
Agents2Go: An Infrastructure for
Location-Dependent Service Discovery in

The Mobile Electronic Commerce Environment
Olga Ratsimor

Department of Computer
Science and Electrical

Engineering University of
Maryland Baltimore County

1000 Hilltop Circle,
 Baltimore, MD 21250

 +1 410-455-3971

oratsi2@cs.umbc.edu

Vladimir Korolev
Department of Computer

Science and Electrical
Engineering University of

Maryland Baltimore County
1000 Hilltop Circle,

 Baltimore, MD 21250
+1 410-455-3971

vkorol1@cs.umbc.edu

Anupam Joshi
Department of Computer

Science and Electrical
Engineering University of

Maryland Baltimore County
1000 Hilltop Circle,

Baltimore, MD 21250
+1 410-455-2590

joshi@cs.umbc.edu

Timothy Finin
Department of Computer

Science and Electrical
Engineering University of

Maryland Baltimore County
1000 Hilltop Circle,

Baltimore, MD 21250
+1 410-455-3522

finin@cs.umbc.edu

ABSTRACT
In recent years, the growth of Electronic Commerce and Mobile
Computing has created a new concept of Mobile Electronic
Commerce. In this paper we describe the Agents2Go System that
attempts to solve problems related to location dependence that
arise in a Mobile Electronic Commerce environment. Agents2Go
is a distributed system that provides mobile users with the ability
to obtain location dependent services and information. Our
system also automatically obtains a user’s current geographical
location in CDPD (Cellular Digital Packet Data) based systems
without relying on external aids such as GPS (Global Positioning
System).

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval],
H.3.4 [Communications Applications].

General Terms
Algorithms, Design, Experimentation.

Keywords
Mobile information access, context dependent, location
dependent, service discovery, agents.

1. INTRODUCTION
With the proliferation of mobile computing, more and more
people use a variety of mobile devices in their dally lives. Recent
years have also seen a remarkable growth in Electronic

Commerce. The merger of these concepts has resulted in the
emergence of Mobile Electronic Commerce (M-Commerce).
One of the most critical requirements for M-Commerce is the
ability to discover services in a given context. An important
component of a user’s context is their current location. For
example, a user’s on arriving at a location that he/she has never
visited before should be able to find a local cab service. Current
mobile devices have well known inherent limitations [1] like
limited power supply, smaller user interface, limited computing
power, limited bandwidth and storage space. These limitations
necessitate the development of systems that provide mobile users
with high quality, precise and context relevant information. It is
important that these systems be highly scalable since the demand
for service searches will increase in the future.
A location dependent search utilizes a user’s current geographical
location to refine their search and provide access to locally
available services. One of the challenges of location-based
searches is determining the user’s current location. Users are
often uncertain, or even completely unaware, of their current
geographical location making location based searching more
difficult. An automated detection of the user’s current location
would be very helpful in eliminating this problem.
Location dependent systems are naturally described and
implemented as distributed systems. This also improves their
fault tolerance and scalability. For instance service information
can be grouped by location and managed by a server responsible
for the specified geographical region. In such a decentralized
scheme user requests are processed at the local server and do not
burden the rest of the system. This makes the system more
efficient, responsive and scalable.
In this paper we introduce the Agents2Go System. It is an agent
based distributed system that allows the creation of location
dependent service/information system. We present the use of
Agents2Go to create a location dependent restaurant
recommender system. We use this application to drive the
description of our system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

2. RELATED WORK
There are a number of platforms that provide multi-agent
infrastructures to allow inter-agent communication and
collaboration. These platforms can be used to create collaborative
intelligent agent environments that could provide location based
information services. One such infrastructure is the Lightweight
Extensible Agent Platform (LEAP)[3]. LEAP provides a
lightweight platform that is executable on small devices such as
PDAs and phones. It is FIPA[15] compliant and also supports
WAP[4] and TCP/IP.

The YellowStone Project[6] from Reticular Systems, Inc. also
deals with location dependent services. Essentially, there are
communities of software agents called agencies, which provide
information services and e-commerce support for a particular

geographical area. However, a participating user has to specify
his/her current geographical location.
Very recently researchers at AT&T Research Labs have described
a project with similar goals[5], which also locates the user in a
CDPD [2] environment using cell tower ids.
There are also a number of services on the Internet that provide
location dependent information. Digitalcity.com[7] provides
users with local information such as news, events, weather
forecasts, restaurant information, local attractions etc. Several
other sites like "Yahoo! Get Local"[8] from Yahoo! and
citysearch.com[9] from MSN provide similar services. All these
sites are mainly geared towards users that have wired desktop
computers. In contrast, BeyondGuide[10], Inc. specifically
focuses on providing location related information services
(tourism information) for mobile users. A user of
BeyondGuide[10] can use a mobile phone to gain access to
information about some specified geographic location. The
information is delivered to the user through his/her cell phone in
voice format. MyAladin.com[11] also seeks to provide location-
based services for mobile devices. Unfortunately, as of this
writing, we were unable to find more detailed information about
their services.
Our Agents2Go system has several distinguishing features that
provide advantages over the existing location dependent service
search systems. First, it is a platform to deploy any location
dependent service, not just to provide location dependent
information. Second, our system automatically discovers a user's
location and uses this information to refine its searches to provide

the most relevant information to the user. Also the Agents2Go
system allows service providers to actively participate in the
system through dynamic information updates. This improves the
quality of information or services presented to the user and
ensures that the service providers are able to send their latest
promotions/updates to their users.

3. DESCRIPTION OF THE COMPONENTS
OF THE AGENTS2GO SYSTEM
The Agents2Go System, illustrated in Figure.1, is composed of
several components: the PalmApp, the Agents2Go Server, the
Locator, the Agents2Go Information Repository, the restaurant
Brokers and participating Restaurant Agents.

3.1 PalmApp
The PalmApp is the end user interface to the Agents2Go System.
This component runs on the user’s PDA equipped with a CDPD
modem. Essentially, it is a generic “form visualizer” that is
independent of the system functionality. To reduce complexity,
in-house markup tags are used to specify the layout and
components of the form.

In our system, the PalmApp captures a user request, converts it to
an appropriate format, and then forwards that request to the
Agents2Go Server. The PalmApp also handles the responses
from The Agents2Go Server and presents them to the user.

Send Request
Form MSG

Display Form Make Form Data MSG

Send Form Data MSG

Fields, Lists, Check Boxes…

"Send" Button

Idle State

Home

Receive Form

User Input Actions

"Send" Button Pushed

Figure 2 State Diagram of PalmApp Component

Figure 1 Full view of the Agents2Go System

3.1.1 Communication and Location Detection
All the messages that are exchanged between the Agents2Go
Server and the PalmApp are sent using the Centaurus
Communication Protocol (CComm)[12]. CComm is a layered
protocol that provides communication between mobile clients and
a server. Level2 is the layer that is closest to the application layer.
It handles transmission of data messages and control messages
between a server and a client. This layer handles multiple clients,
is insensitive to disconnections and is easily portable. Level1 is
the layer that serves as glue between Level2 and existing stacks
like IrDA[13], BlueTooth[14], CDPD[2], or TCP/IP. It handles
all interactions with these stacks including
connection/disconnection issues, user identification and
authentication.

Our current Agents2Go System uses CDPD Level1 Module,
which is an extension of the UDP Level1 module. CDPD
provides an infrastructure that allows the transmission of data
over idle capacity of already existing cellular voice networks.
Cellular networks consist of cell towers. Each cell tower has a
unique id and defines a geographical boundary called cell, the
area that is serviced by that tower. Our system employs these
tower ids to identify a user location. We have developed a library
that allows us to control and interact with Novatel wireless
modems through MSCP (Minstrel Status and Configuration
Protocol). The PDA’s CDPD module employs this library to
obtain periodic status reports. These reports contain information
like cell tower signal strength (which can be used to minimize
packet loss), the tower id (which we use for inferring coarse
information about current location), etc. The PalmApp has access
to this periodically updated report through a Status Data
Structure.

3.1.2 Messages
All the messages that are exchanged between the PalmApp and
the Agents2Go Server are encapsulated in a generic message
format. The generic message format specifies a Sender ID, a
Message Type and Message Content. Messages sent from a PDA
to a Server use that PDA’s ID as the Sender ID. This PDA ID
represents a unique id for a user’s PDA in a particular application.
Messages sent from a Server to a PDA use the Server’s ID as the
Sender ID. A Server ID represents a unique id of a particular
Agents2Go Server. The Message Type field can contain one of
three message types: “response form message”, “form request
message”, or “form data message”. The Message Content field
contains the message itself.

The PalmApp uses a generic “form request message” to request
forms from the Agents2Go Server that are displayed to the user.
The “form request message” specifies the form name that the
PalmApp is requesting and the cell tower, with which it is
currently communicating. This tower id is obtained from the
Status Data Structure.

On startup, the PalmApp requests an “initial query form” from the
Agents2Go Server. Through this form, the user can specify a
desired request. Upon submission of the request (through a send
button for example), the input of the form is converted into a
“form data message” and sent to the Agents2Go Server. The
“form data message” includes only the values of active
components in the form like check boxes, fields, lists, etc. Once
the PalmApp sends the “form data message” it waits for a

response from the Agents2Go Server. The format of a response is
a form that the PalmApp displays to the user. This form may
contain a “home” button that causes the PalmApp to generate the
“initial query form” message to allow the user to enter a new
query.

Unlike a “form request message” or a “form data message”, the
“response form message” is initiated at the Agents2Go Server and
destined for the PalmApp. This message contains a form that the
PalmApp is required to display to the user. This message may
contain a response to the user’s query, an error message, etc.

3.2 Agents2Go Server
The Agents2Go Server is the component that handles messages to
and from a PalmApp. User queries are forwarded to the Locator,
and the corresponding responses are forwarded back to the
PalmApp.

Read Form
from File

Use Lookup table
to Map Cell ID to

Neighborhood Name

Send Reply Form
to PalmApp

Forward Message
to Locator

Wait For
Messages

Insert Neighborhood Name into
Location Field of Form

Send Form to PalmApp

Wait For
Reply

Form File

Request Form
Message

Form Data
Message

Lookup
Table

Figure 3 A State Diagram for The Agents2Go Server
Component

Upon receiving a “form request message”, the Agents2Go Server
reads the requested form from a file. If the desired form cannot be
located, a suitable error form is sent back to the PalmApp. Once
the desired form is located, the Agents2Go Server uses a lookup
table to map the specified cell tower id (obtained from the request
message) to its neighborhood name. This neighborhood name is
inserted into the location field of the form that needs to be
displayed to the user. This neighborhood name, which can be
changed by the user, is inserted into location field of the form
displayed to the user. Thus a user, regardless of his/her current
location, can find information about any participating region. This
is encapsulated in a “response form message” and sent back to the
PalmApp.
When the Agents2Go Server receives a “form data message” from
a PalmApp, it forwards it to the Locator. Other alternative
designs could be used, a “form data message” could be forwarded
to the corresponding Broker. Once the Agents2Go Server receives
a response from either the Locator or a Broker, it generates the

corresponding “response form message” and sends it to back the
PalmApp.

3.3 Locator
The Locator is the component that receives requests from the
Agents2Go Server, determines which Broker is responsible for the
area from which the request originated and then forwards the
request to that Broker. The Locator maintains a table that maps
geographical areas to Brokers. This table is dynamically built and
maintained. The Locator listens on a well defined port for
registration messages from Brokers. This registration consists of a
port on which the Broker will accept requests forwarded by the
Locator, and the geographical area for which this Broker is
responsible. Upon receiving a request form the Agents2Go
Server, the Locator looks inside the request string and extracts the
point of origin information. This information is used to determine
the designated Broker. The Locator then forwards the request to
that Broker. If the Locator is unable to locate a suitable Broker
for the given request, the Locator sends a “broker not found”
message back to the Agents2Go Server. A reliable
communication channel is maintained between the Agents2Go
Server and the Locator for all message transfers.

3.4 Broker
The Broker is the component of the system that maintains
information about restaurants in its designated geographical
region. The Broker processes requests from a user and generates
suitable responses. These requests are forwarded to the Broker
from the Locator and the generated responses are sent to the
Agents2Go Server for forwarding to the requesting PalmApp.

The Agents2Go System partitions participating restaurants into
sets based on the geographical region in which these restaurants
are located. These sets are called coverage regions. Each
coverage region is assigned a unique name and is serviced by a
designated Broker. This Broker is responsible for generation of
replies for requests pertaining to its coverage region. Our current
Broker implementation allows grouping of several geographical
regions or partitioning a single geographical region to construct a
coverage region.

Every Broker in the Agents2Go System is also associated with a
specific Agents2Go Information Repository. An Agents2Go
Information Repository is a set of databases that contain
information about participating restaurants in a Broker’s coverage
region. Restaurant information like name, address, cuisine etc. of
all participating restaurants in that coverage region is distributed
among these databases. This information can be classified as
static, since it rarely changes. The Broker is also responsible for
frequently changing restaurant information like waiting times and
promotions. This kind of information can be classified as
dynamic. Figure 4 Restaurant A, Restaurant B and PDA i are able
to participate in the Agents2Go System. However, PDA ii is not.

This dynamic information is maintained within the Broker itself.
This separation of dynamic and static information reduces the
number of messages that is exchanged between the Agents2Go
System components.

Coverage Region X

Restaurant B

Restaurant A

PDA ii

Wireless Coverage Area

Cell Tower
PDA i Information

Repository

Broker X

Figure 5 Restaurant A, Restaurant B and PDA i are able to
participate in the Agents2Go System. However, PDA ii is not.

It is common for wireless cells to overlap. If a user is in a cell
overlap region, then that user’s PDA connection can hop from one
overlapping cell to another. So, the cell tower id that the user’s
PDA picks up can change quite frequently. If the cell overlap is
contained within a single coverage region, then cell hopping is
not an issue because any cell id that is picked up in that cell
overlap will map to the same coverage region name and is
managed by the same Broker. However, if the cell overlap is on
the border of two or more coverage regions, the user’s PDA may
pick up ids that belong to cell towers that service neighboring
coverage regions. This could create a scenario where a user’s
request query could be routed to a neighboring Broker that has
absolutely no information about the current location of that user.
The Agents2Go System solves this issue by imposing a policy that
prohibits coverage regions from overlapping unless there are
some cell overlaps falling on their borders. Further, the
Agents2Go System requires a special configuration for the
Information Repositories that are associated with these
overlapping coverage regions. The Agents2Go System partitions
restaurants of overlapping regions into two types of disjoint sets:
shared and native type. A Shared set contains restaurants that are
located in the areas of cell overlap (that fall on the borders of
coverage regions). A Native set contains the remaining
restaurants that are in the Broker’s coverage region but not in the
cell overlap. Each set is stored in a separate database.

Coverage Regions A
{Set A & Set A/B}

Coverage Regions B
{Set B & Set A/B}

Cell 2Cell 1

Native set A Native set B

Shared Set A/B

It is also possible that a user, after requesting info, moves to a
different coverage region, while the request is being processed. In
this scenario, the reply to the request contains the information
relevant to the region from where the request originated. This
information could still be of relevance to the user since he/she is
not far form the initial coverage region.

On initialization, a Broker establishes connection with its
Agents2Go Information Repository. The Broker queries its
repository to obtain ids of restaurants for which it will broker
information. If the Broker is unable to establish required
connection(s) with its repository, the initialization fails and the
Broker exits gracefully. Upon successful connection
establishment, the Broker builds a “waiting time” table. The
“waiting time” table is a data structure that the Broker uses to
maintain the dynamically changing restaurant information. The
restaurant ids and the location identifiers for the restaurants are
used as keys of the table. The values of the table are the waiting
time information, promotion information and time stamps of
updates. Once the table is built the Broker registers itself with the
Locator component. The registration contains geographical
regions that this Broker administers and the port on which the
Broker will listen for forwarded requests from the Locator. If the
registration with the Locator fails, the Broker exits gracefully.
Once initialized, the Broker starts to listen for updates sent by the
local Restaurant Agents and requests forwarded by the Locator.
When a Broker receives a wait time update and some promotion
information from a Restaurant Agent, it timestamps it and then
caches this information into the “waiting time” table. When the
Broker receives a request from the Locator, it first checks for the
validity of the request. If the request string does not match the
expected format, further processing of that request is terminated
and an error message is sent back to the user. For valid requests,
corresponding database queries are dynamically generated.
Request parameters are dynamically incorporated into a database
query.

Listen/Receive Queries
from Locator

Broker Initialization

Check Validity
of Request

Search Waiting Time Table for
IDs with suitable waiting time

Format/Send Records
to A2G Server

Incorporate Request
Parameters

into an SQL query

Waiting Time
Limit specified

Incorporate ID
into an SQL query

Send “No Records”
Message to A2G Server

Send message Error
Form to A2G Server

Yes

Yes

No

No

No

Yes

Yes

Database

Records found

No No

Yes

Figure 6 State Diagram for Broker Sub Part

If the request contains a waiting time limit, then the Broker
searches its “waiting time” table for the restaurants that have their
waiting time below the requested time limit. This search returns
ids of the restaurants that have suitable waiting time. Returned
ids are also incorporated into the database search query. Once the
query is constructed, it is executed on the Broker’s Agents2Go
Information Repository. If no records are found, then a ”No
record found” message is returned to the user.

If matching records are found, a timestamp for each result record
is evaluated. This timestamp can belong to one of three age
groups: “fresh” age group, “aged” age group, or “trashed” age
group. A record will be treated differently depending on its age
group, and on whether the user is interested in dynamic
information.
To identify the age group of a timestamp, the difference between
the value of that timestamp and current system time is calculated.
This difference is the age of the timestamp. The timestamp age is
compared against two threshold values. The first, lower,
threshold denotes the limit between the “fresh ”age group and the
“aged” age group. The second, higher, threshold denotes the limit
between the “aged” age group and the “trashed” age group.
Hence, if a timestamp is “fresh”, the record that has been selected
is sent to the user, and the dynamic information is displayed in its
regular format. Else, if a timestamp is “aged”, the record is sent
to the user along with a warning that the record is not up to date.
And finally, if a timestamp is “trashed”, the user request is
analyzed to determine if the user is interested in dynamic
information. If the user’s request specifies a waiting time limit,
the record is dropped from the result set. On the other hand, if
there is no time limit specified, the record is sent to the user, but
the dynamic, outdated portion of that record is replaced with an
“Information is unavailable” message. This classification of the
record’s timestamps gives users some flexibility. Users
themselves can determine if the dynamic information is useful.

Once the response to the query is formed, it is converted into an
appropriate format and sent to the Agents2Go server. So there are
two types of Restaurant Information messages that could be sent
to the Agents2Go Server.

3.5 The Restaurant Agent
The Restaurant Agent is the component of the system that resides
and runs at the location of the participating restaurant. This
component allows a restaurant host to update dynamic
information such as waiting times, promotion information, etc.

Figure 7 Graphical interface for the Restaurant Agent.

Once the updates are made and the “Submit” button pushed, the
update message is sent to the Broker that is responsible for the

geographical area in which the restaurant resides. If the restaurant
is located in a cell overlap region, which is managed by several
Brokers, then the update message is sent to every Broker that
manages the overlap region. The update message contains the
restaurant id, and other relevant information like the value of the
wait time for table for two, the wait time for table for four, the
wait time for table for six, etc. Each update message also contains
a timestamp specifying the creation time. The Broker, upon
receiving an update message, extracts the relevant values from the
message and inserts these values into the appropriate row of its
“waiting time” table.

4. EXPERIMENTAL SETUP
Let’s consider an example illustrating the Agents2Go System at
work. Consider a user A’ currently located in the University of
Maryland Baltimore County (UMBC) campus. User A’ would
like to use the Agents2Go system to find information about a local
French restaurant with a waiting time less than 20 minutes for a
party of four. The UMBC coverage region is comprised of
several geographical regions; Arbutus, Catonsville and Ellicott
City. There are 10 restaurants in this coverage region. There is
also a set of cell towers that provider wireless connectivity for this
region. The Agents2Go Server is configured to map ids of these
cell towers viz. 25, 30, 18, etc., to the UMBC coverage region.
The Locator is configured to route requests originating in the
UMBC coverage region to the UMBC Broker responsible for this
coverage region. The UMBC Broker is configured to manage
dynamic information for the 10 restaurants in its coverage region.
The UMBC Information Repository associated with the UMBC
Broker contains static restaurant information for these 10
restaurants. The Restaurant Agents for these restaurants should
be configured to send updates to this UMBC Broker. Currently,
we employ a simulator to simulate updates from these Restaurant
agents. The Update Simulator generates a set of update messages
containing random waiting times and promotions for these
restaurants.

The user A’ starts up the PalmApp on his/her Palm V connected
to an Omni Sky modem. The user is presented with an initial
splash screen from which the user can navigate to the request
form. The location field of the request form is automatically
filled-in with the name of the coverage region in which user A’ is
currently located (UMBC). User A’ enters a request for an French
restaurant with waiting time limit less than 20 minuets for a party
of four. The user A’ submits the request to the Agents2Go
system. The Agents2Go Server forwards this request to the
Locator, which in turn forwards the request to the Broker in-
charge of the UMBC coverage region (UMBC Broker). The
UMBC Broker generates a response to this request and through
the Agents2Go server, delivers it to the user. In this case, the
Agents2Go System finds a restaurant named "Tersiguel's" that
matches all of the criteria that user A’ specified. The Agents2Go
System sends user A’ the dynamic and static information about
this restaurant. Once the user is done viewing this information,
he/she can use the Home button to navigate back to the request
form screen from which he/she can specify a new request.

We experimented with the Agents2Go System in several
geographical regions in the state of Maryland and the state of
Texas. The sizes of coverage regions that we formed varied from
five to fifteen miles in diameter. From our experiments, we have

determined that cell overlaps range from any where between a
quarter of a mile to a single street block. This allowed us to draw
a conclusion that cell overlaps are not a big design issue. On the
average it took us anywhere from a few seconds to one minute to
get a reply to a request, with the time variance mostly depending
on the quality of the reception in a particular location. This
means that in the absence of pathological conditions (user at a cell
boundary, user moving extremely fast), our response will return
before a user has changed location significantly since issuing the
query.

5. FUTURE WORK AND CONCLUSION
We have implemented a working prototype of the Agents2Go
System. It is a location aware, distributed system that allows
mobile users to request and receive various services information
that is of most relevance to their current geographical location.
Thus, the mobile users will not be burdened with extraneous
information for services in remote locations. Also, the Agents2Go
System allows service providers to supply dynamic service
updates. This dramatically improves the value of the service for
the providers and gives users more refined service information.
Our implementation currently deals with restaurants, but it could
be easily updated to work with other location specific services.
All of the above mentioned features make our system well suited
for various M-Commerce environments.

We are currently working on improving the Agents2Go System.
We are expanding our knowledge base of restaurants located in
the greater Baltimore and Washington region. New cell ids and
coverage regions are being added to the Agents2Go System. We
are also working on developing a more interactive environment
between users and restaurants. In particular, we are starting to
work on implementing auctions between users and services. We
are looking at scenarios where a user is holding an auction for
promotions from restaurants that he/she is interested in visiting.
We are also working on expanding a Broker’s functionality to
include the capability for a Broker, to forward a request that yields
no matches to neighboring Brokers that might be able to provide
the user with a suitable response. Another extension to our work
could be incorporation of disconnected operations. If we could
anticipate the region in which the use will be next we could
preload service information for that region and speed up the
interaction process. Also if user is located in a region with poor
wireless coverage, the information about this region could be
uploaded onto the users PDA whenever there is a good reception.
We are also considering logging service requests. The logs could
be used for statistical analysis, which could be used to recommend
improvements for service providers. We are also looking into
making the Agents2Go System more distributed and fault tolerant.
There is also a plan to improve the interfaces. Since our
underlying communication platform [12] also works with
Bluetooth, we are starting to experiment with discovery based on
enhancing Bluetooth SDP.

6. ACKNOWLEDGMENTS
This work was supported in part by NFS awards IIS 9875433 and
CCR 0070802.

7. REFERENCES
[1] A. Joshi, S. Weerawarana, and E.N Houstis, “On

Disconnected Browsing of Distributed Information”, in Proc.
IEEE Research Issues in Data Engineering (RIDE '97), pp
101-107, 1997.

[2] Mark Taylor, William Waung, Mohsen Banan, “Internetwork
Mobility: The CDPD Approach”, Prentice Hall Professional
Technical Reference, September 1996.

[3] The Lightweight Extensible Agent Platform
http://leap.crm-paris.com

[4] The Wireless Application Protocol (WAP)
http://www.wapforum.org/

[5] S. Muthukrishnan, Rittwik Jana, Theodore Johnson, Andrea
Vitaletti, “Location Based Services in a Wireless WAN using
Cellular Digital Packet Data (CDPD)”, to appear in Proc.
2nd ACM International Workshop on Data Engineering for
Wireless and Mobile Access (MobiDE01).

[6] The YellowStone Project
http://www.agentbuilder.com/Documentation/Yellowstone/

[7] digitalcity.com
http://www.digitalcity.com

[8] Yahoo! Get Local
http://local.yahoo.com

[9] citysearch.com
http://www.citysearch.com

[10] BeyondGuide
http://www.beyondguide.com

[11] myAladdin.com
http://www.myaladdin.com/www/index.jsp

[12] L. Kagal, V. Korolev, H. Chen, A. Joshi, T. Finin.
“Centaurus: A Framework for Intelligent Services in a
Mobile Environment”, in Proc. IEEE The 21st International
Conference on Distributed Computing Systems (ICDCS-21),
pp 195-201, 2001.

[13] Infrared Data Association
http://www.irda.org

[14] The Official Bluetooth Website
http://www.bluetooth.com

[15] Foundation for Intelligent Physical Agents
http://www.fipa.org/

