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Abstract 

Cache memories are commonly used to bridge 
the gap between processor and memory speed. 
Caches provide fas t  access to a subset o f  
memory. When a memory request does not f i nd  
an address in the cache, a cache miss is 
incurred. In most commercial processors 
today, whenever a data cache read miss 
occurs, the processor will stall until the 
outstanding miss is serviced. This can severely 
degrade the overall system performance. 

of cache misses. Then the only time the 
processor would have to stall on a data cache 
read is when the operand that is being read is 
needed in a subsequent instruction or when the 
miss bypassing hardware is not able to handle 
any more mi.~ses (a lock'up free cache generally 
has a finite number of  misses that can be 
handled). As long as the processor does not 
encounter data dependencies, and as long as 
there is sufficient hardware to handle the 
maximum number of concurrent misses 
outstanding, the processor should not have to 
stall during memory loads. 

To remedy this situation, non-blocking (lockup- 
f lee)  caches can be employed. A non-blocking 
cache allows the processor to continue to 
perform useful work even in the presence o f  
cache misses. 

This paper  summarizes past  work on lockup 
free caches, describing the four  main design 
choices that have been proposed. A summary 
o f  the performance o f  these past  studies is 
presented, fo l lowed by a discussion on 
potential speedup that the processor could 
obtain when using lockup free caches. 

1. Introduction 

As the gap between processor and memory 
speeds continues to grow, new techniques are 
needed to limit the cost of cache misses. One 
technique that has recently been discussed in 
the context of  sealable shared memory 
multiprocessors is using a lock'up free cache. 
The concept behind this type of cache is to be 
able to process cache accesses in the presence 

In this paper we will focus on lock'up free data 
caches. Most  past discussions on lockup free 
caches have been targeted to data caches, and 
specifically to handling read misses. It is not 
clear how a lockup free cache could benefit the 
instruction stream. 

In section 2, we will provide some background 
on loekup-free caches. In section 3, we will 
describe four loekup-Lree cache organizations. 
In socfion 4, we discuss the performance 
advantages of  using a lockup-free cache, and in 
section 5, we summarize our discussion on non- 
blocking caches. 

2. Background 

The first work  known to the authors on lockup 
free caches was presented by Kroft [1], where 
he described special registers called Miss 
Status/Information Holding Registers 
(MSHR's)  which hold information about 
outstanding misses. These special registers, 
along with the necessary control logic, contain 
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Figure 1. Flow Diagrams of a Lockup and Non-lockup Cache - Processor Organization. 
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enough information to enable the processor to 
overlap the processing of a cache read miss 
with the processing of  subsequent instructions. 
Figure 1 provides flowcharts that attempt to 
illustrat~ some of  the fundamental differences 
between a non-lock-up free cache and a lockup 
free cache. Kroft showed that the number of 
useful MSHR' s  decreases dramatically with an 
increasing number of MSHR's  (see Figure 2 
below). This is because the amount of 
concurrent computation that can be performed, 
before encountering an instruction which is 
dependent on the data for which a miss is being 
serviced, is limited. We discuss this point 
further in section 4. 

the processor can track the outstanding memory 
references that need to bc satisfied. 

While non-blocking caches can be used for 
uniprocessor caches, their real benefit can be 
reaped for shared-memory multiprocessor 
machines [3]. Non-blocking caches are 
especially useful for multiprocessors since, 
generally, the latency on a miss is larger in 
multiprocessor systems. However, the memory 
and interconnect systems can often support 
multiple outstanding accesses. This should help 
alleviate some of the higher bandwidth 
requirements needed for a non-blocking cache 
design. 

Avg. Delay Time/Reqtw.st 
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Figure 2. Performance vs. Number of  MSHR. 

3. O r g a n i z a t i o n  o f  N o n - B l o c k i n g  C a c h e s  

There arc several schemes that can be used to 
organize a non-blocking cache. Farkas and 
Jouppi [4] describe four organizations that have 
different cost/performance ratios. 

In the simplest organization, an MSHR entry is 
used to hold such information as the block valid 
bit, block request address, word valid bit, word 
destination field and the format field ( see 
Figure 3). Each MSHR has its own comparator 
so that all MSHR entries can be searched 
associatively on a miss. 

Sohi and Franldin have studied the effectiveness IBlock [Block I 
of increasing the number of MSI-IR's using an [Valid Rexlueat 
analytical model. In their analysis they I Bit Address 
concluded that the optimal number of MSHR's  
is four. This result is somewhat workload 
dependent, but agrees with simulations that we 
have performed using the ATOM simulator [2] 
running the SPEC92 benchmark suite. 

I I 
In addition to MSI-IR's, a lockup frec cache 
must include some pipeline scoreboaxding to 
provide the pipeline with information regarding 
outstanding misses. Using such a mechanism, 

Comparamr 

Word 0 
Valid 
Bit 
Word 1 
Valid 
Bit 

Word n 
Valid 
Bit 

Word 0 
Destin- 
ation 
Word 1 
Destin- 
ation 

Word n 
Destin- 
ation 

Word 0 
Format 

Word 1 
Format 

Word n 
Formal 

Figure 3. A Simple MSHR organization (as 
described in [4])_ 
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In this organization, one MSHR entry can 
handle only one miss to a particular block (a 
single hit-under-miss). Any subsequent miss to 
the same word in a block causes the processor 
to stall. 

A more sophisticated organization described in 
the literature is an explicitly addressed MSHR, 
where multiple misses to the same cache block 
can be tolerated without stalling the processor. 
This organization, while structurally similar to 
the simple organization, is potentially better 
since multiple misses to the same cache block 
can be handled concurrently. 

Another MSHR organization proposed is an in- 
cache MSHR [5]. In-cache MSHR's  try to 
reduce the extra hardware used for searching a 
non-blocking organization. The cache block 
that causes the miss is an effective MSHR, 
keeping all information on the miss in the cache 
block. The disadvantage of  this organization is 
that in direct-mapped caches (which are 
commonly used due to their simplicity), there 
can only be one in-flight miss that can be 
supported at a time. Also, there needs to be a 
transit bit in the cache that indicates that the 
block is being used for holding MSHR 
information and is not  a valid cache entry. The 
down side of this is, in a large cache, using 
extra cache bits for managing cache misses may 
require more resources than a specific set of 
MSHR's dedicated solely for this purpose. 

Inverted MSHR's are the most aggressive and 
non-restrictive approach proposed in [4]. In this 
type of organization, there are as many MSHR 
entries as there are destinations (e.g. general 
purpose registers, both integer and floating- 
point). 

Figure 4 shows the layout for an Inverted 
MSHR. In the inverted MSHR organization, 
when a miss occurs all valid information is 
recorded for each destination in the inverted 

MSHR and a cache block fill is initiated. On 
subsequent misses, all MSHR entries are 
searched to check if a miss is outstanding. If  a 
cache block fill is already in process for this 
block, only the inverted MSHR entry 
corresponding to the destination of the 
requested address is recorded. 
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Figure 4. An Inverted MSHR Organization (as 
described in [4]). 

When a block of data is returned from lower 
level memory (L2 cache or main memory), all 
entries in the MSHR must be probed to identify 
those destinations that are waiting for data. For 
those entries that match, each waiting 
destination will be filled with the data that was 
returned using the information contained in the 
MSHR fields. 

4. Performance of Non-Blocking Loads and 
the Effect of Compiler Optimization 

As opposed to prefetching and other pre-miss 
optimization techniques, a non-blocking load 
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scheme is a post-miss optimization t~chnique. 
As a result, non-blocking loads do not reduce 
the cache miss rate. They can, however, reduce 
the miss penalty significantly depending on the 
organization of the non-blocking scheme used 
and whether there is an optimizing compiler 
employed that can schedule instructions away 
from data dependencies. In this section, we will 
first summarize the performance of various non- 
blocking (MSHR) organizations and the impact 
of miss penalty on the performance of non- 
blocking loads. Then we will consider the effect 
of code optimization in the presence of a non- 
blocking cache. 

In order to study the performance improvement 
obtained by non-blocking loads, all store 
operations are assumed to be non-blocking (an 
infinite write buffer is assumed). Furthermore, 
the instruction cache is assumed to always 
produce a hit so that all performance 
improvements can be attributrxi solely to the 
non-blocking loads. 

To measure the performance of non-blocking 
loads in isolation, the term miss CPI (MCPI) is 
used. All stalls in the model are due only to 
stalls caused by the load instructions. Hence, 

MCPI = (Total Data Access Penalty/Total 
Number of  Load Instructions) 

The misses used in the above calculation are 
due to either the existence of a true-data 
dependency or outstanding misses that could 
not be supported because of the limits of the 
non-blocking hardware. 

The following graph is a summary of some of 
the simulation results obtained in [4]. The 
simulation was done using the VLIW Mull.flow 
Compiler that schedules instructions based on 
the load latency. The miss penalty is fixed at 16 
cycles and an 8K byte direct-mapped cache 
with a block size of 32 bytes is used. The graph 

shows that for the floating-point programs 
(doduc, hydro2d and tomcatv) the performance 
of the more complicated non-blocking caches is 
much better than the simple hit under miss 
scheme. However, the integer benchmarks do 
not show such improvement for the more 
complex schemes. For these programs, the 
simpler implementation will be sufficient in 
hiding the majority of the latency. This indicates 
that the integer programs are dominated by 
true-data dependency stalls rather than stalls 
caused by structural hazards. Since stalls caused 
by true-data dependencies can not be hidden by 
the non-blocking scheme, the importance of the 
non-blocking caches is not as significant as in 
the floating-point programs. 
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Figure 5. MCPI  for Selected SPEC 
Benchmarks (results summarized from [4]). 

Many techniques have been proposed to reduce 
data dependencies including multi threading, 
out-of-order issue and out-of-order completion. 
In the absence of data dependencies, 
performance of the non-blocking caches will be 
bound by the MSHR resources available. 
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We would like to understand some bounds on 
the optimal performance attainable using 
lookup-free caches. To do this, we model a 
cache using the following assumptions: a) WAR 
and RAW hazards can be eliminated using 
latency hiding techniques, and b) only WAW 
hazards that are the result of two loads to the 
same register destination will stall the processor 
(when the first load miss is still outstanding). 
Modeling these assumptions we see that past 
some threshold number, increasing the number 
of MSHR's does not improve performance. This 
optimal number of MSHR's is determined by 
the amount of strucmra.l-hazard stalls in the 
program. 

The simulation results presented next were 
produced using ATOM on a DEC Alpha 
21064. Instrumentation and analysis programs 
are custom built to study the performance of 
non-blocking caches. The cache model used is 
an 8K direct-mapped cache with a cache block 
size of 32 bytes. 
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Figure 6. Average %MCPI vs. Miss Penalty. 

Increasing the miss penalty will increase the 
probability that more instructions will be 
executed during a fetch operation. This will 
likely increase the number of in-flight misses. 
Furthermore, longer miss penalties aggravate 
the data dependency between instructions. 
Figure 6 shows the performance of a non- 
blocking cache that supports a hit-under-one- 
miss and a hit-under-two-misses scheme 
compared to that of a blocking cache. We 
compare these two designs, varying the miss 
penalty. We see that the usefulness of the non- 
blocking caches diminishes slightly with 
increasing miss penalty. 
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Figure 7. MCPI for eqntott vs. the number of 
MSHR's. 

Figure 7 shows the performance improvement 
obtained for eqntott as the number of MSHR's 
is increased from 1 to 6 for a fixed cache miss 
penalty of 15 cycles. As we can see here, the 
number of MSHR's is an important parameter 
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that should be determined accurately to obtain 
the best cost/performance for non-blocking 
caches. In our simulation for eqntott, data 
dependent cache misses (outstanding misses to 
the same destination register) occurred for 
29.4% of all load misses. This percentage does 
not decrease 
MSHR's. 

by increasing 

MCPI is normalized to the MCPI  of the original 
code. AS can be seen, instruction scheduling 
and register renaming can further improve 
performance in most cases. 

MCPI/MCPI~-,_,,., 
the number of 

I n oa~ga 

All improvements observed by increasing the 
number of  MSHR's  are due to reduction of 
stalls caused by structural-hazards. However, 
after 6 MSHR's  the improvement is quite small 
as is evident from the graph. Obviously, the 
MCPI of  the blocking cache remains constant 
and is plotted only for comparison. 
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4.1 Compiler Assistance 
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Instruction scheduling can assist non-blocking 
schemes significantly. The aim is to create as 
much distance as possible between a load 
instruction and the first use of the data. 
Algorithms have been developed to schedule 
instructions so that the maximum benefit can be 
obtained [6]. These algorithms schedule 
instructions within a basic block, but need to 
consider the effect of  the reschedule on memory 
bandwidth (i.e. loads should not be heavily 
clustered). 

Register renaming is also effective in removing 
dependencies caused by write-after-read 
(WAR) and write-after-write (W'AW). This 
allows more freedom in moving around 
instructions for a better schedule. Since 
generally, the distance between set and use in 
an unoptimized code is small, instruction 
scheduling algorithms can be effective in 
increasing this distance, and hence further 
improve the performance of  non-blocking 
techniques [6]. 

Figure 8 shows the performance of  using these 
optimizations with a non-blocking cache. The 

Figure 8. Effect of  Instruction Scheduling [6]. 

5. C o n c l u s i o n  

Non-blocking caches hide the latency 
associated with cache misses by allowing the 
processor to execute instructions until da ta  
dependency or structural hazards make it 
necessary to stall. As a result, misses earl be 
outstanding. Extra hardware resources are 
required to handle outstanding misses. MSHR's 
are used so that a data request can be 
performed concurrently with the execution of 
other instructions. We have looked at a number 
of  ways that have been proposed to organize 
non-blocking caches. 

AS the number of MSHR's  is increased the 
complexity and cost of the non-blocking 
scheme increases quite rapidly hence there is a 
tradeoff that has to be made in choosing a 
particular organization. The simple hit-under- 
miss organization is shown to be the most cost 
effective for most of the integer benchmarks 
while the more complex organizations would be 
more likely to improve the MCP] of the 
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numeric benchmarks. 

We also considered the performance of a non- 
blocking cache in the absence of data 
dependencies. Our results indicate as miss 
penalty increases, loads to the same register 
destination will tend to dominate. Increasing the 
number of MSHR's will give diminishing 
returns. 

Compiler optimization using instruction 
scheduling algorithms and register renaming can 
further improve the performance of non- 
blocking caches. Non-blocking caches when 
used with compilers that reschedule code have 
shown to provide the best performance. 

Non-blocking caches have been shown to be 
effective in improving the performance of a 
system. However, the cost of implementing 
non-blocking caches can impose limitations on 
their application. As processors become more 
powerful, it is likely that non-blocking caches 
will be commonly used. This should motivate 
future research directed towards improving the 
design implementation of lockup-free caches. 
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