
ACM SIGSOFT Software Engineering Notes vol 21 no 1 January 1996 Page 73

Slow Down, You Read Too Fast

Steve Wartik
Software Product iv i ty Consort ium

Reston , VA

w a r t i k ~ S o f t w a r e . O R G

Reading two papers in recent issues of IEEE Software and
IEEE Computer , I was once again saddened to observe that
few software engineering researchers who write comparative
analyses really know the research against which they compare
their own. Each paper presented work with which I am both
partially familiar -- meaning I 've read papers on the topic and
perhaps tried it cn toy examples - and intimately familiar,
meaning I 've applied it over a period of years in developing
real software. In koth papers, I reacted to the partially famil-
iar research with ~acit agreement, thinking the authors made
good points.

But I reacted differently to the intimately familiar research
as I saw how the ,~uthors had misinterpreted it. Some errors
were simple and torgivable. Most, unfortunately, were more
severe, as if the a ' : thors were only superficially familiar with
the work. I had to question if the authors had done more
than read the papers they cited. Certainly they could not
have interpreted the work as they did if they had tried it in
real software development, or had even dug deeply into the
references.

Now this isn't an indictment of the authors, who are justly
respected members of the software engineering community.
Furthermore, my tacit agreement with the topics partially
familiar to me sti ~ngly suggests I 'm no more qualified than
them or the next ~,erson to compare and contrast others' work
with my own.

This natural occurrence in a field like software engineering,
where so much is subjective and opinions are more preva-
lent than data, leads to nothing if not entertainment, in the
form of countless vituperative conference panels, journal ar-
ticles, and Interne~ flame wars. Thus we have reached a state
where, as a colleague of mine so aptly put it, "Every software
engineering resealcher thinks everyone else is an idiot, and
99% of them are right." Pick any area of software engineer-
ing, any life cycle phase, any technique, any tool, and you'll
find hordes of people loudly voicing their opinions on it at
the expense of somebody else. Empirical studies, that cor-
nerstone of advancement in the hard science and engineering
disciplines, fare little better in software engineering. Their
data and assumptions are hotly debated, and (with a few ex-
ceptions) they aren ' t the foundation of much future research.
Beizer goes so far as to doubt the possibility of controlled ex-
periments compaiing software methods [1]. Right or wrong,
his paper shows l:ow little agreement there is as to how to
make progress in ".he field.

On the one hand, I sometimes think it doesn' t matter . My ob-
servations and experiences make me believe that any method
or tool, conscientiously and consistently applied, will yield

impressive productivity gains when compared with using no
method or tool, which unfortunately still characterizes many
companies today. On the other hand, I worry tha t our misun-
derstandings of others' work is causing us to miss their best
insights. We make mistakes in software development when we
miss the details, and missing the details is jus t what we all
seem to have done.

I see an obvious solution to this problem. Everyone must
abide by the Commandment of Comparat ive Publishing,
which is:

You cannot pubhsh a comparison of your work
with others' work unless you are intimately famil-
iar (as defined above) with their work.

In other words, every researcher should learn a method by
applying it on one or more - preferably more - realistic ex-
amples. I 'd guess that adopting this solution would cause
most people to see that what they thought were benefits of
their research are either debatably so or of minuscule concern.
I t ' s a simple principle, and its advantages are clear.

But so are its disadvantages. I cannot imagine this solution
ever becoming popular. Software engineering is still enough of
a craft that learning to apply a software development method
- or even a tool - can take years. I f every researcher took the
time to learn several methods, industrial research labs would
cease to produce results. Professors would have to suspend
research activity. They also couldn't conduct studies using
Master 's degree candidates, who aren ' t around long enough
to be useful. Ph.D. 's are, but learning additional methods
would require a commitment that would have them reach-
ing for hammers. Even when someone is intimately familiar
with a method, they can ' t claim to have developed realistic
software until that software has been used for a while, giving
people a chance to discover and fix bugs (i.e., measuring the
research's utility in realistic settings). Tha t in turn implies
the need to develop user manuals, training materials, and all
those other products that separate toys from reality. I f every-
one adopted the Commandment of Comparat ive Publishing,
software engineering research would cease for the bet ter part
of a decade. I do not claim such a hiatus would be productive.
Craft-oriented disciplines grow by innovation.

I can see a more plausible but equally unpalatable solution.
Editors could require that any paper claiming an advantage
over X be refereed by the person responsible for X. The bene-
fits to the quality and value of published papers are clear. On
the down side, no sane person would want to be an editor.
Tenure standards would need revision - one journal paper
would have to be sufficient. The Internet would quickly j a m
up with "Does" - "Does not Does so" messages. And
finally, anyone unfortunate enough to do excellent research
would find themselves deluged with papers to review.

The simplest solution is perhaps the best one. Let 's skip
subjective comparisons altogether. Papers should reference
related research but should omit s tatements like, "Our work
satisfies the following need that X does not address." When

http://crossmark.crossref.org/dialog/?doi=10.1145%2F381790.381803&domain=pdf&date_stamp=1996-01-01

ACM SIGSOFT Software Engineering Notes vol 21 no 1 January 1996 Page 74

these statements aren' t just plain inaccurate, they often ex-
press only a personal software development philosophy. The
differences between related research projects are seldom as
striking as their proponents would have us believe.

Since my most-cited paper compares a domain analysis ap-
proach with which I am intimately familiar to several with
which I am partially familiar [2], you may detect a certain
irony. Nolo contendere. I admitted above that I 'm probably
as guilty of misinterpretation and oversimplification as every-
one else. In writing [1], I took the precaution of consulting
the creators of the other approaches prior to publishing, but
after several years of reflection I can't help but wonder if I
didn't overstate my conclusions.

And I still feel the problem acutely. Those of us with graduate
degrees in Computer Science - that is, most researchers -
were trained to learn by reading a paper or a book. That
works nicely for theoretical material. Software development
methods, CASE tools, and topics of that ilk cannot be easily
encapsulated in a journal paper. To be learned, they must
be tried. To be appreciated, they must be used realistically.
Until that happens, we must view our comparisons of others'
work with a regrettable skepticism.

R E F E R E N C E S

[1] Beizer, Boris. The Cleanroom Process Model - Cau-
tion Advised. Journal of the Society for Software Quality
(March/April 1995), pp. 1-23.

[2] Wartik, S. and R. Prieto-Diaz. Criteria for Comparing
Reuse-Oriented Domain Analysis Approaches. International
Journal of Software Engineering and Knowledge Engineering
2:3 (September 1992), pp. 403-431.

Is "Software Quality" Intrinsic,
Subjective, or Relational?

D i c k C a r e y
20 R i v e r s i d e S t . # 2 2

W a t e r t o w n , M A 0 2 1 7 2 - 2 6 7 0
(6 1 7) 9 2 6 - 2 5 5 6

c a r e y @ d m a . i s g . m o t . c o m

The software community almost unanimously measures Soft-
ware Quality (SQ) as the ratio of Errors per Kilo Lines Of
Code (E/KLOC). In spite of this, the underlying assumptions
for this concept and its application have not been critically
examined enough. In this paper, it is asserted that E /KLOC
is not a reasonable measure of SQ, and a different model is
introduced.

An important requirement for objectivity is that judgements
be quantifiable. How we define SQ has consequences in de-
termining a software organization's goals. I classify three dif-
ferent interpretations of SQ in terms of what Chris Sciabarra
[Sci] calls Ayn Rand's dialectic of the Intrinsic, the Subjective,
and the Relational.

I N T R I N S I C - S Q

Intrinsic-SQ says quality is only a measurement of the current
code, independent of past changes. A large program is going
to have more errors than a small program, so in order to judge
the density of errors, Intrinsic-SQ requires us to know the
number of Lines of Code (LOC). The E /K LO C formula makes
errors and LOC dependent on each other. A big fraction is
bad, a small fraction is good. Program changes that decrease
the ratio are seen as improvements.

This satisfies our need to have an objective measure of SQ
but is it correct? The E /K LO C formula says that if we don' t
fix any errors but we add code my SQ improves (because
I've increased the denominator). If we take 1000 lines of un-
structured code and modularize it so it shrinks to 1/10th its
original size with the same functionality, I've improved its SQ
10 times. But E /KLOC says I've worsened its Intrinsic-SQ
10 times from 10/1000 to 10/100 (because I've decreased the
denominator).

E /KLOC says there's a trade-off between error count and
code size. There's a point where if we remove enough code in
order to fix a error it won't improve its Intrinsic-SQ at all:

E/KLOC =

therefore

PREVIOUS VERSION: CURRENT VERSION:

10 errors 9 errors

100 LOC x LOC

10 x = 900

x = 90

10 e r r o r s 9 e r r o r s
E/KLOC = =

100 LOC 90 LOC

If we fix 1 error by removing 10 lines of code E /KLOC says
the Intrinsic-SQ hasn't changed. We could almost make the
opposite case that a large E /K LO C is good.

If we fix a error by adding code has SQ improved? Yes. If we
fix a error by removing code has SQ improved? Yes. If we fix
a error without adding or removing code has SQ improved?
Yes. The use of E /KLOC is at odds with the original objective
of improving SQ. These weaknesses of E /K LOC make it a
very inaccurate model of true SQ. It 's wrong to accuse people
of "fooling" the E /KLOC metric. The problem is that the
E /KLOC metric "mismeasures" true SQ. It is the underlying
false assumption that SQ is intrinsic that causes us to make
LOC and errors dependent variables.

S U B J E C T I V E - S Q

Most software organizations apply externally-generated meth-

