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1 Introduction

Network design problems require laying cables on an underlying metric in order to connect a set
of demand points. The network must support each demand point operating at a known peak (or
average) rate, and we would like the cheapest possible network supporting these demands. In a
metric scenario (which is standard), if the cost of cables is linear in the amount of bandwidth they
provide, this problem is polynomial-time solvable using multicommodity flow techniques. However,
in several real applications the costs of cables obey economies of scale; the cost-per-unit-bandwidth
is less for a high-capacity cable. Similar problems arise outside the data networks community, e.g.,
in location theory where we consider transporting products for sale where the cost is a concave
function of the amount of demand transported. The concavity also may arise implicitly, e.g., in
clustering data where we are willing to tolerate a less dense cluster if it contains a larger number
of points.

The problem of buy-at-bulk network design, with a single sink node to which all the demand
has to be routed, was first introduced by Salman et al in [21]. They gave a O(min{log n, log D})
approximation, where the number of nodes is n and D is the maximum demand. They also showed
that the problem is HP-hard. Awerbuch and Azar [3] which gave an O(log2 n) approximation
for the multiple sink case, where different demand points may communicate with different sinks.
This result may be improved to O(log n) using subsequent results of [4, 5, 9] on approximation
of metrics using trees. Andrews and Zhang [2] considered the Access Network Design problem,
where all demands need to connect to a single conceptual entity, the “core” of the network which
represents the internet backbone, a set of file servers, or the factories where a product is produced.
Even though there may exist multiple sinks, the sinks are symmetric in that demand points do not
care to which sink they are connected. The access network design problem is a special case of single
sink buy at bulk problem with the added twist that cables have to be utilized up-to a minimum
capacity.

All of the above problems can be termed as an uniform variant, in the sense that any cable
type can be used between any pair of vertices. For the more general non-uniform problem where
cable types may have limited availability (but the network still has a single sink) Meyerson et al
provided an O(log n) approximation in [19].

In this paper we focus on the uniform single sink case. Our main contributions are:

• Our algorithm provides the first constant factor approximation for the single-sink buy-at-bulk
problem. This subsumes the Access network design problem [2] as well. The approximation
ratio we obtain for the buy-at-bulk problem is 292.

• We provide a Structure Theorem that allows us to identify the key regions in the concave
function. This allows one to write an LP with O(1) integrality gap. All subsequent analysis of
this problem showing a O(1) approximation (see below and Section 7) depend on this theorem
as well.

• We define and provide the first constant factor bicriteria approximation algorithm for a natural
variant of facility location, the Load Balanced Facility Location problem where there is a lower
bound specified on the demand an open facility needs to serve. This problem arises in several
clustering scenarios as well [14].

We provide randomized combinatorial algorithms, but they can be derandomized using standard
techniques. The paper [12] contained several other results on multi-level network design problems
which were based on similar techniques. We omit their discussion in the interest of keeping the
presentation focused and simple.
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Solution Technique: There are several important novel ideas in our solution methodology. First,
the optimal solution could use many cables with slightly differing costs in succession, obtaining
marginal benefit from each. Such a solution is hard to characterize. We show that to a constant
factor approximation, we can replace such similar cable types with the same cable type. This leads
to a solution with simpler layered characterization (Structure Theorem). In particular, we show
that a near-optimal solution is composed of alternating layers of Steiner and shortest path forests,
each layer using only a single type of cable. The next layer gets used only when sufficient demand
has been accumulated at the roots of the previous layer to make the next cable type cost-effective.
Such a solution effectively hierarchically aggregates demand in order to exploit the economies of
scale in cable costs.

The challenge now is to approximate the layered solution. We show that the shortest path
instance corresponds to a variant of the well-studied facility location problem, where a certain
minimum demand (corresponding to making the next cable type feasible) must be collected at the
facilities. We present a constant factor approximation for this variant, which we term Load-balanced
facility location. This is an independent contribution of this work. We present a simple constant
factor approximation for the Steiner forest variant as well. We finally show that an iterative bottom-
up aggregation of demand using these Steiner and shortest path forests yields a constant factor
approximation.

Independent Results: Independent of this work, Karger and Minkoff [16] defined the load
balanced facility location problem as a subroutine for solving the single commodity Rent-or-Buy
problem. They obtained the same algorithm as the one we present in Section 6. We note that
the single commodity Rent-or-Buy problem is a special case of the single sink buy-at-bulk problem
considered in this paper.

Garg et al [10] obtained a O(K) approximation (where K is the number of different cable types)
to the single sink buy-at-bulk problem by rounding the natural LP formulation. Our paper improves
the approximation ratio via a fully combinatorial algorithm. Since the natural LP relaxations for
the Steiner forest and shortest path problems have constant integrality gap, it is natural to expect
that an LP based on the structure theorem should have O(1) integrality gap as well, and we provide
this LP for completeness. However, the authors of [10] observe that the structure theorem in our
paper can be used on their stronger, natural LP, as well. This connection has also been made
explicit by Talwar [23] subsequently.

Organization of the Paper: In Section 2, we state the single sink buy-at-bulk problem formally,
and discuss the structural properties of the optimal solution. In Section 3.2, we discuss a scaling
idea to remove similar pipe types, and show how it improves the structure of the optimum solution.
We then present the Hierarchy algorithm in Section 4 and show a constant approximation ratio.
We show in Section 5 how to improve the approximation ratio for Access Network Design. We
present the algorithm for load balanced facility location in Section 6, and conclude by surveying
results that appeared subsequent to the publication of a preliminary version of this paper [13].

2 Definitions and Preliminaries

The Single Sink Buy at Bulk problem as defined in [21]: Given a graph G(V,E) with a distance
(length) function ce on the edges, the goal is to construct a network routing a set S1 ⊆ V of demand
nodes to a single sink s. We are given K types of connections (pipes) where pipe type i has a fixed
cost σi per unit length and a capacity ui. Each demand node v ∈ S1 needs to transport some
amount of demand dv to the sink. The objective is to optimize the cost of buying pipes along the
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edges to route all demands to the sink. We are allowed to buy multiple copies of a pipe along the
same link. The above can be termed as a capacitated version, we will use an alternate incremental
cost formulation of the above problem, which easily models arbitrary piecewise linear concave costs.

Definition 2.1 In the single sink buy at bulk problem we are given a set of pipes, where pipe type
i has fixed and incremental costs σi, δi respectively. If we transport d units of demand along a path
of length L using pipe type i, we will pay a total of L(σi + δid). The goal is to construct a network
routing a set S1 ⊆ V of demand nodes to a single sink s, while minimizing the cost of the network.

Let fi(Y ) = σi + δiY to be the per-unit-distance cost of routing demand Y along a pipe of type
i. Define h(Y ) = mini fi(Y ). The function h() is piecewise linear and concave. Note that a pipe
type which does not affect h() (that is, do not define the envelope) will not affect the solution at all.
Therefore, if we only focus on the pipe types which are useful, and number the pipes in decreasing
order of σi we observe that δ1 > δ2 > · · · > δK . In this formulation the “capacity” of pipe k is
ui = σi/δi.

It is not hard to see that a solution under this incremental cost formulation costs at least as
much as the same solution under the capacitated model, and at most twice as much as the solution
under the capacitated model. Furthermore,

Lemma 2.1 [2] In the incremental cost model the optimum solution naturally defines a tree.

The above is straightforward since the costs are sub-additive under the above assumptions of
{σi}, {δi}; after the links in the optimum are bought and the fixed cost paid, the entire demand from
each node can be routed along the path with the lowest incremental cost (ties broken arbitrarily)
from each node to the sink. This would define a tree, and we can eliminate the edges we do not use.
Note that as a consequence, every node would use an unique pipe type for its outgoing flow. Also
due to the subadditivity property of the costs, along every flow path the pipe types will increase
in number.

The authors of [2] also introduced the following problem:

Definition 2.2 The Access Network Design problem is defined as follows: It is the same as the
single sink buy at bulk problem with the following added restrictions (c = 1/2 is used in [2])

1. For 2 ≤ k ≤ K, if d < cσk
δk

, then dδk−1 + σk−1 < dδk + σk.

2. The smallest demand looks like the smallest pipe capacity, or more precisely, δ1 > cσ1.

3.
∑

κ<k σκ = O(σk).

As mentioned earlier, our solutions for the above problems will use solutions to the following
variant of the Facility Location problem:

Definition 2.3 The Load Balanced Facility Location problem is defined as: We are given a network
G(V,E) with a distance function c(·) on the edges and a set of demand points, with demands dj.
The cost of opening a facility at location i is fi. In addition, there is a lower bound of Li on
the demand a facility opened at i must satisfy. We are required to open facilities and allocate the
demands to the open facilities so that an open facility at i has at least Li demand routed to it. The
cost of our solution is the sum of the distances traveled by the demands and the cost of the open
facilities. The goal is to minimize this cost.
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3 Single Sink Buy at Bulk

3.1 Roadmap

Intuition: Assume that we only consider the pipe types which are not dominated by others. Thus
the cost per unit length is a piecewise concave function of the demand. Observe that as we increase
demand along an edge, there are break-points at which it becomes cheaper to use the next larger pipe
type. Let gk be the demand for which it becomes cheaper to use a pipe of type k +1 compared to a
pipe of type k. Suppose that we are in a scenario 0 = g0 < u1 < g1 < u2 < g2 < · · · < uK < gK = ∞
(we will show how to achieve a similar scenario later).

Observe now that if the demand amount is in the range [gi−1, ui], we can ignore the incremental
cost with a factor 2 loss in cost, and the cost of the edge will just be σi times the length of the
edge, independent of the demand. If on the other hand, the demand is in the range [ui, gi], we
can ignore the fixed cost with a factor 2 loss in cost, and the cost of the edge per unit length is δi

times the demand. This implies that the optimum solution can be converted with a factor 2 loss in
cost to a layered solution. Layer i has a Steiner forest using pipes of type i followed by a forest of
shortest path trees using pipes of the same type. Each pipe in the Steiner forest has at least gi−1

demand and each pipe in the shortest path forest has at least ui amount of demand. The shortest
path forest should ensure that we collect at least a demand of gi, such that we can use the Steiner
forest corresponding to a larger pipe type. This gives us a clustering problem where each cluster is
supposed to have a minimum number of (weighted by demand) points – this is the reason for using
the load balanced facility location problem.

For completeness, we first define the facility location problem [22]:

Definition 1 (Facility Location) We are given a set of demands D. Let dj be the demand at
j ∈ D. We are given a set of feasible locations F , where φi is the cost of opening a facility at
location i ∈ F . The points D and F are embedded in a metric space where cij is the distance
between points i and j. The goal is to open a subset of facilities X ⊆ F and connect each demand
j ∈ D to the closest open facility q(j) ∈ X, so that the total cost of the open facilities,

∑
i∈X φi

plus the sum of the routing cost,
∑

j∈D cq(j)jdj is minimized. Let ρf denote the best approximation
ratio for the facility location problem. This is 1.52 due to [18].

The Load Balanced Facility Location problem has an added constraint: Each i ∈ F has a
lower bound Li on the demand it needs to serve if opened. The solution X constructed must satisfy
that for every i ∈ X, at least Li demand is routed to i in the solution. In Section 6 we prove the
following:

Theorem 3.1 We can compute a solution for load balanced facility location whose cost is 2ρf times
that of the optimal solution, such that our solution relaxes the lower bounds by a factor of 1/3, so
that for i ∈ X, at least Li/3 demand is routed to i.

However, if we apply the above directly and compare ourselves with the optimal solution that
satisfies the above mentioned structural properties. the analysis does not immediately go through.
So we use the idea that we will only use a larger pipe type when it is significantly, i.e., by a constant
factor, cheaper. This will allow us to set up a geometric series that accounts for the cost of the
shortest path forests. But to bound the cost of the Steiner forests we will need a different idea,
namely we restrict ourselves to pipes where the σi decrease by a constant factor as well. But this
now implies that we should show that even after ruling out pipes according to the above two ideas,
there is a feasible solution which is not too expensive. This is the structure theorem we prove.
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There is however one remaining issue regarding how to correlate the costs of the different layers
– we introduce a novel strategy where the entire demand of a layer is sent to random node in S1.
Note that it is important for our analysis that the demands be sent to S1, because the structured
solution we derive from modifying the optimum solution is defined with these demand nodes as the
ground truth.

In the remainder of the section, we first describe the structured feasible solution in Section 3.2.
We then present the algorithm in Section 4.

3.2 Constructing a Layered Solution

We now formalize the intuition described above to obtain a layered solution with cost close to the
optimal cost. Our algorithm will progressively construct partial solutions using each pipe type in
turn. In order to bound the total cost, we must guarantee that pipes are very different from one
another in terms of fixed and incremental costs.

Definition 3.1 Define a set of pipe types to be good if for some α ∈ (0, 1/2) we have:

1. For any k < K, we have σk < ασk+1.

2. For any k < K, we have αδk > δk+1.

We need to prove that we can guarantee these conditions without increasing the cost of the
optimum solution by too much.

Lemma 3.1 There exists a set of good pipes and a solution that uses only these types, such that
the cost of this solution is at most 1/α times the cost of the original optimum solution.

Proof: We first eliminate pipes in order to guarantee that among the remaining pipes we have
σk < ασk+1 while increasing the fixed cost of the optimum solution by at most 1/α. The incremental
cost of the optimum solution can only decrease during this phase.

We find the largest pipe k such that σk ≥ ασk+1. We eliminate this pipe, replacing it in the
optimum solution with pipe k +1. We renumber the pipes and repeat. Notice that if at some point
some pipe type is replaced by pipes of type k, then we will always keep pipes of type k in the final
solution (since every pipe type higher than k has at least α higher fixed cost). When this finishes,
we will have the desired property. The original optimum solution with pipe replacements has fixed
cost at most 1/α larger since any pipe which was replaced was replaced by a pipe with at most 1/α
bigger fixed cost. The incremental cost can only decrease, since higher fixed cost implies smaller
incremental cost.

We now eliminate pipes in reverse order, where an eliminated pipe is replaced by a pipe with
larger incremental cost, to guarantee that among the remaining pipes we have αδk > δk+1 while
increasing the incremental cost of the optimum solution by at most 1/α. The fixed cost of the
optimum solution can only decrease.

Combining these two phases gives the solution claimed by the lemma.

Definition 3.2 Assuming that we have a good set of pipes, define bk to be such that fk+1(bk) =
2αfk(bk). In essence, bk is sufficient demand that it becomes considerably cheaper to use a pipe of
type k + 1 rather than a pipe of type k.
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Lemma 3.2 For all k, uk ≤ bk ≤ uk+1.

Proof: From the definition of bk, we can write: σk+1 + δk+1bk = 2α(σk + δkbk).

Solving this equation for bk yields:

bk =
σk+1 − 2ασk

2αδk − δk+1
≤ σk+1

2αδk − δk+1
≤ σk+1

δk+1
= uk+1

.

The above shows bk ≤ uk+1, to see the other bound observe that when we have bk flow, it is
cheaper to use a pipe of type k + 1 rather than a pipe of type k. It follows that σk+1 + δk+1bk <
σk + δkbk. Solving this for bk, we can see that

bk >
σk+1 − σk

δk − δk+1

Since α < 1/2, it follows that σk+1 > 2σk and we can conclude that bk > uk.

Lemma 3.3 For all k and any demand D ≥ bk, fk+1(D) ≤ 2αfk(D).

Proof: Suppose D = bk + x for some x ≥ 0. Then, fk+1(D) = σk+1 + δk+1(bk + x) = 2α(σk +
δkbk) + δk+1x. Noting that δk+1 ≤ αδk, it immediately follows that fk+1(D) ≤ 2αfk(D).

Lemma 3.4 For all k and any demand D ≤ uk, fk+1(D) ≥ fk(D).

Proof: Note that fk+1(D), fk(D) are nondecreasing linear functions in D and further, δk+1 ≤ δk.
Therefore, to prove the lemma, it suffices to observe that fk+1(uk) ≥ fk(uk).

But fk(uk) = σk + δk
σk
δk

= 2σk < σk/α ≤ σk+1 ≤ fk+1(uk). Note that we require α ∈ (0, 1
2).

We now show that there exists a structured near-optimum solution. Subsequently we will
search for solutions which obey this structure and are within constant factor of the best structured
solution.

Theorem 3.2 (Structure Theorem) There exists a tree solution that uses pipes of type k on a
link iff the demand x on the link satisfies x ∈ [bk−1, bk). Further, the tree routes all demand which
entered a node using pipe k out of that node using a pipe of type k or k + 1. This solution pays at
most 1

2α2 times the optimum solution.

Proof: First, as noted in Section 2, the optimal solution defines a tree due to the sub-additive
nature of the costs. Further, as noted there, the incremental cost model forces this solution to
use only one pipe type per edge. Both these properties will be preserved by the transformations
described below.

We first modify the solution to only use the set of good pipes (according to Lemma 3.1).
Therefore we need to show that transformations in the the rest of the proof increases the cost of
the solution by at most a factor of 1

2α .

Consider any edge where x units of flow is routed by the optimum solution. Let k0 = argminifi(x).
This is the pipe type used by the optimum solution.

Suppose a pipe has flow bk−1 ≤ x < uk. We know by (repeated) application of Lemmas 3.3 and
3.2 that a pipe of type k would reduce the cost compared to any smaller pipe type. Likewise, by
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(repeated) application of lemmas 3.4 and 3.2 we can conclude that a pipe of type k would reduce
the cost compared to any larger pipe type. Thus k = k0.

Therefore, what remains to be shown is that if uk ≤ x < bk and we use a pipe of type k, then our
cost does not increase significantly. First, due to the discussion above, since bk ≤ uk+1, we know
that it is cheaper to use pipe type k+1 compared to any larger pipe type. Thus k0 = k or k0 = k+1
and we need to compare fk(x) and fk+1(x) only. Now by Definition 3.2, and the fact that fk(x)
and fk+1(x) are linear non-decreasing with δk+1 ≤ δk; it is immediate that 2αfk(x) ≥ fk+1(x).

Thus if we modify the optimum solution (already restricted to good pipes) to use pipe type k in
the range [bk−1, bk), then the cost of the solution goes up by at most a factor of 1/(2α); combined
with Lemma 3.1 the total cost is at most 1/(2α2) times the optimal cost. To achieve the second
part of the lemma, we observe that since we are considering a tree solution, the flow does not
decrease as we proceed toward the root. We simply introduce dummy nodes or pipes of length 0,
if the largest incoming pipe type is k and the outgoing pipe type is larger than k + 1.

An LP Formulation: We can encode the structural observation above into an integer program
formulation. We modify the graph to include K self-loops of length 0 at every vertex, in order to
accomodate pipe types required by the Structure Theorem.

Denote by xvek whether the demand at node v uses a pipe of type k on edge e. By yek we denote
whether there exists a pipe of type k on edge e. The integer program can then be formulated as
follows. Here In(v) denotes the set of edges coming into on node v, and Out(v) the set going out
of v. Recall that ce is the length of edge e, and dv is the demand at node v ∈ S1.

Minimize
∑
e∈E

ce

∑
k

σk · yek +
∑
e

∑
v∈S1

∑
k

δk · dv · xvek



∑
e∈In(w) xvek =

∑
e∈Out(w) (xvek + xvek+1) ∀v ∈ S1, w ∈ V \ {s}, k

xvek ≤ yek ∀v ∈ S1, e ∈ E, k∑
e∈Out(v) xve1 = 1 ∀v ∈ S1

xvek, yek ∈ {0, 1}

The LP is obtained by relaxing the final integrality constraints. It can be shown using The-
orem 4.1 that if the LP is written on the set of good pipe types, it has an O(1) integrality gap.
Direct LP rounding techniques exist as well [10, 23]. Since the LP is not the main focus of the
paper, we omit a proof of the integrality gap.

4 The Hierarchy Algorithm

We will now present the Hierarchy algorithm for single sink buy-at-bulk based on the structural
observations we made above. The scaling idea from the previous section measures that we can
compare the cost of our solution in each layer with the respective costs of the optimum solution.
The algorithm is presented below:
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Algorithm Hierarchy

• Let s denote the sink node and S1 the set of original demand nodes. Assume s ∈ S1. Let the
demand of v ∈ S1 − {s} be denoted by dv.

• The algorithm proceeds in phases. In phase i we will use pipes of type i only. Let Di(v)
denote the demand of a node v at the start of the phase. Since the algorithm is randomized,
this is a random variable. Let Si be the set of non-zero demand points (and s) we have at
this stage.

(i) Steiner Trees: Construct an approximately optimal Steiner tree on Si. Root this tree at
s. Transport the demands from Si upwards along the tree. If on any edge, the amount
of demand is larger than ui, we “cut” the tree at that edge. This gives us a forest on Si

where each edge has at most ui demand through it.

(ii) Consolidate A: Consider any subtree t in the above forest which does not contain s.
Let the set of nonzero demand nodes in t be SA

i (t). Pick a node y at random from SA
i (t)

in proportion to its demand Di(y). For all nodes in SA
i (t), we send their demand (which

are currently located at the root of t) to z using pipes of type i. Let Ai be the set of
nodes y chosen corresponding to different t. Denote the demand of a node v immediately
after this step to be DA

i (v).

(iii) Shortest Path Trees: Approximately solve a load balanced facility location instance
on S1 with the facility lower bound bi on all nodes (and no facility costs). If there does
not exist bi total demand, then we instead route directly to the sink. We get a forest
of shortest path trees. We route our current demands along these trees to their roots.
Note that we solve the load balanced facility location problem on the S1 nodes and not
on the SA

i (t) nodes.

(iv) Consolidate B: Consider any facility p opened in the above forest of shortest path
trees. Some set of nodes from S1 were assigned to p, denoted by SB

i (p), and their
(original) total demand is at least bi/3. We choose a node z at random from SB

i (p) with
probability proportional to dz. For all y ∈ SB

i (p) ∩ Ai, we send their demand (which is
currently at node p) to node z using pipes of type i. Let Si+1 be the set of nodes z that
are chosen corresponding to the different facilities p. Note that the only nodes currently
having non-zero demands are nodes in Si+1.

Our solution will route the demands through the forests of increasing pipe types. This solution
need not be a tree, but can easily be converted to one of no greater cost.

Let ρs and ρf denote the best approximation ratios for the Steiner tree and facility location
problems respectively. Note that ρs = 1.55 due to [20] and ρf = 1.52 due to [18]. Note that for the
“Shortest Path tree” part, we use Theorem 3.1 to obtain a 2ρf approximation that routes at least
bi/3 demand to each open facility. For the “Steiner Trees” part, we use the ρs approximation.

4.1 Analysis

Let Γ be the structured optimal solution constructed in Theorem 3.2. We define C∗
i to be the

total cost of Γ using pipes of type i. The total cost of the structured optimal solution is therefore∑K
i=1 C∗

i = C∗.

Let T I
i be the incremental cost of the Steiner Tree at layer i and TF

i be its fixed cost. The total
cost of the Steiner Tree at layer i is Ti = T I

i + TF
i .

Let P I
i be the incremental cost of the shortest path tree at layer i and PF

i be its fixed cost.
The total cost of the shortest path tree at layer i is Pi = P I

i + PF
i .

Let Ni be the total cost of the consolidation steps for layer i. The total cost of our solution is
therefore

∑
i(Ti + Pi + Ni).
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Lemma 4.1 For all i, v, we have E[Di(v)] = dv and E[DA
i (v)] = dv, that is the expected demand

at any node after any of the consolidation steps is the original demand of the node.

Proof: We will prove this by induction on the steps i. Suppose that the statement is true at some
step. We will show that it is true at the next step. There are two cases to consider; either we
performed a Steiner Tree step or a Shortest Path Tree step.

Note D1(v) = dv. For the ease of notation, define DA
0 (v) = dv for all nodes v. These two

equations define the base case.

Suppose we have just performed a Steiner Tree step. By the induction hypothesis we know
E[Di(v)] = dv. The node v is a part of some tree t with total demand Dt. We then choose
a node for consolidation and the probability that we choose node v is Di(v)/Dt. If we choose
v, demand Dt will be placed there; otherwise the demand is 0. Thus the expected amount of
demand at v, conditioned on the previous i− 1 steps is Di(v). If we now remove the conditioning,
E[DA

i (v)] = E[Di(v)] = dv as desired.

Suppose we have just performed a Shortest Path Tree step. Note that we used the S1 nodes
for the load balanced facility location construction in this step. The probability we consolidate to
v is dv/D(p, i) where v is assigned to p in this stage and the total demand assigned to p is D(p, i).
Note that

D(p, i) =
∑

u∈SB
i (p)

du

The demand of v is Di+1(v) after this step. Note that v collects the demands of the nodes in set
Ai ∩ SB

i (p); further the demand of a node u in this intersection is DA
i (u).

Conditioned on the previous steps, the expected value of Di+1(v) is dv
D(p,i)

∑
u∈SB

i (p) DA
i (u). Now

if we remove the conditioning,

E[Di+1(v)] =
dv

D(p, i)
E[

∑
u∈SB

i (p)

DA
i (u)] =

dv

D(p, i)

∑
u∈SB

i (p)

E[DA
i (u)] =

dv

D(p, i)

∑
u∈SB

i (p)

du = dv

This proves the inductive case.

Lemma 4.2 E[Ni] ≤ Ti + Pi.

Proof: The proof essentially follows by observing that the cost is a concave function of demand,
and the consolidation process picks a random node in proportion to the demand sent to the root.

This is obvious for the shortest path trees – let the nodes that belonging to a tree rooted at
facility p be v1, . . . , vr with distances `1, . . . , `r from node p. Then the expected consolidation cost
is ∑

p

r∑
a=1

(dva/D)fi(D)`a ≤
∑
p

r∑
a=1

fi(dva)`a = Pi

The inequality follows since fi is a concave function.

For the other step, consider the consolidation process to recursively choose from the root a
subtree with probability proportional to the total demand in the subtree. We just saw the proof
for a 1 level tree that the consolidation cost is less than the cost of sending the flows to the root.
This argument is now repeated in each of the subtrees.

Lemma 4.3 T I
i ≤ TF

i and PF
i ≤ P I

i .
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Proof: Since we cut the tree at any edge with more than uk demand along it, we guarantee that
the fixed cost paid on any edge we actually use exceeds the incremental cost.

By the same argument, the Steiner Tree stage guarantees at least uk demand or zero everywhere.
For the shortest path tree, if an edge has zero demand flowing on it, we will pay zero for that edge.
Otherwise there is at least uk demand on the edge and we pay an incremental cost which exceeds
the fixed cost for the shortest path trees.

Lemma 4.4 E[P I
i ] ≤ 2ρf

∑j=i
j=1 αi−jC∗

j .

Proof: Suppose the demands at the sources were those from S1. Then one possible solution would
be Γ itself until pipes of type i+1 were used. We know that Γ must gather the desired bi flow before
using pipes of type i + 1. Since we will always pay the incremental cost δi, and the incremental
costs scale by α, we can guarantee a total cost of at most

∑j=i
j=1 αi−jC∗

j for this solution. Our actual
demand at each node has expected value equal to the original demand, so the expected value of a
feasible solution for P I

i is bounded as above. The extra factor is due to the approximation of the
load balanced facility location problem as stated in Theorem 3.1.

Lemma 4.5 Pr[Di(v) 6= 0] ≤ 3dv/bi−1.

Proof: Let v be the chosen node (denoted by z in Step (iv) of the algorithm) corresponding to some
p. We obtain the nodes Si by solving an instance of the load balanced facility location problem on
S1 with lower bounds bi−1. In this solution, each node in Si except s has demand at least bi−1/3.
In other words

∑
u∈SB

i (p) du ≥ bi−1/3.

Now note that v is chosen independent of {Di−1(u)} – and this is the reason why S1 is used
and not Si. Note that at any node u in S1, the currently accumulated before the shortest path tree
step is DA

i−1(u). We therefore have:

E[Di(v)|Di(v) > 0] =
∑

u∈SB
i (p)

E[DA
i−1(u)] =

∑
u∈SB

i (p)

du ≥ bi−1/3

Now combined with the fact that E[Di(v)] = dv, the lemma follows.

Lemma 4.6 Recall ρs be the approximation ratio the Steiner tree approximation algorithm used,
then E[TF

i ] ≤ ρs

(∑j=K
j=i αj−iC∗

j +
∑j=i−1

j=1 3(2α)i−jC∗
j

)
.

Proof: To bound the cost of TF
i , we will show that there exists a Steiner tree Γi which connects all

Si with a low cost. Note that this Steiner tree will have an approximation ratio at most ρs relative
to the optimal Steiner tree on the set Si.

The tree Γi will be the tree corresponding to the structured solution Γ, where (1) all the pipes
of type j ≥ i use pipes of type i and (2) for the nodes v with Di(v) > 0 the edges in the path to
the root where any pipe of type j < i is used, that corresponding edge now uses a pipe of type i.

The cost according to part (1) can be bounded by
∑j=K

j=i αj−iC∗
j . This is because for any pipe

of type j ≥ i, we have σi ≤ αj−iσj . Further, the fixed cost of using the pipe of type j is less than
its total cost and thus the above bound follows.

To bound the contribution of (2), we focus on the subtrees of Γ which has total demand at
most bi−1 (and therefore use pipes of type j < i). Note that due to the introduction of zero length
edges, these subtrees may share their (sub)roots – but they will be edge disjoint. For an edge e,
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let the demand flowing through it be xe < bi−1 and suppose that Γ uses a pipe of type je < i for
this edge. Let the set of nodes in Γ below e be denoted by Γe. Let the length of e be `e.

Now the edge e is used in Γi if any v in the subtree below it has Di(v) > 0. Therefore the
probability e is used is bounded above by

∑
v∈Γe

3dv/bi−1 using Lemma 4.5 and the union bound.
Thus we pay a cost

∑
v∈Γe

3dv

bi−1
`eσi =

3xe

bi−1
σi`e ≤

3xe

bi−1
fi(bi−1)

≤ 3xe

bi−1
(2α)i−jefje(bi−1) ≤ 3(2α)i−jefje(

xe

bi−1
bi−1) = 3(2α)i−jefje(xe)

The second inequality follows from Lemma 3.3. Therefore if we sum the right hand side over
all je, the contribution from edges in that level will be 3(2α)i−jeC∗

je
. Taking the contribution of

both (1) and (2) together, the total cost of Γi is at most

j=K∑
j=i

αj−iC∗
j +

j=i−1∑
j=1

3(2α)i−jC∗
j

We can find a Steiner Tree of cost at most ρs times the above cost, so the lemma follows.

Theorem 4.1 The Hierarchy algorithm is a constant-approximation for the single-sink buy-at-
bulk problem.

Proof: By Lemmas 4.2 and 4.3, the total expected cost of our solution,
∑

i E[Ni + Pi + Ti], is
bounded by

∑
i 2(2TF

i + 2P I
i ). Using Lemmas 4.4 and 4.6, we conclude that the expected cost of

our solution is bounded by the following:

4
∑

i

ρs

j=K∑
j=i

αj−iC∗
j + ρs

j=i−1∑
j=1

3(2α)i−jC∗
j + 2ρf

j=i∑
j=1

αi−jC∗
j


By reversing orders of summation, we can bound this by:

4
(

ρs

1− α
+

6αρs

(1− 2α)
+

2ρf

1− α

)
C∗

This is our approximation relative to the near-optimum structured solution. Using Theorem 3.2
allows us to bound our overall approximation ratio by:

(
4

2α2

) (
ρs + 2ρf

1− α
+

6αρs

1− 2α

)

The best known approximation ratio for Steiner trees is ρs = 1.55 due to [20], and that for
facility location is ρf = 1.52 due to [18]. Setting α = 1/3 the above reduces to 54ρf + 135ρs < 292
approximation for the incremental cost model.

11



5 Improved Approximation Algorithm for Access Network Design

Andrews and Zhang [2] consider the case c = 1/2 and show that the optimal solution can be
converted with a constant factor loss into a layered solution of shortest path forests. They show
that there exists a near-optimal (within a constant multiplier on the cost) solution which is a tree
satisfying the following properties:

1. Each demand is routed through pipes of consecutive types, i.e. types 1, 2, . . . , κ. (κ ≤ k).

2. For all pipe types k, any pipe of that type has at least uk/2 = σk
2δk

amount of demand flowing
through it.

This means that for Access Network Design, the optimal solution can be converted to a layered
solution using shortest path forests of increasing pipe types.

We can improve the analysis of the above algorithm for Access Network Design. As shown
in [12], for the Access Network Design we have a layered shortest path forest solution with a
reduction in cost at each layer. We can prove the following theorem:

Theorem 5.1 There exists a solution to the Access Network Design problem in which we only use
pipe types satisfying the condition φi = δi+1

δi
≤ α, and in which any pipe of type i has at least ui/2

amount of demand flowing through it. The fixed and incremental costs of this solution are each
within 1

α of the original optimum which used all pipe types and which had at least uk/2 demand in
any pipe of type k.

Proof: Note that since we are using pipes of larger types in increasing layers, the incremental cost
δ per unit of traffic keeps decreasing. In fact, we can make sure that δ goes down by a constant
fraction α < 1 with a 1

α increase in cost. The way we do this is the following:

Consider pipes of increasing types starting at type 1. Let φi = δi+1

δi
. Let k′ be the largest

number such that
∏k′

i=1 φi ≥ α. We remove all pipe types 2, . . . , k′ + 1 and use only pipe of type 1
instead of all these pipes. We next consider pipes starting at type k′ + 2 and repeat this filtering
process.

When the above is completed, we are left with a set of pipe types satisfying the following
properties. For consecutive pipe types i and i + 1, δi+1

δi
≤ α. Finally, note that in this process, if a

pipe of type j is replaced by a pipe of type i, it must be the case that φi < φj , and δi < 1
αδj , so

that the cost of using pipe i is at most 1
α times the cost of using pipe j.

Recall φi = δi+1

δi
. From above, we can assume with a loss of 1

α in the approximation ratio that
all φi ≤ α < 1. Our algorithm will lay pipes in increasing order of types.

Let Si denote the demand points at stage i. We maintain the invariant that every demand point
has at least ui/6 demand. We solve the load balanced facility location instance on Si with lower
bound ui+1 (except on the sink s). We route the demands to the open facilities using pipes of type
i. For every open facility, we choose one of the demand points sending demand to it at random in
proportion to its demand, and route all the demand to this point using pipes of type i + 1. Let
Si+1 be the final set of demand points to where we route the demands. Note that every demand
point has at least ui+1/6 demand.

Let P I
i be the routing cost at stage i, and let PF

i be the fixed cost. Note that PF
i ≤ 6P I

i because
of the invariant on the demands.

We define C∗
i to be the total incremental cost incurred by the optimal solution using pipes of

type i. Note that the total cost of the optimal solution is C∗ ≥
∑

i C
∗
i .
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Lemma 5.1 E[P I
i ] ≤ 2ρf (1 + α)(

∑j=i−1
j=1 αi−j−1C∗

i ).

Proof: The routing cost that the optimum solution pays in routing the original demand points
till stage i using pipes of type i is at most

∑j=i−1
j=1 αi−j−1C∗

i . This follows from [12] and from the
analysis in Section 4. This is an instance of the load balanced facility location problem, and we
apply Theorem 3.1.

It is now easy to see the following.

Lemma 5.2 E[
∑

i(P
I
i + PF

i )] ≤ 14ρf
1+α
1−αC∗.

Note that we lost a factor of 1
α up front in the routing cost because of scaling the pipe types.

Our approximation ratio is therefore 1
α14ρf

1+α
1−α . Setting α = 1/3 and ρf = 1.52 this ratio is less

than 128.

Theorem 5.2 We have a randomized 128 approximation for Access Network Design.

This approximation factor has been subsequently improved in [15].

6 Load Balanced Facility Location

Recall the definition of facility location and load balanced facility location from Section 3.1. The
load balanced problem differs from standard facility location [22] in that we must route at least Li

units of demand to each open facility i. Load Balanced Facility Location has direct applications;
consider a franchise which must open stores to minimize the average distance from customer to
store, but which must also guarantee a minimum number of customers to each store so the individual
stores remain profitable. We present a constant approximation to this problem, losing a constant
factor compared to the lower bound on demand. We can write an integer program for this problem.

Minimize
∑

i

∑
j

djcijxij +
∑

i

φiyi

∑
i xij ≥ 1 ∀j
xij ≤ yi ∀i, j∑

j djxij ≥ Liyi ∀i
xij , yi ∈ {0, 1} ∀i, j

Clearly, the general version of this problem is NP-hard, as it reduces to classical facility location
when the lower bounds are set to zero. In fact, this problem is NP-hard even if all facility costs are
zero, all lower bounds are equal and all demands are unit.

Theorem 6.1 Suppose we are given a load balanced facility location instance with lower bound L
on all facility locations, and facility costs being zero. Deciding if a feasible solution of cost at most
C exists is NP-hard.

Proof: We reduce the decision version of the unweighted set cover problem to an instance of this
problem as follows. The sets are the facilities. The elements are the demand points with unit
demand. Suppose there are n elements. In the facility location instance, we add edges of cost one
between every element and all the sets it belongs to.
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Suppose we have to decide if a cover with s > 1 sets exists. We add sn demand points with
unit demand, and connect them to all the sets (or facilities) with edges of length one. We set the
lower bound on the facilites to be n + 1. We now ask if there is a feasible solution of cost no more
than ns + n + s. Note that if there exists a set cover of size s, then there exists a solution of cost
ns + n + s. The reverse also holds, and therefore this completes the reduction.

Definition 6.1 An approximation algorithm for load balanced facility location is a (α, β) approxi-
mation for some α ≥ 1 and β ≤ 1 if the cost of the solution is within α times the optimal cost and
facility i, if opened, serves at least Liβ demand.

Let us denote by ρf the best known approximation ratio for classical facility location, which is
ρf = 1.52 due to [18]. We present a (2ρf , 1/3) approximation to this problem. The same result
was independently obtained by [16]. Unlike classical facility location [22], the lower bound makes
it hard to round the linear relaxation directly. This arises from the fact that the filtering steps
of Lin and Vitter in [17] do not work. Thus fractional solutions cannot be rounded by previous
approaches.

The Algorithm: The algorithm proceeds in two basic steps and uses an approximation algorithm
for the facility location problem. We note that the approximation guarantee holds relative to the
LP relaxation as well (albeit with more technical details that we omit, since it is not the main focus
of the paper).

Load Balanced Facility Location Algorithm

(i) Transformation: For facility i, add the cheapest way to route exactly Li units of demand to
i to the facility cost φi. To do this, consider demands in increasing order of distance from i,
and route these demands to i until exactly Li units have been routed. The routing cost of
this process is added to φi.

(ii): Facility Location: Next solve regular facility location with these facility costs using the
ρf -approximation algorithm.

(iii) Rounding to Remove Facilities: Now consider the open facilities in arbitrary order. Con-
sider any open facility i that serves less than Li/3 amount of demand. Close the facility and
route the demands it serves to their closest open facilities.

Lemma 6.1 Consider any feasible solution to the load balanced facility location problem of cost C.
After the transformation in Step (i), this yields a feasible instance of the regular facility location
problem of cost at most 2C.

Proof: Consider any facility i opened by the load balanced solution. Since this solution is routing
at least Li amount of demand to any open facility, the facility cost we assign in the new problem is
at most the routing cost of the demand connected to that facility. Thus the total additional facility
cost is at most C.

Therefore the total cost in the solution we compute is bounded in terms of the cost of the
original solution to within a factor of 2ρf . Also note that facility location guarantees that each
demand point goes to the closest open facility. We have to show that removing a facility does not
increase the total facility plus routing cost of the solution. For this, we show a feasible way to route
the demands it serves so that the cost does not increase.

Lemma 6.2 Removing a facility i serving less than Li
3 amount of demand cannot increase the cost

of our solution.
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Proof: Suppose we are closing facility i. Consider the closest demand point j which does not send
demand to this facility. Suppose cij = D. If j is being served by i′, ci′j < D, as each demand point
goes to the closest open facility.

Note that at least 2Li/3 units of demand are at distance D or greater. Therefore, f ′
i ≥ 2Li

3 D.

When we close the facility, we can afford to use f ′
i towards re-routing the demand it serves. We

send the demand to i′, the facility serving j. The extra cost for doing this is at most the cost of
taking the demand from i to j and from there to i′. This distance is at most 2D by the metric
property, and the demand is at most Li

3 , and so the total re-routing cost is at most 2Li
3 D.

The above can be summarized in the following theorem:

Theorem 6.2 The load balanced facility location problem has a (2ρf , 1/3) approximation where
each demand is served by its closest open facility.

7 Conclusion

In this paper, we presented the first constant factor approximation for the single-sink buy-at-bulk
network design problem. We conclude by surveying the results on this and related problems that
have appeared since the publication of the preliminary version of this paper [13]. First, the algo-
rithm itself has been significantly improved and simplified. Gupta, Kumar, and Roughgarden [15]
obtain a 72.8 approximation by combining the Steiner and shortest path stages into a “rent-or-buy”
stage, and using a novel analysis. This is the current best known approximation guarantee. For
the single-sink case, Goel and Estrin [11] consider simultaneous (oblivious) approximation over all
concave functions, and obtain a O(log n) approximation.

For the multiple sink (source-sink pairs) version of this problem, as mentioned earlier, the best
known approximation ratio of O(log n) follows directly from tree embeddings [3, 9]. For this version,
Andrews [1] has shown a Ω((log n)

1
4 ) hardness of approximation assuming NP 6⊆ Dtime(nlogO(1) n).

The non-uniform version of the problem assumes different cable types are available on different
edges. As mentioned earlier, the best known approximation ratio [19] for the single-sink version
is O(log n). Chuzhoy et al. [8] show that the single sink version is hard to approximate within
Ω(log log n), under similar hardness assumptions as the uniform case. Charikar and Karagiozova [6]
consider the non-uniform version in the presence of multiple source-sink pairs. The best result for
this case is a polylogarithmic approximation ratio, and is achieved by Chekuri et al. [7].
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