
A

C++ Toolbox
Editor: G. Bowden Wise, Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180; wiseb@cs.rpi.edu

i

Teaching Object-Oriented Design with Heuristics
C. Gibbon and C. Higgins

The transition from "programmer" to "class designer"
is difficult. Pedagogic challenges involve imparting an in-
depth knowledge of the object-oriented (0 0) paradigm;
gaining a firm understanding of the software engineering
principles at play and knowing when and where to apply
them effectively.

Curricula strucuture and mutating course requirements
impose teaching and resource constraints that require bet-
ter tools and techniques to meet their increasing demands.
At the University of Nottingham, in the UK, our experi-
ence with design heuristics to transfer O0 design (OOD)
expertise to the inexperienced designer has proven to be a
resourceful teaching aid.

This article discusses the implications and use of de-
sign heuristics at Nottingham in overcoming the resource
constraints faced when teaching OOD. A recent survey of
UK 0 0 D curricla is given which highlights the problems
attributed to teaching OOD in academia and how design
heuristics can assist in OO education. A prototypical tool
that semi-automates the heuristical analysis of C++ design
documents is also discussed as an on-line teaching aid for
learner designers.

1 The Teaching Task

1.1 Nottingham's OOD Curriculum

At the University of Nottingham, first year computer sci-
ence undergraduate (CS 1) students are taught how to pro-
gram with abstract data types (ADT) using C++ as part of
two contiguous compulsory modules. This object-based
foundation is a prerequisite to the second year (CS2),
semester 1 Object-Oriented Methods course (OBJ). The
OBJ course introduces the fundamental principles under-
pinning object technology (OT) using well-documented
OOD methods. Advanced C++ programming features
such as inheritance, polymorphism and templates are
taught to show how C++ implements object-oriented so-
lutions.

Nottingham's CS department is relatively small com-
pared to many other UK CS departments with only 62 stu-
dents taking the OBJ course in 95/96. However, an ex-
panding department has seen the OBJ course increase by
19% on last year, and 30% on the year before that. Next
year brings further student increases but with few addi-
tional teaching resources. This poses manageable prob-
lems in lectures where the primary objective is informa-
tion dissemination and knowledge impartation. Meeting
this goal merely requires the location of a lecture theatre
that can accomodate the surplus students, Unfortunately,
increasing student numbers have more far reaching con-
sequences in the laboratory where OO theory is put into
practice.

[4] discusses the difficulties encountered at Nottingham
and Staffordshire University in the UK. These teaching
constraints can be summarised as follows:

• increasing staff/student ratios lead to undermanned
lab sessions less capable of providing the necessary
pragmatic object technology teaching support;

• the expensive tools required to provide seamless
OOA/OOD/OOP limit the size of labs to the number
of affordable software licences;

• the common ADT-based CS 1 course approach place
additional demands on CS2 courses to undo proce-
dural thinking and relearn OO concepts.

It is unlikely that the staff/student ratio will improve
or that CASE tools will become more accessible to aca-
demics. Furthermore, when faced with the dual teach-
ing task of converting procedual programmers to OO pro-
grammers and then to class designers something is needed
to optimise these transitional phases if the course is to de-
liver competent graduates.

1.2 Surveying UK OOD Curricula

Recently, we queried 27 UK universities on their cur-
rent OOD course content and its future directions. Fur-

12

http://crossmark.crossref.org/dialog/?doi=10.1145%2F381841.381844&domain=pdf&date_stamp=1996-07-01

Lan
thermore, we inquired as to what OO programming lan-
guage(OOPL) they used to implement OO solutions.

Not surprisingly, 90% of the survey respondents quoted
C++ as the primary OOPL. Reasons included student de-
mands and job prospects; availability of cheap (free) C++
resources pertaining to compilers, environments and pub-
lic domain libraries; an abundance of C++ literature; and
no shortage of staff with C++ knowledge. However, the
majority acknowledged its unsuitability as a teaching lan-
guage for object technology often preferring purer OOPLs
such as Eiffel and Smalltalk. Only 5 universities plan to
change from C++ to another OOPL, but of these, 3 were
looking to move to C++'s sister language - Java!

Surprisingly, only one UK survey respondent used
Smalltalk as the primary OOPL and another cited
Modula-3. Smalltalk, Eiffel, Object Pascal and Modula-3
featured as secondary OOPLs in 8 of the universities, all
of which employed C++ as their primary language.

Half of the survey respondents used a single OOD
method as their teaching vehicle, a third utilised a method
mix and the remainder did not employ OOD methods at
all. Of the single OOD method institutions, OMT and
Boochjointly shared the majority with Coad/Yourdon tak-
ing the minority. For mixed OOD methods, OMT and
Booch again featured highly but with aspects of Wirfs-
Brock inter-weaved. The general consensus among those
that taught Booch and OMT as their main method was a
move to the forthcoming Unified Method.

Of the survey subjects, only 6 introduced full OO from
the outset, 15 preferred to use the object-based approach
as a stepping stone to full OO status. In the latter case,
it was felt that a solid foundation in ADT-based program-
ming and data structures proved invaluable and gave the
students a sound footing in things OO or otherwise.

Unfortunately, the survey did not attract institutions not
using or planning to use object technology. This informa-
tion is currently being sought by means of a second survey
into UK OOD curricula.

1.3 Problems and Caveats

In light of the survey results and the teaching constraints
identified in section 1.1, we believe teaching methods
must encompass much more than any single OOD method
affords. We concur with observations made in [5] that
teaching methods should be highly pragmatic in their ap-
proach and that learning is best achieved by example. In
[3] we outline the requirements for a teaching method
by looking beyond OOD methods and by viewing them

simply as process suggestions. In doing so, the teach-
ing method takes responsibility for providing the teach-
ing framework and does not leave it to the OOD method.
It is important to separate these concerns in tailoring the
teaching method to the needs and capabilities of the target
teaching environment.

In the UK, it is unlikely that the primary OOPL (C++)
will change or that a full OO approach will be adopted
in the near future; the teaching method should accommo-
date these realities. In the next section we present design
heuristics to aid in the teaching of OOD. In section 3 a pro-
totypical tool that implements the design heuristics and
automates their application is given. The results gleaned
to date are illustrated in section 4 and call for assistance
proposed in section 5.

2 Design Heuristics

2.1 What is and what is not a design heuris-
tic?

A heuristic offers insightful information based upon ex-
perience that is known to work in practice. Heuristics
can be used to guide the inexperienced on a path already
taken by their experienced counterparts. To achieve this
goal, heuristics must identify and encapsulate experience.
Their subsequent application culminates in the reuse of
this experience.

In the context of OOA/D, a design heuristic embodies
design experience gleaned from erstwhile OO develop-
ers. At Nottingham, design heuristics that capture qual-
ity criterion such as maintainability and reusability can be
(re)introduced to students when designing OO systems to
enhance the quality of their software products. More im-
portantly, design heuristics serve to educate and accentu-
ate learners in OO techniques that address these important
quality criteria.

A heuristic is not a metric. A heuristic is a rule of
thumb that places its users in the region of what is cor-
rect [1]. It is not meant to be exact. In fact, heuristics
benefit from their impreciseness by providing an informal
guide to good(and bad) practices. Contrariwise, metrics
are formal, rigid and precise. Metrics derive their advan-
tages from formality and undergo stringent validation pro-
cesses to achieve the required level of correctness. For
pragmatic teaching purposes, this is both unnecessary and
undesirable. We need informal techniques to drive the in-
formal and highly pragmatic design processes employed

13

by teaching methods. Heuristics exhibit all of these prop-
erties.

Design heuristics are not new, however their existence
has been subsumed by research in the software metrics
field. [8] and [6] have explicity acknowledged and cat-
egorised design heuristics and numerous programming
texts [7], [2] have touched upon design heuristics at the
language level.

2 .2 Objectives

The teaching constraints mentioned in section 1.1 pre-
sented some of the shortcomings befalling academic in-
stitutions teaching OOA/D. At Nottingaham we use de-
sign heuristics to supplement teaching methods with the
following objectives:

• to supplement design expertise that cannot be dis-
seminated during labs due to increasing staff/student
ratios;

• to provide much needed student reassurance as to
what constitutes good design practice and high qual-
ity products often limited in mainstream OOD meth-
ods;

• to raise awareness of software qualities such as
maintainability and reusability and how they can be
achieved using key OO concepts;

• to provide an intricate OO education framework that
embodies not only diverse definitions of OO con-
cepts and examples of usage but strucutured mech-
anisms for accessing them in the context of the
learner's own design. For example, when a de-
sign heuristic is triggered teaching efforts are ini-
tially focused upon information relevant to that de-
sign heuristic and the concepts it uses;

• to capture design experience in a relatively objective
manner so that heuristic detection may be automated.

It is not the intention of design heuristics to supplant
the OO educator but to supplement their knowledge and
displace their all-encompassing role in teaching OOD.
At Nottingham, research effort into discovering and in-
venting design heuristics has been expended to produce a
heuristic catalogue [4], [3], a collective term describing a
set of design heuristics. But before we go any further, let
use examine a design heuristic.

2 .3 A n E x a m p l e

Consider the following design heuristic:

An inheritance hierarchy should be no deeper
than six.

How many times has this assertion been forwarded in
literature? On each occasion it has been criticised for its
vagueness and lack of substance, ultimately resulting in
it being labelled inappropriate. We argue that this de-
sign heuristic and others like it are useful, if and only if,
placed in the right context, substantiated with the required
rationale and direct references to the OO principles they
(ab)use is given. Promoters of similar design heuristics
that fail to do this afford the credence to the aforemen-
tioned criticism.

Let us re-examine the inheritance design heuristic. A
depth of six is arbituary and configurable. In the context
of student designs, a depth of six serves only to trigger this
design heuristic. Experience at Nottingham has shown
that inheritance hierarchies that surpass this threshold are
malformed and/or semantically incorrect. Upon trapping
the offender it is the heuristic's job to explain why they are
potentially at fault; illustrate exactly where in the design
the anomaly occurred; and suggest, if possible, design al-
ternatives. At this point the role of the heuristic is over.
The heuristic does not have the intelligence nor the right
to police or punish its offenders, merely to educate them
in the design practices of the majority. Design heuristics
that adhere to this code of practice make for useful OO
teaching aids.

Although a simple design heuristic, depth of inheri-
tance proves to be one of the more interesting ones. It
raises issues encircling specialisation and reuse. For ex-
ample, should inheritance be read as isA or is it valid to
permit isASortOf; is inheritance specialisation; can we
make use of delegation as a design alternative; and just
how deep is too deep? The last of these proves the most
controversial issue.

Contrary to OO literature, we do not believe that in-
heritance hierarchies should not strive to become deep. It
is apparent when a keen, inexperienced student class de-
signer has read around the subject by the depth of their
first inheritance hierarchy. Blind promotion of deep and
narrow hierarchies without warning has seen this heuristic
trap a number of misguided students. Although the design
heuristic cannot objectively determine the optimal depth,
it can highlight the need for subjective verification to de-
termine when deep is too deep. Incidently, as observed in

14

[9], this is when the depth of the inheritance hierarchy im-
pedes reuse.

3 The TOAD System

The OBJ OOD course expects students to implement
the software system outlined in the supplied requirement
specification. The course gives a mandatory set of lec-
tures and labs in which students use CASE tools to design
and implement their software. Currently, design heuris-
tics are presented during lectures to educate students on
creating high quality products using key OO concepts.
Owing to the success met with design heuristics in lec-
tures, the next logical step was to apply the design heuris-
tics directly to the learner's OOA/D products, at design
time, giving immediate feedback on its areas of weakness
as well as highlightingits strengths. To achieve this, a pro-
totypical tool, TOAD (Teaching Object-oriented Analy-
sis and Design), was implemented that could automate the
detection and application of design heuristics and coordi-
nate its feedback.

4 Results

The benefits realised by employing design heuristics have
been made apparent by the learners that have used them.
Learners have been both undergraduate students taking
the OBJ OOD course and commercial developers migrat-
ing to OT. In both cases the design heuristics were applied
towards the back end of an OOD course when all the rel-
evant concepts had been introduced. Introducing the de-
sign heuristics in this manner tied together all aspects of
the course as well as re-visiting and re-analysing them in
different contexts. It was obvious that the design heuris-
tics touched upon several complementary and competing
OO concepts in achieving their objectives. These needed
to be explained, resulting in a more in-depth examination
of the concepts involved.

The standard of OODs resulting from the application of
TOAD will be available at the end of the first semester
96/97 OBJ course. These will be comp ared and con-
strasted with previous years to gain some insight into their
usefulness. Student questionnaires and design experi-
ments will also serve to affirm or refute our expectations.

3.1 Applying Heuristics in TOAD

Design heuristics act upon design documents (i.e. C++
headers) to examine their static class properties. Using
Booch's terminology, heuristic analysis views class (in-
ter)relationships aggregation, using and inheritance both
in isolation and then collectively. The latter involves the
structured use of the design heuristics to provide design
alternatives.

For example, if the design heuristic limit multiple in-
heritance is triggered for class A and it also triggers avoid
breaks in the class/type hierarchy then the design alterna-
tive of delegation would be suggested. The heuristic anal-
yser would have observed in the case of C++ that multiple
inheritance involved private or protected inheritance that
can be resolved by delegation. Although design heuristics
are self-contained it is rarely the case that they proceed in
isolation. In this example information of inheritance and
delegation would have been dissemination using the stu-
dents work as the design exemplar.

TOAD is scheduled to go on-line in October 1996 as
part of the Nottingham's OBJ course described in section
1.1. The results of its usage will be presented in a subse-
quent paper.

5 Call for Assistance

We believe the discovery of design heuristics has been on-
going for years but without focus. It is imperative that
design heuristics are actively sought and catalogued reg-
ularly so that they are promulgated back to the OO com-
munity at large. The discovery of new solutions, the rejec-
tion of old ones and the revision of existing design heuris-
tics is an important factor in maintaining an up-to-date
heuristic catalogue. To achieve this requires coordination
and active participation by those people in a position to
help, namely experienced designers, design methodolo-
gists and software metricians. To these people we seek
feedback in the moulding of an informal heuristic cata-
logue.

We are in the process of constructing a web page
(http://www.cs.nott.ac.ukFcag/phd/toad.html) that will
disseminate information on design heuristics and their
application. Please visit our web site and contribute to the
cataloging of design experience in the form of heuristics.
It is hoped that an exchange of experience will ensue
enabling the inexperienced to learn directly from the
experienced.

A cursory but important note to CASE tool vendors. In
creating TOAD we were faced with the problem of either

15

implementing our own CASE tool or parsing resultant de-
sign documents. This is because CASE tool vendors do
not provide the much needed APIs for accessing design
attributes illustrated in their OOD diagrams. This has had
a notably effect on our development efforts. We opted for
the latter by converting design documents (C++ headers)
into fiat files conforming to TOAD's object-oriented de-
scription language (OODL) for subseqent analysis. This
is both an undesirable and costly exercise.

6 Acknowledgements

A special thanks goes to Dr. Gillian Lovegrove for help-
ing to compile the OOD UK survey and clarifying a num-
ber of ambivalent research directions.

References

[1] BOOCH, GRADY. Rules of thumb. Report on Object
Analysis and Design (ROAD) 2, 4 (Nov-Dec 1995),
2-3.

[2] COPLIEN, J. O. Advanced C++ Programming Styles
and Idioms. Addison-Wesley, Reading, Mass., 1992.

[3] GIBBON, C. AND HIGGINS, C. Towards a learner-
centred approach to teaching object-oriented design.
In Submitted Paper to APSEC'96 (December 1996).

[4] GIBBON, C., LOVEGROVE, G.L. AND HIGGINS, C.
Tools, heuristics and techniques to assist oo educa-
tion. In Forthcoming OOPSLA'96 (October 1996),
ACM Press.

[5] HENDERSON-SELLERS, BRIAN AND EDWARDS,
JULIAN M. Identifying three levels of o-o method-
ologies. Report on Object Analysis and Design
(ROAD) 1, 2 (July-August 1995), 25-28.

[6] JOHNSON, P AND FOOTE, B. Designing reusable
classes. Journal of Object-Oriented Programming 1,
2 (1988), 22-35.

[7] MEYERS, SCOTT. More Effective C++: 35 New
Ways to Improve Your Programs and Designs.
Addison-Wesley Professional Computing Series,
1995.

[8] RIEL, ARTHUR J. Introduction to Object-Oriented
Design Heuristics. OOPSLA '94 Tutorial38 (October
1994). Portland, Oregon.

[9] WANG, BARBARA LIN AND WANG, JIN. Is a deep
class hierarchy considered harmful? Object Maga-
zine 4, 7 (November-December 1994), 35-36.

Cleveland Gibbon is a Ph.D. candidate in the Com-
puter Science Department, University of Nottingham,
England. His primary research area is in object-
oriented design heuristics and software product metrics.
Other research interests include user interface design
and visualising object-oriented software in virtual
environments. He is a member of the ACM. He can
be reached on cag@cs.nott.ac.uk or read-about at
http://www.cs.nott.ac, ukFcag.

Dr. Colin Higgins is a Senior Lecturer in the Com-
puter Science Department, Univeristy of Nottingham,
England. His primary research area is in AI and pattern
recognition, particularly the recognition of cursive
script. Other interests include object-oriented design and
software product metrics using Prolog.

16

