
A Discussion on Non-Blocking/Lockup-Free Caches

Samson Belayneh and David R. Kaefi
Northeastern University

Department of Electrical and Computer Engineering
Boston, MA 02115

Abstract

Cache memories are commonly used to bridge
the gap between processor and memory speed.
Caches provide fas t access to a subset o f
memory. When a memory request does not f i nd
an address in the cache, a cache miss is
incurred. In most commercial processors
today, whenever a data cache read miss
occurs, the processor will stall until the
outstanding miss is serviced. This can severely
degrade the overall system performance.

of cache misses. Then the only time the
processor would have to stall on a data cache
read is when the operand that is being read is
needed in a subsequent instruction or when the
miss bypassing hardware is not able to handle
any more mi.~ses (a lock'up free cache generally
has a finite number of misses that can be
handled). As long as the processor does not
encounter data dependencies, and as long as
there is sufficient hardware to handle the
maximum number of concurrent misses
outstanding, the processor should not have to
stall during memory loads.

To remedy this situation, non-blocking (lockup-
f lee) caches can be employed. A non-blocking
cache allows the processor to continue to
perform useful work even in the presence o f
cache misses.

This paper summarizes past work on lockup
free caches, describing the four main design
choices that have been proposed. A summary
o f the performance o f these past studies is
presented, fo l lowed by a discussion on
potential speedup that the processor could
obtain when using lockup free caches.

1. Introduction

As the gap between processor and memory
speeds continues to grow, new techniques are
needed to limit the cost of cache misses. One
technique that has recently been discussed in
the context of sealable shared memory
multiprocessors is using a lock'up free cache.
The concept behind this type of cache is to be
able to process cache accesses in the presence

In this paper we will focus on lock'up free data
caches. Most past discussions on lockup free
caches have been targeted to data caches, and
specifically to handling read misses. It is not
clear how a lockup free cache could benefit the
instruction stream.

In section 2, we will provide some background
on loekup-free caches. In section 3, we will
describe four loekup-Lree cache organizations.
In socfion 4, we discuss the performance
advantages of using a lockup-free cache, and in
section 5, we summarize our discussion on non-
blocking caches.

2. Background

The first work known to the authors on lockup
free caches was presented by Kroft [1], where
he described special registers called Miss
Status/Information Holding Registers
(MSHR's) which hold information about
outstanding misses. These special registers,
along with the necessary control logic, contain

- - 1 8 - -

http://crossmark.crossref.org/dialog/?doi=10.1145%2F381718.381727&domain=pdf&date_stamp=1996-06-01

Lockup Cache

Hit

~upply Registers~

l
Start

1
C °,°'°° I ~~~

I Stall CPU)

Non-lockup Cache

Hit

,l

Start

Start

1
Data Fetch

$ t"

Update Cache

No

Search
MSHR

Record Info

Initiate Fotch

To Re~isters

Figure 1. Flow Diagrams of a Lockup and Non-lockup Cache - Processor Organization.

19

enough information to enable the processor to
overlap the processing of a cache read miss
with the processing of subsequent instructions.
Figure 1 provides flowcharts that attempt to
illustrat~ some of the fundamental differences
between a non-lock-up free cache and a lockup
free cache. Kroft showed that the number of
useful MSHR' s decreases dramatically with an
increasing number of MSHR's (see Figure 2
below). This is because the amount of
concurrent computation that can be performed,
before encountering an instruction which is
dependent on the data for which a miss is being
serviced, is limited. We discuss this point
further in section 4.

the processor can track the outstanding memory
references that need to bc satisfied.

While non-blocking caches can be used for
uniprocessor caches, their real benefit can be
reaped for shared-memory multiprocessor
machines [3]. Non-blocking caches are
especially useful for multiprocessors since,
generally, the latency on a miss is larger in
multiprocessor systems. However, the memory
and interconnect systems can often support
multiple outstanding accesses. This should help
alleviate some of the higher bandwidth
requirements needed for a non-blocking cache
design.

Avg. Delay Time/Reqtw.st

l 2 4 8

No. of M S H R

Figure 2. Performance vs. Number of MSHR.

3. O r g a n i z a t i o n o f N o n - B l o c k i n g C a c h e s

There arc several schemes that can be used to
organize a non-blocking cache. Farkas and
Jouppi [4] describe four organizations that have
different cost/performance ratios.

In the simplest organization, an MSHR entry is
used to hold such information as the block valid
bit, block request address, word valid bit, word
destination field and the format field (see
Figure 3). Each MSHR has its own comparator
so that all MSHR entries can be searched
associatively on a miss.

Sohi and Franldin have studied the effectiveness IBlock [Block I
of increasing the number of MSI-IR's using an [Valid Rexlueat
analytical model. In their analysis they I Bit Address
concluded that the optimal number of MSHR's
is four. This result is somewhat workload
dependent, but agrees with simulations that we
have performed using the ATOM simulator [2]
running the SPEC92 benchmark suite.

I I
In addition to MSI-IR's, a lockup frec cache
must include some pipeline scoreboaxding to
provide the pipeline with information regarding
outstanding misses. Using such a mechanism,

Comparamr

Word 0
Valid
Bit
Word 1
Valid
Bit

Word n
Valid
Bit

Word 0
Destin-
ation
Word 1
Destin-
ation

Word n
Destin-
ation

Word 0
Format

Word 1
Format

Word n
Formal

Figure 3. A Simple MSHR organization (as
described in [4])_

20

In this organization, one MSHR entry can
handle only one miss to a particular block (a
single hit-under-miss). Any subsequent miss to
the same word in a block causes the processor
to stall.

A more sophisticated organization described in
the literature is an explicitly addressed MSHR,
where multiple misses to the same cache block
can be tolerated without stalling the processor.
This organization, while structurally similar to
the simple organization, is potentially better
since multiple misses to the same cache block
can be handled concurrently.

Another MSHR organization proposed is an in-
cache MSHR [5]. In-cache MSHR's try to
reduce the extra hardware used for searching a
non-blocking organization. The cache block
that causes the miss is an effective MSHR,
keeping all information on the miss in the cache
block. The disadvantage of this organization is
that in direct-mapped caches (which are
commonly used due to their simplicity), there
can only be one in-flight miss that can be
supported at a time. Also, there needs to be a
transit bit in the cache that indicates that the
block is being used for holding MSHR
information and is not a valid cache entry. The
down side of this is, in a large cache, using
extra cache bits for managing cache misses may
require more resources than a specific set of
MSHR's dedicated solely for this purpose.

Inverted MSHR's are the most aggressive and
non-restrictive approach proposed in [4]. In this
type of organization, there are as many MSHR
entries as there are destinations (e.g. general
purpose registers, both integer and floating-
point).

Figure 4 shows the layout for an Inverted
MSHR. In the inverted MSHR organization,
when a miss occurs all valid information is
recorded for each destination in the inverted

MSHR and a cache block fill is initiated. On
subsequent misses, all MSHR entries are
searched to check if a miss is outstanding. If a
cache block fill is already in process for this
block, only the inverted MSHR entry
corresponding to the destination of the
requested address is recorded.

Peg #1
Valid Request
Bit Address

Corn)arator

Reg #2 [Reg #2
Valid [Request
Bit I Address

Comparator

Peg #1 lReg #1
Format | Address

[in block

Reg #2 Reg #2
Format Address

in block

I Valid Request
Bit [Address

Comparator

PC
Format

PC
Address
in block

Match
Encodcr

Figure 4. An Inverted MSHR Organization (as
described in [4]).

When a block of data is returned from lower
level memory (L2 cache or main memory), all
entries in the MSHR must be probed to identify
those destinations that are waiting for data. For
those entries that match, each waiting
destination will be filled with the data that was
returned using the information contained in the
MSHR fields.

4. Performance of Non-Blocking Loads and
the Effect of Compiler Optimization

As opposed to prefetching and other pre-miss
optimization techniques, a non-blocking load

21

scheme is a post-miss optimization t~chnique.
As a result, non-blocking loads do not reduce
the cache miss rate. They can, however, reduce
the miss penalty significantly depending on the
organization of the non-blocking scheme used
and whether there is an optimizing compiler
employed that can schedule instructions away
from data dependencies. In this section, we will
first summarize the performance of various non-
blocking (MSHR) organizations and the impact
of miss penalty on the performance of non-
blocking loads. Then we will consider the effect
of code optimization in the presence of a non-
blocking cache.

In order to study the performance improvement
obtained by non-blocking loads, all store
operations are assumed to be non-blocking (an
infinite write buffer is assumed). Furthermore,
the instruction cache is assumed to always
produce a hit so that all performance
improvements can be attributrxi solely to the
non-blocking loads.

To measure the performance of non-blocking
loads in isolation, the term miss CPI (MCPI) is
used. All stalls in the model are due only to
stalls caused by the load instructions. Hence,

MCPI = (Total Data Access Penalty/Total
Number of Load Instructions)

The misses used in the above calculation are
due to either the existence of a true-data
dependency or outstanding misses that could
not be supported because of the limits of the
non-blocking hardware.

The following graph is a summary of some of
the simulation results obtained in [4]. The
simulation was done using the VLIW Mull.flow
Compiler that schedules instructions based on
the load latency. The miss penalty is fixed at 16
cycles and an 8K byte direct-mapped cache
with a block size of 32 bytes is used. The graph

shows that for the floating-point programs
(doduc, hydro2d and tomcatv) the performance
of the more complicated non-blocking caches is
much better than the simple hit under miss
scheme. However, the integer benchmarks do
not show such improvement for the more
complex schemes. For these programs, the
simpler implementation will be sufficient in
hiding the majority of the latency. This indicates
that the integer programs are dominated by
true-data dependency stalls rather than stalls
caused by structural hazards. Since stalls caused
by true-data dependencies can not be hidden by
the non-blocking scheme, the importance of the
non-blocking caches is not as significant as in
the floating-point programs.

MCPI

1.2

[] Blocking

[] H i t u n d e r 1 Miss

[] H i t u n d e r 2 Miss

[] Inver ted M S H R

m

1

o.8

0 -
doduc hydro2d tomcaiv eqntolt (mpregso

Figure 5. MCPI for Selected SPEC
Benchmarks (results summarized from [4]).

Many techniques have been proposed to reduce
data dependencies including multi threading,
out-of-order issue and out-of-order completion.
In the absence of data dependencies,
performance of the non-blocking caches will be
bound by the MSHR resources available.

22

We would like to understand some bounds on
the optimal performance attainable using
lookup-free caches. To do this, we model a
cache using the following assumptions: a) WAR
and RAW hazards can be eliminated using
latency hiding techniques, and b) only WAW
hazards that are the result of two loads to the
same register destination will stall the processor
(when the first load miss is still outstanding).
Modeling these assumptions we see that past
some threshold number, increasing the number
of MSHR's does not improve performance. This
optimal number of MSHR's is determined by
the amount of strucmra.l-hazard stalls in the
program.

The simulation results presented next were
produced using ATOM on a DEC Alpha
21064. Instrumentation and analysis programs
are custom built to study the performance of
non-blocking caches. The cache model used is
an 8K direct-mapped cache with a cache block
size of 32 bytes.

%MCPI (MCPI***~n~,dMCPIb~a,~)

.8"

0.7.

0.6'

03,

0.4'

0.31

-.dk-- Hit I h-in- 1/vtss

--I-- I-it Under 21VKsses

o.2!
0.1

0 I I I

5 10 15 20

miss penalty

Figure 6. Average %MCPI vs. Miss Penalty.

Increasing the miss penalty will increase the
probability that more instructions will be
executed during a fetch operation. This will
likely increase the number of in-flight misses.
Furthermore, longer miss penalties aggravate
the data dependency between instructions.
Figure 6 shows the performance of a non-
blocking cache that supports a hit-under-one-
miss and a hit-under-two-misses scheme
compared to that of a blocking cache. We
compare these two designs, varying the miss
penalty. We see that the usefulness of the non-
blocking caches diminishes slightly with
increasing miss penalty.

MCPI

- - / i - H i t Under 1 Mss

"-I-Hit Under 2 Misses

Blocking Cache

"1 1,

OS-

1 2 3 4 5 6

Number of MSHR's

Figure 7. MCPI for eqntott vs. the number of
MSHR's.

Figure 7 shows the performance improvement
obtained for eqntott as the number of MSHR's
is increased from 1 to 6 for a fixed cache miss
penalty of 15 cycles. As we can see here, the
number of MSHR's is an important parameter

m 2 3 m

that should be determined accurately to obtain
the best cost/performance for non-blocking
caches. In our simulation for eqntott, data
dependent cache misses (outstanding misses to
the same destination register) occurred for
29.4% of all load misses. This percentage does
not decrease
MSHR's.

by increasing

MCPI is normalized to the MCPI of the original
code. AS can be seen, instruction scheduling
and register renaming can further improve
performance in most cases.

MCPI/MCPI~-,_,,.,
the number of

I n oa~ga

All improvements observed by increasing the
number of MSHR's are due to reduction of
stalls caused by structural-hazards. However,
after 6 MSHR's the improvement is quite small
as is evident from the graph. Obviously, the
MCPI of the blocking cache remains constant
and is plotted only for comparison.

'*ol
Malrlz TomcMv

4.1 Compiler Assistance

• Scheduled [] Sched+Ren= ming

Bplm Eqx~sso Doduc Nasa

Instruction scheduling can assist non-blocking
schemes significantly. The aim is to create as
much distance as possible between a load
instruction and the first use of the data.
Algorithms have been developed to schedule
instructions so that the maximum benefit can be
obtained [6]. These algorithms schedule
instructions within a basic block, but need to
consider the effect of the reschedule on memory
bandwidth (i.e. loads should not be heavily
clustered).

Register renaming is also effective in removing
dependencies caused by write-after-read
(WAR) and write-after-write (W'AW). This
allows more freedom in moving around
instructions for a better schedule. Since
generally, the distance between set and use in
an unoptimized code is small, instruction
scheduling algorithms can be effective in
increasing this distance, and hence further
improve the performance of non-blocking
techniques [6].

Figure 8 shows the performance of using these
optimizations with a non-blocking cache. The

Figure 8. Effect of Instruction Scheduling [6].

5. C o n c l u s i o n

Non-blocking caches hide the latency
associated with cache misses by allowing the
processor to execute instructions until da ta
dependency or structural hazards make it
necessary to stall. As a result, misses earl be
outstanding. Extra hardware resources are
required to handle outstanding misses. MSHR's
are used so that a data request can be
performed concurrently with the execution of
other instructions. We have looked at a number
of ways that have been proposed to organize
non-blocking caches.

AS the number of MSHR's is increased the
complexity and cost of the non-blocking
scheme increases quite rapidly hence there is a
tradeoff that has to be made in choosing a
particular organization. The simple hit-under-
miss organization is shown to be the most cost
effective for most of the integer benchmarks
while the more complex organizations would be
more likely to improve the MCP] of the

24

numeric benchmarks.

We also considered the performance of a non-
blocking cache in the absence of data
dependencies. Our results indicate as miss
penalty increases, loads to the same register
destination will tend to dominate. Increasing the
number of MSHR's will give diminishing
returns.

Compiler optimization using instruction
scheduling algorithms and register renaming can
further improve the performance of non-
blocking caches. Non-blocking caches when
used with compilers that reschedule code have
shown to provide the best performance.

Non-blocking caches have been shown to be
effective in improving the performance of a
system. However, the cost of implementing
non-blocking caches can impose limitations on
their application. As processors become more
powerful, it is likely that non-blocking caches
will be commonly used. This should motivate
future research directed towards improving the
design implementation of lockup-free caches.

References

1. David Krofl. Lockup-Free Instruction Fetch/
PrefeCh Cache Organization. Proceedings of
the 8th Int. Syrup. on Computer Architecture,
May 1981, pp. 81-87.

2. Amitabh Srivastava and Alan Eustace.
ATOM: A system for Building Customized
Program Analysis Tools. Proceedings of the
ACM SIGPLAN '94 Conference on
Programming Languages, March 1994.

3. D. Lenoski, J. Laudon, K. Gharachol'loo A.
Gupta and J. L. Hennesy. The Stanford DASH
Multiprocessor. Proceedings of the 17th Int.
Syrup. On Computer Architecture, lune 1990,
pp. 148-159.

4. Keith I. Farkas and Norman P. Jouppi.
Complexity/Performance Tradeoffs with Non-
Blocking Loads. Proceedings of the 21st Intl.
Syrup. on Computer Architecture, pp. 211-222,
1994.

5. Manoj Franklin and Gurindar Sohi. Non-
Blocking Caches for High Performance
Processors. Unpublished, 1991.

6. Tien Fu Chen and Jean-Loup Baer. Reducing
memory Latency via Non-blocking and
Prefetching Caches. Fifth ASPLOS Corfferencc,
October 1992, pp. 51-61.

7. Keith I. Farkas, Norman P. Jouppi and Paul
Chow. How Useful Are Non- blocking Loads,
Su-eam Buffers, and Speculative Execution in
Multiple Issue Processors? Western Research
Laboratory, December 1994.

8. John H. Edmondson and et al. Internal
Organization of the Alpha 21164, a 300-MHz
64-bit Qnad-issue CMOS RISC
Microprocessor. Digital Equipment Corp. 1995.

25

