
Dynamic Voltage Scaling on a Low-Power Microprocessor

Johan Pouwelse
�

Koen Langendoen Henk Sips
Delft University of Technology, The Netherlands

{pouwelse,koen,sips}@ubicom.tudelft.nl

Abstract

Power consumption is the limiting factor for the func-
tionality of future wearable devices. Since interactive ap-
plications like wireless information access generate bursts
of activities, it is important to match the performance of the
wearable device accordingly. This paper describes a sys-
tem with a microprocessor whose speed can be varied (fre-
quency scaling) as well as its input voltage. Voltage scaling
is important for reducing power consumption to very low
values when operating at low speeds. Measurements show
that the energy per instruction at minimal speed (59 MHz)
is 1/5 of the energy required at full speed (251 MHz). The
frequency and voltage can be scaled dynamically from user
space in only 140 � s. This allows power-aware applica-
tions to quickly adjust the performance level of the proces-
sor whenever the workload changes.

1 Introduction

Today’s bulky portable computers will be replaced by
small wearable devices in the near future. Wearable devices
introduce several challenges that are significantly different
from the traditional computing model. From our point of
view wearable devices need advanced functionality, low
weight, long battery life, and also wireless Internet connec-
tivity. Currently, devices that are sufficiently low weight to
be wearable and have a long battery life only offer limited
services such as paging and cellular telephony. The goal for
the next-generation of wearable devices is to extend the ser-
vices beyond mere voice, address book, e-mail, and limited
computation [9]. The Ubiquitous Communications (Ubi-
Com) project at the Delft University of Technology aims
at a wearable device equipped with a long-range 10 Mbps
wireless link and an augmented-reality display [24]. The
applications within UbiCom are based on wireless access to
text, audio, video, and 3D graphics.

�
Supported by the Dutch organization for Applied Scientific Research

(TNO), Physics and Electronics Laboratory.

Power consumption is becoming the limiting factor for
the functionality of wearable devices, because advances in
battery technology are progressing slowly whereas compu-
tation and communication demands are increasing rapidly.
It is important to utilize the available energy as efficient
as possible. Energy preservation, or energy management,
is further translated into a low power consumption of all
parts of a wearable device. The initial response to the low-
power demand was to lower the supply voltage. For ex-
ample, reducing the supply voltage from standard 5.0 V
to 3.3 V reduces power by 56%. Sophisticated electronic
design tools can now deliver optimizations for low power
consumption on the transistor level, logical level, or regis-
ter transfer level [10].

Lowering the supply voltage requires all components to
operate at low voltage. Additional reductions can be ob-
tained by selectively lowering the input voltage of specific
parts. An obvious candidate is the processor since it is re-
sponsible for 10 to 30% of the power consumption [11]. In
1995 Intel introduced the first x86 processor that operated
at a lower voltage (2.9 V) than the PC motherboard (3.3 V).

The dynamic approach to low-power is using power
down features to minimize the power consumption of un-
used hardware. For portable computers this means turn-
ing off the hard disk, processor, screen, modem, sound,
etc. Re-activation of hardware can take some time, which
affects performance (e.g., response times). Using simple
power-down-when-idle techniques the processor’s power
consumption can be significantly reduced. Depending on
the usage pattern, the power savings can amount to a 66%
reduction [12]. A refinement is to make continuous trade-
offs between performance and cost. The user demand (per-
formance) must be supplied at the lowest cost (power con-
sumption). Performance can be expressed as the response
time for interactive applications, and as spatial/temporal
resolution, color depth, and distortion level for video.

The Ubicom system is designed to support balancing
continuously power consumption for its wearable compo-
nents: wireless link (data rate), processor (instruction rate),
and rendering (frame rate). In the case of the processor we
will apply voltage scaling to trade-off power consumption

1

and performance. Experiments show that in our case it is
possible to lower the processor’s input voltage from 1.5 V
to as low as 0.8 V, dramatically reducing power consump-
tion. This power reduction comes at the price of reduced
performance, because proper operation is only guaranteed
at a reduced clock frequency. We anticipate a considerable
reduction in power consumption since typical Ubicom ap-
plications cause a fluctuating processor demand; wearable
devices are used interactively by a single user and activi-
ties like word processing, reading e-mail, and web browsing
generate bursts of processing.

This paper investigates the trade-off between power con-
sumption and performance of processors supporting voltage
scaling in detail. Unlike previous studies in voltage scaling
that rely on simulations we have realized an actual imple-
mentation being part of a wearable computer. This allows
us to present raw measurements of the performance/power
trade-off in voltage scaling. From these numbers we are
able to derive the potential gain in a system where applica-
tions assist the operating system in adjusting the voltage by
specifying their (bursty) requirements.

2 Voltage scaling

This section introduces the basic principles behind
power consumption and the effects of voltage scaling. For
digital CMOS circuits the power consumption can be mod-
eled accurately with simple equations [1, 7]. Digital CMOS
circuits are used in the majority of microprocessors. CMOS
circuits have both dynamic and static power consumption.
Static power consumption is caused by bias and leakage
currents and is insignificant in most designs that consume
more than 1 mW.

The dominant power consumption for CMOS micropro-
cessors is the dynamic component. Every transition of a
digital circuit consumes power, because every charge or dis-
charge of the digital circuit’s capacitance drains power. The
dynamic power consumption is equal to

���������
	���
�� ��
�
����� ��������� �"!#$# (1)

where % is the number of gates in the circuit, � � the load
capacitance of gate & � , ��� the switching frequency of & � ,
and ��#$# the supply voltage. It is clear from Equation (1)
that reduction of ��#$# is the most effective mean to lower
the power consumption. Lowering �'#$# , however, creates
the problem of increased circuit delay. An estimation of
circuit delay is given by

(*) �+#$#, �+-/.0�+132 ! (2)

where (is the propagation delay of the CMOS transistor,� 1 the threshold voltage, and � - the input gate voltage [1].
The propagation delay restricts the clock frequency in a mi-
croprocessor. From Equations (1) and (2) we can see that
there is a fundamental trade-off between switching speed
and supply voltage. Processors can operate at a lower sup-
ply voltage, but only if the clock frequency is reduced to
tolerate the increased propagation delay. When we assume
the dynamic power is the most dominant one, and the gates& � of the microprocessor form a collective switching capac-
itance � with a common switching frequency � , we obtain

�4�
� ���5��� !#$# (3)

Equation (3) shows that clock frequency reduction linearly
decreases power and voltage reduction results in a quadratic
power reduction. The critical path of a processor is the
longest path a signal can travel. The implicit constraint is
that the propagation delay of the critical path (must be
smaller than

�6 . In fact, the processor ceases to function
when ��#$# is lowered and the propagation delay becomes
too large to satisfy internal timings at frequency � .

2.1 Power versus performance

To put the above formulas in perspective Table 1 gives
the relation between frequency, voltage and power con-
sumption for the recently announced Transmeta TM5400
or ’Crusoe’ processor [16]. Crusoe is one of the few pro-
cessors today that actually support voltage scaling. It is in-
teresting that its specifications give insight in the practical
constraints (e.g., propagation delays) that relate frequency
and voltage. At the lowest frequency (200 MHz) the Crusoe
processor operates at 29% of the maximum speed for less
than 13% of the maximum power. Without voltage scaling
the power would be reduced to only 29%. Therefore, volt-
age scaling effectively more than halves (13/29) the energy
per processor instruction. This result looks better than it
actually is, however, since performance of a (wearable) sys-
tem is not determined by the processor clock speed alone.

First, the processor is only a part of the total system.
Consequently, the benefits of voltage scaling are to be
weighted against the power consumed by the remainder of
the system. This issue will be addressed in Section 4.2.
Second, application performance is a combination of pro-
cessor speed and memory access latency. The performance
of the memory subsystem is not linearly related to clock fre-
quency, so application performance does not scale linearly
too. Third, certain applications like video players have real-
time deadlines to meet. This limits the possibilities to apply
voltage scaling by reducing the clock frequency, because
the time needed to complete a task increases proportionally.
A simple heuristic suggested by Weiser et al. [2] is to dis-
tinguish foreground tasks, background tasks, and periodic

2

Frequency � Voltage �'#$# Relative power
(MHz) (V) (%)

700 1.65 100
600 1.60 80.59
500 1.50 59.03
400 1.40 41.14
300 1.25 24.60
200 1.10 12.70

Table 1. Clock frequency versus supply volt-
age for the Transmeta Crusoe processor.

tasks, and to only apply voltage scaling when all foreground
tasks are blocked by I/O or run idle.

In a wearable system power consumption is the obvious
cost measure since only a small amount of energy can be
carried in batteries. This suggests that reducing power con-
sumption, even for small periods of time, is always a good
thing. Unfortunately, batteries do not operate efficiently
when the power demand has high peaks. These peak occur
when for example the processor is frequently switched on
and off to ’reduce’ power consumption. An equal demand
that is evenly spread out in time can increase battery life by
about 25% according to [23]. Therefore, in some cases it
may be more efficient to slow down the clock, instead of
switching to sleep mode when idle. Consequently, the pop-
ular believe that “slowing the clock is useless if voltage is
kept constant” [13] no longer holds.

3 Implementation

Voltage scaling has been primarily studied through sim-
ulation, see the related work discussed in Section 6. The
simulation results are promising, so time has come to vali-
date the technique. Within UbiCom we assembled a wear-
able computer that supports voltage scaling to do just that,
but also to experiment with application-directed voltage-
scaling policies (Section 5) and to make voltage scaling
ready for wide spread use. Therefore, we needed a proces-
sor capable of voltage scaling, but very few actually exist;
the ARM8 implementation by Berkeley [6] is not readily
available, and the Crusoe processor [16] has only been in-
troduced very recently. This is remarkable since Weiser et
al. already in 1994 showed the potentials of voltage scaling
for general purpose processors [2]. We selected the em-
bedded StrongARM 1100 processor [17] that does support
frequency scaling, but only operates at 1.5 V according to
the datasheet. Operating outside the specifications is a risk,
but experiments show that a range from 0.8 V to 2.0 V is
feasible.

Figure 1. Low-power StrongARM embedded
Linux platform (LART).

3.1 Experimental platform

The embedded StrongARM processor board displayed in
Figure 1 forms the heart of the wearable augmented-reality
terminal that we are developing within UbiCom [20]. The
board, which we call LART, has a size of 10x7.5 cm, a
weight of 50 gr, 32 MB of volatile memory, 4 MB of non-
volatile memory, a SA-1100 190 MHz processor, and vari-
ous I/O capabilities. The LART has a programmable volt-
age regulator for the processor voltage.

The LART runs under control of the Linux operating sys-
tem (Version 2.2.12), which has been modified to support
frequency and voltage scaling. We added a kernel mod-
ule that changes the clock frequency and subsequently re-
calibrates the kernel’s internal delay routines, in particular
those that busy-wait by counting instruction cycles. In ad-
dition, the kernel module adjusts the memory parameters
that control the read/write cycles on the external bus. The
code has been structured such that may be interrupted and it
does not depend on external memory, which is temporarily
unavailable during a clock frequency change.

All the LART design schematics and kernel modules are
openly available [21].

3.2 Measurement setup

To measure the power consumption of the LART, we
used the configuration shown in Figure 2. The unregulated
power of a battery is converted into a fixed 3.3 V for all the
components on the board, except the processor. The proces-
sor voltage is supplied by a variable regulator. The accuracy
of the measurements is within 2%.

3

LART

V

A

Avoltage regulator
3.3 V

0.6 - 2.3 V
voltage regulator

V

other

SA1100
processor

DRAM
FLASH

A

V

+

power supply
unregulated

-

Figure 2. Measurement setup.

4 Results

This section describes the effects of frequency and volt-
age scaling on the power consumption, processor perfor-
mance, and memory performance of the LART. We ran sev-
eral micro benchmarks (dhrystone, lmbench) as well as a
full-blown H.263 decoder. During each run the clock fre-
quency and voltage were kept constant; dynamic voltage
scaling is discussed in Section 5.

4.1 Required voltage

The first experiments determine for each clock frequency
the minimum required voltage at which the SA-1100 pro-
cessor still functions proper. We used the H.263 decoder to
check if the processor functions at a given frequency and
voltage combination. The resulting processor envelope is
shown in Figure 3. Although the SA-1100 is specified for
190 MHz and a � #$# of 1.5 V, it can be over-clock up to a
frequency of 251 MHz with a � #$# of 1.65 V. The minimum
clock frequency at which the processor functions correctly
is 59 MHz with a �'#$# of 0.79 V. Voltage scaling really
pays off: at the lowest clock frequency the processor con-
sumes 1/5 of the energy per instruction that is required at
peak performance. Note that the voltage range and, hence,
the efficiency gain of the SA-1100 is much larger than that
of the Crusoe processor (see Table 1).

4.2 System performance

The next experiment determines the impact of voltage
scaling on the power consumption of the complete LART
(processor, memory, etc). Figure 4 shows the total power
consumption of the LART under two different workloads:
idle and cpu-intensive.

The idle workload was used to measure the background
power consumption of the LART, which is always spent re-
gardless of the processor load. The Linux scheduler puts
the processor into idle mode when no processes are active.
Idle mode stalls the CPU clock, but other services of the
embedded processor such as the memory controller and OS-
timer are still functional [17]. All these services are driven

0

0.5

1

1.5

2

2.5

 74 103 133 162 192 221 251

Pr
oc

es
so

r
vo

lta
ge

 in
 V

CPU Clock Frequency in MHz

Specified operation area

Not functional

Destructive

Figure 3. Processor envelope.

0

200

400

600

800

1000

 74 103 133 162 192 221 251

P
ow

er
 C

on
su

m
pt

io
n

in
 m

W

CPU Clock Frequency in MHz

CPU intensive,
fixed voltage

CPU intensive,
voltage scaling

Non-CPU power

Idle mode

Figure 4. Total power consumption for idle
and cpu-intensive workloads.

by the processor clock, which explains why the power con-
sumption in idle mode increases with the frequency. The
SA-1100 also supports a more efficient sleep mode, but this
mode interrupts DMA transfers, stops the LCD controller,
blocks memory access, etc. and the wake-up sequence takes
longer than in idle mode.

The cpu-intensive workload consists of the dhrystone
benchmark exercising the CPU and cache that operate on
the variable core voltage. We first measured the effect of
scaling the clock frequency while keeping the voltage con-
stant at 1.5 V. In this case the power consumption increases
roughly linear with the frequency, as is expected. Next, we
measured the power consumption if the core voltage was
set to the minimal value reported in Figure 3. The resulting
curve shows the expected quadratic increase of power con-
sumption when the frequency is varied from 59 to 251 MHz.

From the power consumption at 59 MHz (105.8 mW)
and at 251 MHz (963.7 mW) it follows that an instruction
at peak performance consumes a factor 2.1 more power than
at lowest performance. When we only look at the processor

4

0

100

200

300

400

500

600

700

 74 103 133 162 192 221 251

P
ow

er
 C

on
su

m
pt

io
n

in
 m

W

CPU Clock Frequency in MHz

CPU power

Memory intensive

Figure 5. Power consumption for read.

0

20

40

60

80

100

 44 74 103 133 162 192 221 251

M
em

or
y

B
an

dw
id

th
 in

 M
B

ps

CPU Clock Frequency in MHz

Figure 6. Memory bandwidth for read.

power consumption, instead of the total LART, the differ-
ence is a factor 4.94 (33.1 versus 696.7 mW). This obser-
vation only holds for cpu-intensive applications; memory
references introduce other effects as discussed next.

4.3 Memory performance

The impact of memory references on power consump-
tion is difficult to predict since memory always operates at
3.3 V, while the processor core operates at a variable volt-
age. The LART has 32 MB of EDO-DRAM with an access
time of 60 ns. We used the “lmbench” toolkit [19] to mea-
sure the power consumption while reading randomly from
memory, circumventing the cache. The power consumption
numbers in Figure 5 include voltage scaling, as is the case
in all following figures. Note the general trend of a linear
increase in power consumption, but with break downs oc-
curring at 162 MHz and 236 MHz.

These break downs are not caused by the processor; the
lower curve in Figure 5 plots the power consumption of the

0

1

2

3

4

5

6

7

 44 74 103 133 162 192 221 251

M
em

or
y

B
an

dw
id

th
 P

ow
er

 C
os

t i
n

m
J/

M
B

CPU Clock Frequency in MHz

Total cost

Memory only

CPU only

CPU+memory

Figure 7. Energy breakdown for memory read.

processor core only. Figure 6 shows that the obtained band-
width at each frequency has similar dips. The explanation
of this phenomenon is the limited capability of the Stron-
gARM to generate high resolution DRAM timing wave-
forms. Moreover the DRAM waveform generator is driven
by the system clock. The memory timing waveforms must
be programmed by specifying a bit sequence that is used at
subsequent clock pulses. Since the length of a clock pulse is
not too fine compared to the (constant) DRAM timings, an
optimal waveform can not be generated at each frequency.

It is instructive to combine the bandwidth and power
consumption curves to show the relative cost at each fre-
quency. Figure 7 gives the energy required to read one
megabyte from memory. The “memory only” curve rep-
resents the energy drawn from the fixed 3.3 V, and shows
that reading memory becomes relatively cheaper when the
frequency increases. The “total” curve is the energy drawn
from the batteries and includes both the memory, CPU ac-
tivities, and voltage regulators. Initially the total energy
drops, just as the “memory only” curve, but at higher fre-
quencies the power consumed by the CPU increases con-
siderably and forces the total energy to rise again. The dif-
ference between the “memory+cpu” curve and the “total”
curve is the constant loss factor of the two voltage reg-
ulators. The best result is obtained at 148 MHz, where
the bandwidth is 92 MB/s and the power consumption is
514.2 mW, with a cost of 5.6 mJ/MB.

4.4 Application performance

The power consumption of applications depends on the
ratio between instructions and memory references. Figure 8
shows the power consumed by a publicly available Telenor
H.263 video decoder in relation to the clock frequency. It
also gives a breakdown in processor and memory power-
consumption. At low frequencies the decoder is memory
bound; at high frequencies the processor dominates.

5

0

200

400

600

800

1000

1200

 74 103 133 162 192 221 251

P
ow

er
 C

on
su

m
pt

io
n

in
 m

W

CPU Clock Frequency in MHz

Total power

CPU power

Non-CPU power

Figure 8. Power breakdown for H.263 decoder.

5 Dynamic voltage scaling

The results from the previous section were obtained un-
der static conditions. In a real system, however, the fre-
quency and voltage have to be set dynamically to match the
changing demands for processing power. This is the respon-
sibility of the Operating System (OS). The difficulty is that
the OS has no direct knowledge about the workload gener-
ated by (bursty) applications, and must derive the optimal
settings from external observations, for example, by mon-
itoring the system load and estimating the future demand.
This is a non-trivial task; for the Mac OS it is already hard
to determine when no useful computation is occurring [12].

Predicting the future workload from the current situa-
tion is difficult, and errors can seriously reduce the gains
of voltage-scaling as observed in several simulation stud-
ies [2, 3, 4, 5]. These simulations use an interval-based
scheduler with a time window of 5 to 100 ms. When idle
time is detected within a window the clock speed is reduced
proportionally in the next window. This reduces the idle-
time to zero by running the applications as slow as possible.
Whenever some tasks do not meet a deadline, the speed is
increased to accommodate for the unfinished work in the
next window. With this scheduling policy the speed always
lags behind the demand. This is no problem for fairly con-
stant workloads, but poor schedules result for bursty appli-
cations. For example, simulations with an MPEG decoder
show that an additional 36 % energy reduction remains pos-
sible with a better workload prediction [5].

5.1 Power-aware applications

To overcome the above problems we propose that ap-
plications provide additional information about their fu-
ture demands to the OS, so it does not need to work with

questionable predictions. The drawback of this approach
is that it requires modifications of the application source.
This is, however, only required for bursty applications and,
more importantly, applications running on a resource-scarce
wearable device must be modified anyway. It is gener-
ally accepted that limitations imposed by low weight, small
size, extensive battery life, wearable user interfaces, and
wireless connectivity all have a profound effect on applica-
tions [9]. Without extensive adaptation of the applications
to the wearable environment, no valuable service can be
given, therefore modification of applications is inevitable.

Applications must be made aware of their processing de-
mands and inform the OS about it, so the optimal processor
speed can be selected that minimizes power consumption
and still meets the application’s deadlines. As a first step
the application could indicate the required number of clock
cycles (instructions) to the next deadline (absolute time).
Combining the cycle count with the power-consumption
curve in Figure 4 allows the OS to compute the lowest speed
at which this application could meet its deadline. When
multiple applications are time sharing the processor, the OS
should take all constraints (deadlines) into account. A re-
finement is to have the applications express their demands
in both instructions and memory references, which would
yield better power consumption approximations.

Many real-time applications are periodic. In that case the
applications can do better than informing the OS about the
next deadline, by giving the time between successive tasks
and their length. This is in line with the Quality of Ser-
vice specifications used to state the required service from a
network connection like ATM. QoS specifications do well
in stable environments, but applications running on wear-
able devices will adapt to external conditions and change
their behavior, hence, their processing demands will fluctu-
ate. Nevertheless, applications should be able to estimate
the workload in the near future.

As an example consider the MPEG decoder studied
in [5]. The decoding time of the video frames varies be-
tween 8 and 116 ms. Fortunately, it is quite easy to esti-
mate the processing requirements of a specific frame using
a model like the one described in [15]. This allows for a
setup where the MPEG decoder informs the OS about the
requirements of each frame, and the OS sets the processor
speed accordingly.

5.2 System support

How much additional energy can be saved by making
applications power aware depends, amongst others, on the
ability of the system to quickly follow the changes in de-
mand. To assess the responsiveness of the LART we added
voltage scaling to the kernel module already providing fre-
quency scaling. Whenever the frequency is changed, the

6

Figure 9. Scope image of voltage scaling.

module now also sets the input voltage to the minimum level
reported in Figure 3. The required frequency is read from
/dev/proc, which is writable from user space. The kernel
module was also modified to generate a pulse on an output
pin just before changing the frequency and voltage, and an-
other pulse on another output pin just after these changes.

We used a digital oscilloscope to measure the time re-
quired to change to a new frequency/voltage. The two upper
lines on the scope image in Figure 9 show the pulses mark-
ing the beginning and the end of a clock/voltage change.
The time difference is 140 � s. This time is insensitive to
the frequency, and is needed to stabilize the internal clock
at the new frequency.

The bottom line on the scope (labeled 3) shows how
the processor-core voltage regulator responds to a sharp
increase, followed by a similar decrease in clock speed.
The benchmark starts with 59 MHz at 0.8 V, then jumps
to 221 MHZ at 1.5 V, stays at this level for about 1 ms,
and finally returns back to 59 MHz at 0.8 V. The required
processor-voltage increase is rapidly handled (40 � s), but
the decrease takes a long time (5.5 ms). This is caused by
the high capacitance of the regulator and the low power de-
mand of the processor at 59 MHz. The long delay, however,
does not consume much power since the current drawn from
the voltage regulator is so little.

Since a frequency/voltage change takes little time
(140 � s) power-aware applications can change performance
levels quite frequently without incurring a large overhead.
For example, an MPEG player displaying a video with 30
frames per second will not notice the overhead when set-
ting the processor speed at each frame (i.e., once every
33 ms); the overhead is well below 1%. The limited num-
ber of frequencies supported by the SA-1100, however, may
cause some excess power consumption if the required per-
formance lies within two frequencies.

6 Related work

Low-power is an important issue in traditional laptops
and, consequently, is mentioned in industry standards like
the Advanced Configuration and Power Interface (ACPI)
standard [22]. ACPI, however, does not mention frequency
or voltage scaling as such, but uses the term “clock throt-
tling”. The extensive standard is vague about the exact
meaning, but a compliant implementation could use voltage
scaling. For now, laptops simply switch off hardware.

The opportunities of varying CPU speed (frequency) and
voltage scaling for reducing power consumption in general
purpose processors have mainly been explored by theoreti-
cal analysis [1] and simulation [2, 3, 4, 5]. Practical expe-
rience, as can be obtained with our LART, is needed to val-
idate their results. For example, the experimental research
by Martin showed that a basic assumption underlying many
simulation studies is wrong: reducing power consumption
is not always the best strategy when taking battery effective-
ness into account [23]. We are not aware of any practical
implementation of voltage scaling including operating sys-
tem support, except maybe the recently announced Crusoe
processor [16]. An interesting approach to dynamic volt-
age scaling is discussed in [8], where the voltage is auto-
matically adapted when the processor speed is changed. At
the Compaq laboratories the Itsy system is under develop-
ment [18]. It is quite similar to our LART, but the use of
linear voltage regulators inside the Itsy will seriously limit
the power savings that can be obtained.

The effectiveness of dynamic voltage scaling critically
depends on the operating system being able to determine
the optimal processor speed. Predicting the future demands
from the current load is not effective for bursty applications
as demonstrated by the simulations mentioned above. We
require applications to be power aware; using applications
hints is also suggested, but not explored in [5]. Noble et
al [14] suggest to extend the notion of Quality of Service
from the traditional communication networks to processor
scheduling: applications performance is to be measured in
SPECint95 units and the cost in battery minutes.

7 Conclusions and future work

Power consumption is the limiting factor for the func-
tionality of future wearable devices. Since interactive ap-
plications like wireless information access generate bursts
of activities, it is important to match the performance of
the wearable device accordingly. A popular approach is us-
ing power-down modes to minimize the power consumption
of unused hardware like disks, screen, etc. In the case of
the processor, better results can be obtained by scaling the
speed and voltage to match the required performance level,
since power consumption is quadratically related to the in-

7

put voltage. Simulations have pointed out the potentials of
voltage scaling.

Within the UbiCom project we have assembled a wear-
able system that supports dynamic voltage scaling. It is
based upon the low-power embedded SA-1100 processor,
whose frequency can be varied from 59 MHz to 251 MHz.
The required input voltage varies from 0.8 V to 2.0 V. Mea-
surements show that the power consumption of the proces-
sor at 59 MHz is 33.1 mW, while it consumes 696.7 mW at
251 MHz. It follows that the energy per instruction at min-
imal speed is 1/5 of the energy required at full speed. This
result confirms the importance of voltage scaling.

We have added kernel support to Linux that allows run-
ning applications to scale the frequency and voltage from
user space in only 140 � s. This allows power-aware ap-
plications to quickly adjust the performance level of the
processor whenever the workload changes. For example, a
bursty application like an MPEG decoder can use a model to
estimate the processing requirements for each frame. Cal-
culations indicate that with the small delay (140 � s) to set
the performance level, the overhead can be less than 1%.

Our future plans are to specify a processor-independent
dynamic voltage-scaling framework as an enhancement of
the ACPI standard, so that the voltage scaling technique
can become available to a broad audience. Within Ubi-
Com we are developing a QoS framework such that the
processor can export its performance/power-consumption
trade-off to higher layers. When other components, such as
the radio transceiver, also export their performance/power-
consumption trade-offs, intelligent decisions can be made at
the application level. For example, an audio-streaming ap-
plication can choose between little compression (low pro-
cessor load) and a large data stream over the radio, and the
alternative scenario of heavy compression and low bit rate.
Which is best depends on the current external circumstances
that influence the radio.

Acknowledgements

We would like to thank Jan-Derk Bakker and Erik Mouw
for providing us with an excellent low-power platform, and
assisting us with the measurements and their interpretation.
We thank Hylke van Dijk for commenting on the draft ver-
sion of this paper.

References

[1] T. Ishihara, H Yasuura, “Voltage scheduling problem for dy-
namically variable voltage processors”, ISLPED, Aug. 1998.

[2] M. Weiser, B. Welch, A. Demers, S. Shenker, “Scheduling
for reduced CPU energy”, OSDI, Nov. 1994.

[3] K. Govil, E. Chan, H. Wasserman, “Comparing algorithms

for dynamic speed-setting of a low-power CPU”, Mobicom,
Nov. 1995.

[4] Y. Lee, C.M. Krishna, “Voltage-clock scaling for low energy
consumption in real-time embedded systems”, 6th Int. Conf.
on Real-Time Computing Systems and Applications, 1998.

[5] T. Pering, T. Burd, R. Brodersen, “The simulation and evalu-
ation of dynamic voltage scaling algorithms”, ISLPED, Aug.
1998.

[6] T. Pering, T. Burd, R. Brodersen, “Dynamic voltage scal-
ing and the design of a low-power microprocessor system”,
ISCA, 1998.

[7] T. Burd, R. Brodersen, "Processor design for portable sys-
tems" Journal of VLSI Signal Processing, Aug/Sept 1996.

[8] T. Kuroda, et.al., “Variable supply-voltage scheme for low-
power high-speed CMOS digital design”, IEEE Journal of
Solid-State Circuits, Vol. 33, No. 3, March 1998.

[9] O. Angin, A.T. Campbell, M.E. Kounavis, R.R.F. Liao, “The
MobiWare Toolkit: Programmable Support for Adaptive
Mobile Networking”, IEEE Personal Communications Mag-
azine, Aug. 1998.

[10] J. Frenkil, “Tools and Methodologies for Low Power De-
sign”, Proc. Design Automation Conference, 1997

[11] J. Lorch, “A complete picture of the energy consumption of a
portable computer”, Masters Thesis, University of California
at Berkeley, Dec. 1995.

[12] J.R. Lorch, A.J. Smith, “Scheduling techniques for reducing
processor energy use in MacOS”, Wireless Networks, No. 3,
1997.

[13] J.R. Lorch, A.J. Smith, “Software strategies for portable
computer energy management”, IEEE Personal Communi-
cations, Jun 1998.

[14] B.D. Noble, et.al., “Agile application-aware adaptation for
mobility”, 16th ACM Symposium on OS principles, Saint-
Malo, France, Oct. 1997.

[15] D. Raychaudhuri, D. Reininger, M. Ott, “Multimedia pro-
cessing and transport for the wireless personal terminal sce-
nario”, VCIP 95, SPIE Int. Society for Optical Engineering,
Taipei, Taiwan, May. 1995

[16] Transmeta corporation, “TM5400 processor specifications”,
Jan. 2000.

[17] Intel, “Intel strongarm 1100 microprocessor developers man-
ual”, Aug 1999.

[18] Compaq research, “Itsy V2 overview slides”, Jan 2000.
[19] L. McVoy, “Lmbench: portable tools for performance analy-

sis”, USENIX, Jan. 1996.
[20] J.A. Pouwelse, K. Langendoen, H.J. Sips, “A feasible low-

power augmented-reality terminal”, 2nd International Work-
shop on Augmented Reality, Oct. 1999.

[21] J.D. Bakker, J.A.K. Mouw, “Linux Embedded Radio Termi-
nal design page”, http://www.lart.tudelft.nl/.

[22] Intel, microsoft, Toshiba, “Advanced Configuration and
Power Interface Specifications”, revision 1.0b, Feb. 1999.

[23] T. Martin, “Balancing batteries, power, and performance:
system issues in CPU speed-setting for mobile computing”,
PhD. dissertation, Carnegie Mellon University, Aug. 1999.

[24] R.L. Lagendijk, “UbiCom Technical Annex”, Delft Univer-
sity of Technology, Jan. 2000, http://www.ubicom.tudelft.nl.

8

