronous consensus with the weak adversary scheduldthin
ACM Symposium on Principles of Distributed Computing (PODC&#@nta Barbara, Calif.). ACM,
New York, 209-218.

AZAR, Y., BRODER M., AND MANASSE, M. 1993. On-line choice of on-line algorithms. Rtoceedings
of the 4th Annual ACM/SIAM Symposium on Discrete Algorith@v, New York, 432—440.

BEN-OR, M. 1983. Another advantage of free choice: Completely asynchronous agreement protocols. In
Proc. 2nd ACM Symposium on Principles of Distributed Computing (PODCA3M Press, Montreal,
27-30.

BERMAN, P., AND GARAY, J. 1998. Adaptability and the usefulness of hintsPhoceedings of the
6th European Symposium on Algorithms (ESA'd8)mber 2508. Springer-Verlag, New York, 271—
282.

BIRAN, O., MORAN, S.,AND ZAKS, S. 1990a. A combinatorial characterization of the distributed 1-
solvable tasksJ. Algorithm 11 420-440.

Conditions on Consensus Solvability 953

BIRAN, O., MORAN, S.,AND ZAKS, S. 1990b. Deciding 1-solvability of distributed tasks is np-hard.
In Proceedings of the 16th International Workshop on Graph-Theoretic Concepts in Computer Science
(WG’90) Number 484. Springer-Verlag, New York, 206—220.

BOROWSKY, E., GAFNI, E., LYNCH, N., AND RAJSBAUM, S. 2001. The BG distributed simulation algo-
rithm. Dist. Comput. 1413, 127-146.

CASTRO, E.-V.,AND WoOD, D. 1992. A survey of adaptive sorting algorithm&CM Comput. Surv. 24,
441-476.

CHANDRA, T., HADZILACOS, V., AND TOUEG, S. 1996. The weakest failure detector for solving consensus.
J. ACM 43 4, 685-722.

CHANDRA, T., AND TOUEG, S. 1996. Unreliable failure detectors for reliable distributed systdms.
ACM 43 2, 225-267.

CHAUDHURI, S. 1993. More choices allow more faults: set consensus problems in totally asynchronous
systemsinf. and Comput. 105132-158.

DoLEy, D., DWORK, C.,AND STOCKMEYER, L. 1987. On the minimal synchronism needed for distributed
consensusl. ACM 34 1, 77-97.

DoLey, D., LYNCH, N., BNTER, S., SARK, E.,AND WEIHL, W. 1986. Reaching approximate agreement
in the presence of faults. ACM 33 3, 499-516.

DWORK, C., LYNCH, N., AND STOCKMEYER, L. 1988. Consensus in the presence of partial synchdony.
ACM 35 2, 288-323.

FISCHER M., LYNCH, N., AND PATERSON M. 1985. Impossibility of distributed consensus with one
faulty processJ. ACM 32 2, 374-382.

FRIEDMAN, R., MOSTEFAOU} A., RAJISBAUM, S.,AND RAYNAL, M. 2002. Asynchronous distributed
agreementand its relation with error correcting codeBraweedings of the 16th International Symposium
on DIStributed Computing (DISC’0Z)Joulouse, France). Number 2508. Springer-Verlag, New York,
63-87.

GAFNI, E. 1998. Distributed Computing: a Glimmer of a Theory, in Handbook of Computer Science
CRC Press.

GAFNI, E.,AND KouTsourPiAs E. 1999. Three-processor tasks are undecid&ev J. Comput. 283,
970-983.

GUERRAOUI, R. 1995. Revisiting the relationship between non-blocking atomic commitment and con-
sensus. IfProceedings of the 9th International Workshop on Distributed Algorithms (WDXG@hber
972. Springer-Verlag, New York, 87-100.

GUERRAOUI, R.,AND RAYNAL, M. 2003. A generic framework for indulgent consensus?ioceedings
of the 23th IEEE International Conference on Distributed Computing Systems (ICDEBi08)dence,
R.1.). IEEE Computer Society Press, Los Alamitos, Calif., 88—97.

HADzILACOS, V.,AND TOUEG, S. 1993. Reliable Broadcastand Related Problems, in Distributed Systems
S. Mullender, Ed. ACM Press, New York.

HERLIHY, M. 1991. Wait-free synchronizatioACM Trans. Prog. Lang. Syst. 11, 124-149.

HERLIHY, M., AND RAJSBAUM, S. 1997. On the decidability of distributed decision taskdoceed-
ings of the 29th ACM Symposium on the Theory of Computing (STQ@ZH, New York, 589—
598.

HERLIHY, M., AND RAJSBAUM, S. 1999. New perspectives in distributed computingPtaceedings
of the 24th International Symposium on Mathematical Foundations of Computer Science (MFCS’'99)
Number 1672. Springer-Verlag, New York, 170-186. (Invited Talk).

HERLIHY, M., AND SHAVIT, N. 1999. The topological structure of asynchronous computabdity.
ACM 48 6, 858-923.

HERLIHY, M., AND WING, J. 1990. Linearizability: A correctness condition for concurrent objésd/
Trans. Prog. Lang. Syst. 13, 463—492.

JAYANTI, P., GHANDRA, T., AND TOUEG, S. 1998. Fault-tolerant wait-free shared objedt®\CM 45 3,
451-500.

LAMPORT, L. 1998. The part-time parliamem®&CM Trans. Comput. Syst. 18, 133-169.

Loul, M., AND ABU-AMARA, H. 1987. Memory Requirements for Agreement Among Unreliable Asyn-
chronous Processes, in Parallel and Distributed ComputBigeenwich, Conn.). Advances in Computing
Research, vol. 4. JAIl Press.

LYNCH, N. 1989. A hundred impossibility proofs for distributed computingPhoceedings of the 8th
ACM Symposium on Principles of Distributed Computing (PODC(&8)monton, Ont., Canada). ACM,
New York, 1-27. (Invited Talk).

LYNCH, N. 1996. Distributed AlgorithmsMorgan Kaufmann, San Francisco, Calif.

954 A. MOSTEFAOQUI ET AL.

MORAN, S.,AND WOLFSTAHL, Y. 1987. Extended impossibility results for asynchronous complete net-
works.Inf. Proc. Lett. 26 145-151.

MOSES Y., AND RAJSBAUM, S. 2002. A layered analysis of consengi&\M J. Comput. 34, 989-1021.

MOSTEFAOU} A., MOURGAYA, E., RaIPIN, P.,AND RAYNAL, M. 2003. Evaluating the condition-based
approach to solve consensus.Rroceedings of the International Conference on Dependable Systems
and Networks (DSNO3San Francisco, Calif.). IEEE Computer Society Press, Los Alamitos, Calif.,
541-550.

MOSTEFAOUL A., RAJSBAUM, S.,AND RAYNAL, M. 2001. Conditions on input vectors for consensus
solvability in asynchronous distributed systemsPhceedings of the 33rd ACM Symposium on Theory
of Computing (STOC'01(Crete, Greece). ACM Press, New York, 153-162.

MOSTEFAOUL A., RAJSBAUM, S.,AND RAYNAL, M. 2002. A versatile and modular consensus proto-
col. In Proceedings of the International Conference on Dependable Systems and Networks (DSN’02)
(Washington, D.C.). IEEE Computer Society Press, Los Alamitos, Calif., 364—373.

MOSTEFAOUL A., RAJSBAUM, S.,AND RAYNAL, M. 2003. Using conditions to expedite consensus in
synchronous distributed systems.Rmoceedings of the 17th International Symposium on Distributed
Computing (DISC’03}Sorrento, Italy). Lecture Notes in Computer Science, vol. 2848. Springer-Verlag,
New York, 249-263.

MOSTEFAOUL A., RAJSBAUM, S., RAYNAL , M., AND ROY, M. 2001a. Efficientcondition-based consensus.

In Proceedings of the 8th International Colloquium on Structural Information and Communication
Complexity (SIROCCO gratalonia, Spain). Carleton Univ. Press, 275-292.

MOSTEFAOUL A., RAJSBAUM, S., RAYNAL, M., AND Roy, M. 2001b. A hierarchy of conditions for
consensus solvability. IRroceedings of the 20th ACM SIGACT-SIGOPS International Symposium on
Principles of Distributed Computing (PODC’0UNewport, R.l.). ACM, New York.

MosTEFAOUL A., RAJSBAUM, S., RAYNAL, M., AND Roy, M. 2002. Condition-based protocols for
set agreement problems. Rroceedings of the 16th International Symposium on Distributed Com-
puting (DISC’02)(Toulouse, France). Lecture Notes in Computer Science, vol. 2508. Springer-Verlag,
New York, 48—62.

MOSTEFAOUL A., AND RAYNAL, M. 1999. Solving consensus using Chandra-Toueg-s unreliable failure
detectors: a general quorum-based approacRrdceedings of the 13th International Symposium on
Distributed Computing (DISC’99]Bratislava), P. Jayanti, Ed. Lecture Notes in Computer Science,
vol. 1603. Springer-Verlag, New York, 49—63.

MoSTEFAOUL A., RAYNAL, M., AND TRONEL, F. 2000. The best of both worlds: A hybrid approach to
solve consensus. Rroceedings of the International Conference on Dependable Systems and Networks
(DSN’00)(New York, N.Y.). IEEE Computer Society Press, Los Alamitos, Calif., 513-522.

RAYNAL, M. 1997. Real-time dependable decisions in timed asynchronous distributed systems. In
Proceedings of the 3rd International Workshop on Object-Oriented Real-Time Dependable Systems
(WORDS’97\Newport Beach, Calif.). IEEE Computer Society Press, Los Alamitos, Calif., 283—290.

TAUBENFELD, G., KATZ, S.,AND MORAN, S. 1994. Impossibility results in the presence of multiple faulty
processednf. Comput. 1132, 173-198.

TAUBENFELD, G.,AND MORAN, S. 1996. Possibility and impossibility results in a shared memory envi-
ronmentActa Inf. 35 1-20.

ZiBIN, Y. 2003. Condition-based consensus in synchronous systerRsodeedings of the 17th Inter-
national Symposium on Distributed Computing (DISC’'(&)rrento, Italy). Lecture Notes in Computer
Science, vol. 2848. Springer-Verlag, New York, 239-248.

RECEIVED JANUARY 2002;REVISED JUNE2003;ACCEPTED JULY2003

Journal of the ACM, Vol. 50, No. 6, November 2003.

