
Real-Time Index Concurrency Control
Jayant R. Haritsa, Senior Member, IEEE, and S. Seshadri

AbstractÐReal-time database systems are expected to rely heavily on indexes to speed up data access and, thereby, help more

transactions meet their deadlines. Accordingly, high-performance index concurrency control (ICC) protocols are required to prevent

contention for the index from becoming a bottleneck. In this paper, we develop real-time variants of a representative set of classical

B-tree ICC protocols and, using a detailed simulation model, compare their performance for real-time transactions with firm deadlines.

We also present and evaluate a new real-time ICC protocol called GUARD-link that augments the classical B-link protocol with a

feedback-based admission control mechanism. Both point and range queries, as well as the undos of the index actions of aborted

transactions are included in the scope of our study. The performance metrics used in evaluating the ICC protocols are the percentage

of transactions that miss their deadlines and the fairness with respect to transaction type and size. Our experimental results show that

the performance characteristics of the real-time version of an ICC protocol could be significantly different from the performance of the

same protocol in a conventional (nonreal-time) database system. In particular, B-link protocols, which are reputed to provide the best

overall performance in conventional database systems, perform poorly under heavy real-time loads. The new GUARD-link protocol,

however, although based on the B-link approach, delivers the best performance (with respect to all performance metrics) for a variety

of real-time transaction workloads, by virtue of its admission control mechanism. In fact, GUARD-link provides close to ideal fairness in

most environments. These and other results presented here represent the first work in the area of real-time index concurrency control.

Index TermsÐReal-time database, index concurrency control, B-tree, B-link tree.

æ

1 INTRODUCTION

REAL-TIME database systems (RTDBS) cater to data-
intensive applications that are faced with timing

constraints, typically in the form of transaction completion
deadlines. Such applications include electronic commerce,
stock trading, mobile computing, network management,
and factory automation. For example, in the Flash Auction
at http://www.firstauction.com, a bid is valid only
if registered in the database within five minutes of the
registry of the previous bid.

The ability of an RTDBS to meet transaction timing

constraints depends on several factors such as the database

system architecture, the processor, and disk speeds, etc. For

a given system configuration, however, the primary real-

time performance determinants are the policies used for

scheduling transactions at the system resources. These

policies determine when service is provided to a transaction

and, therefore, directly impact whether or not a transaction

completes before its deadline.
Research on developing real-time database scheduling

policies has been underway for over a decade (see [5], [34]

for surveys). In particular, high-performance policies for

priority assignment, processor and disk scheduling, mem-

ory management, data concurrency control, distributed

commit processing, etc., have been developed. A notable

lacuna in this research is that there has been no study of the

role of index concurrency control in determining real-time

performance. This lacuna is rather surprising since it

appears highly reasonable to expect that RTDBS will make
extensive use of indexes to quickly access the base data and,
thereby, help more transactions meet their deadlines. For
example, it is estimated that the rapid spread of cellular
communication technology will soon result in database
systems having to support environments with a large
number of highly mobile users [14]. Due to the users
mobility, their interactions with the database system have to
be processed in real-time and indexes will be essential for
quickly processing frequent operations such as location
updates (ªI am hereº) and location queries (ªwhere is Xº).

With heavy usage of the index, the contention among
transactions concurrently using the index may itself form
the primary performance bottleneck, rather than other
forms of resource contention. In particular, note that while
contention for the physical resources can always be reduced
by purchasing more and/or faster hardware, there exists no
equally simple mechanism to reduce index contention since
the base data and hence indexes cannot be ªmanufactured.º
Similarly, even in environments where the contention on
base data is largely absent due to transactions accessing
mostly disjoint sets of data, index contention may continue
to pose performance problems since a common access
structure is used to access this base data. Therefore, in this
sense, index contention is a more ªfundamentalº determinant of
RTDBS performance as compared to other shared system
resources.

For the above situation, employing an ªoff-the-shelfº
index concurrency control (ICC) protocol that has not been
specifically designed for the real-time environment would
only aggravate the problem and result in many more
transactions missing their deadlines. Therefore, there is a
clear need for developing ICC protocols that are tuned to the
objectives of the real-time domain. We address this issue
here.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 3, MAY/JUNE 2000 429

. J.R. Haritsa is with the Database Systems Lab, SERC, Indian Institute of
Science, Bangalore 560012, India. E-mail: haritsa@dsl.serc.iisc.ernet.in.

. S. Seshadri is with Lucent Bell Labs, 600 Mountain Ave., Murray Hill, NJ
07974. E-mail: seshadri@research.bell-labs.com.

Manuscript received 8 Dec. 1997; accepted 28 July 1999.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 106013.

1041-4347/00/$10.00 ß 2000 IEEE



1.1 Real-Time Index Concurrency Control

While a large variety of index structures have been
proposed in the literature, commercial database systems
typically use B-tree indexing [4] as the preferred access
method. In particular, they implement the B� variant in
which all data key values are stored at the leaf nodes of the
index. In the remainder of this paper, our usage of the term
B-tree refers to this variant.

A number of protocols have been proposed in the
literature for maintaining the consistency of the B-tree index
in the face of concurrent transaction accesses (e.g., [2], [3],
[16], [17], [18], [20], [21], [23], [30], [28]). The performance of
a representative set of these protocols was profiled in [15],
[31] and their results indicate that B-link protocols [18] are
the best choice. These studies were conducted in the context
of a conventional DBMS with transaction throughput being
the performance metric. Therefore, their results are not
directly applicable to RTDBS where performance is mea-
sured in terms of the ability of the system to complete
transactions before their deadlines expire, necessitating a
fresh investigation of this issue.

There are two major issues that need to be explored with
regard to real-time index concurrency control. First, how do
we adapt the conventional ICC protocols to the real-time
domain? Second, how do these real-time variants compare
in their performance? In this paper, we address these
questions in the context of real-time applications with
ªfirm-deadlinesº [10]Ðfor such applications, completing a
transaction after it has expired is of no utility and may even
be harmful.1 Therefore, transactions that miss their dead-
lines are ªkilledºÐthat is, immediately aborted and
permanently discarded from the RTDBS without being
executed to completion. Accordingly, the performance
metric is KillPercent, the steady-state percentage of killed
transactions.2

1.2 Contributions

For the above environment, we develop real-time variants
of the set of classical ICC protocols considered in [15], [31]
and using a detailed RTDBS simulation model, evaluate
their performance for a variety of transaction workloads
and index contention environments. We also present and
evaluate a new real-time ICC protocol called GUARD-link
that augments the real-time variant of the B-link protocol
with a feedback-based admission control mechanism called
GUARD. To the best of our knowledge, our results
represent the first work in the area of real-time index
concurrency control.

A feature of our study is the level of detail in the index
processing modelÐit includes multiple index action trans-
actions, range operations, and undos of aborted index
operations. In contrast, in [15], [31] each transaction

consisted of only a single point index operation. Further,
apart from KillPercent, an additional performance-related
issue that we consider is the fairness of the protocols, in
terms of bias for or against a particular class of transactions,
an issue that has largely been ignored in most RTDBS
research. Our motivation for including these additional
complexities are described below.

1.2.1 Transaction and Index Model

The KillPercent performance metric applies to entire
transactions, not to individual index actions. Therefore, in
our model each user transaction consists of multiple index
actions and mechanisms for ensuring transaction serial-
izability are implemented. Further, both point (single key)
index operations and range (multiple key) index operations
are supported since range queries form an important
component of index usage.

In an RTDBS, transactions are usually assigned priorities
to reflect to the system resources each transaction's urgency
relative to other concurrently executing transactionsÐthe
Earliest Deadline policy [19], for example, assigns priorities
in the order of transaction deadlines. When these priorities
are used in resolving data conflicts, a lower priority
transaction is usually forcibly aborted3 if it happens to
possess the data item required by a higher priority
transaction.

In addition to the aborts caused by the priority resolution
of data conflicts, transaction aborts also arise in a firm-
deadline RTDBS due to transactions missing their deadlines
and, therefore, being killed. Taken as a whole, transaction
aborts are much more common in RTDBS than in conventional
DBMS. (In a conventional DBMS, aborts are usually
resorted to only to resolve data deadlocks and deadlocks
occur very infrequently in practice [33].)

Since aborts are common in an RTDBS and since the
index actions performed by an aborted transaction need to
be undone, the processing of these ªundosº may have a
significant performance impact. Therefore, we explicitly
model the undos of the index actions of aborted
transactions.

1.2.2 Protocol Fairness

Characterizing the fairness performance of RTDBS proto-
cols, in terms of bias for or against a particular class of
transactions, is important for the following reasons:

1. Fairness is inherently important in RTDBS that serve
ªpublic applicationsº such as stock markets and
telecommunications, wherein, it is essential to treat
all users alike.

2. Evaluating fairness helps to identify situations,
wherein, one protocol outperforms another not
because it is designed better, but because it chooses
to selectively complete ªeasierº transactions (for
example, short transactions or read-only
transactions). This kind of ªcheatingº is particularly
possible in the RTDBS domain since, as mentioned
before, the performance of these systems is typically
measured only in terms of the number of transac-

430 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 3, MAY/JUNE 2000

1. Alternative kinds of real-time applications are ªhard-deadlineº
applications, where all transaction deadlines have to be met, and ªsoft-
deadlineº applications, where even transactions that miss their deadlines
are required to be executed to completion. We choose to selectively
investigate firm-deadline applications here because database systems for
efficiently supporting hard deadline applications are considered to be
infeasible [32], while soft deadline applications are difficult to characterize
since they have multiple real-time metricsÐnumber of killed transactions
and the completion tardiness of late transactions.

2. Or, equivalently, the percentage of missed deadlines. 3. The aborted transaction may subsequently be restarted by the system.



tions that are successfully completed, ignoring the
characteristics of the completed transactions.

To address the above observations, we consider two
fairness metrics in our study: SizeFairness and TypeFairness,
which measure the bias exhibited by a protocol based on
transaction size and transaction type, respectively.

1.3 Organization

The remainder of this paper is organized as follows: An
overview of the major B-tree ICC protocols proposed in the
literature is presented in Section 2. The issues involved in
incorporating real-time priorities in ICC protocols and
guaranteeing transaction serializability are discussed in
Section 3. GUARD-link, our new admission-control-based
ICC protocol is introduced in Section 4. The performance
model is described in Section 5 and the results of the
simulation experiments are highlighted in Section 6. Finally,
in Section 7, we summarize the conclusions of the study.

2 B-TREE ICC PROTOCOLS

In this section, we present an overview of the major ICC
protocols that have been presented in the literature. We
assume, in the following discussion, that the reader is
familiar with the basic features and operations of B-tree
index structures [4], [31].

The transactional operations associated with B-trees are
search, insert, delete, and append of key values. Search, insert,
and delete are the traditional index operations. The append
operation is a special case of the insert operation, wherein,
the inserted key is larger than the maximum key value
currently in the index. In this case, the new key will always
be inserted in the rightmost leaf node of the B-tree. We
make the distinction between appends and generic inserts
since, as shown later in the paper, the performance
implications when appends are frequent4 are quite different
since the rightmost leaf node of the index effectively
becomes a ªhot-spot.º Finally, note that search operations
arise out of transaction reads while the insert, delete, and
append operations arise out of transaction updates.

The basic maintenance operations on a B-tree are split
and merge of index nodes. In practical systems, splits are
initiated when a node overflows while merges are initiated
when a node becomes empty. An index node is considered
to be safe for an insert if it is not full and safe for a delete if
it has more than one entry (index nodes are always safe for
searches since they do not modify the index structure). A
split or a merge of a leaf node propagates up the tree to the
closest (with respect to the leaf) safe node in the path from
the root to this leaf. If all nodes from the root to the leaf are
unsafe, the tree increases or decreases in height. The set of
nodes that are modified in an insert or delete operation is
called the scope of the update.

B-tree ICC protocols maintain index consistency in the
face of concurrent transaction accesses and updates. This is
achieved through the use of locks on index nodes. Index
node locks are typically implemented in commercial DBMS
using latches, which are ªfast locksº [23]. This optimization

is taken into account in our performance study, as discussed
later in Section 3. An important aspect of latches is that
deadlocks involving latches are not detected and ICC
protocols have to therefore ensure that latch deadlocks
can never occur.

The index lock modes discussed in this paper and their
compatibility relationships are given in Table 1. In this
table, IS, IX, SIX and X are the standard ªintention share,º
ªintention exclusive,º ªshare and intention exclusive,º and
ªexclusiveº locks, respectively [7].

Some B-tree ICC protocols use a technique called lock-
coupling in their descent from the root to the leaf. An
operation is said to lock-couple when it requests a lock on
an index node while already holding a lock on the node's
parent. If the new node is found to be safe, all locks held on
any ancestor are released.

Another technique used by the ICC protocols for their
descent from the root to the leaf is optimistic lock-coupling.
An operation is said to optimistically lock couple if,
regardless of safety, the lock at each level of the tree is
released as soon as the appropriate child has been locked.

There are three well-known classes of B-tree ICC
protocols: Bayer-Schkolnick, Top-Down, and B-link. Each
class has several flavors and we discuss only a representa-
tive set here.

2.1 Bayer-Schkolnick Protocols

We consider three protocols in the Bayer-Schkolnick class
[2] called B-X, B-SIX, and B-OPT, respectively. In all these
protocols, readers descend from the root to the leaf using
optimistic lock-coupling with IS locks. They differ, how-
ever, in their update protocols. In B-X, updaters lock-couple
from the root to the leaf using X locks. In B-SIX, updaters
lock-couple using SIX locks in their descent to the leaf. On
reaching the leaf, the SIX locks in the updaters scope are
converted to X locks. In B-OPT, updaters make an
optimistic lock-coupling descent to the leaf using IX locks.
After the descent, updaters obtain a X lock at the leaf level
and complete the update if the leaf is safe. Otherwise, the
update operation is restarted, this time using SIX locks.

2.2 Top-Down Protocols

In the Top-Down class of protocols (e.g. [17], [24]), readers
use the same locking strategy as that of the Bayer-
Schkolnick protocols. Updaters, however, perform prepara-
tory splits and merges during their index descent when an
inserter encounters a full node it performs a preparatory
node split, while a deleter merges nodes that have only a
single entry. This means that unlike updaters in the Bayer-
Schkolnick protocols, who essentially update the entire
scope at one time, the scope update in Top-Down protocols

HARITSA AND SESHADRI: REAL-TIME INDEX CONCURRENCY CONTROL 431

4. For example, when tuples are inserted into a relation in index key
order.

TABLE 1
Index Node Lock Compatibility Table



is split into several smaller, atomic operations. In particular,
a lock on a node can be released once its child is either
found to be safe or made safe by the preparatory split, or
merge mentioned above.

We consider three protocols in the Top-Down class
called TD-X, TD-SIX, and TD-OPT, respectively: In TD-X,
updaters lock-couple from the root to the leaf using X locks.
In TD-SIX, updaters lock-couple using SIX locks. These
locks are converted to X-locks if a split or merge is made. In
TD-OPT, updaters optimistically lock-couple using IX locks
in their descent to the leaf and then get an X lock on the leaf.
If the leaf is unsafe, the update operation is restarted from
the index root, using SIX locks for the descent.

2.3 B-link Protocols

A B-link tree [17], [18], [28] is a modification of the B-tree
that uses links to chain together all nodes at each level of the
B-tree. Specifically, each node in a B-link tree additionally
contains a high key (the highest key of the subtree rooted at
this node) and a link to the right sibling, which are used
during a node split or a node merge. A node is split in two
phases: a half-split followed by the insertion of an index
entry into the appropriate parent. Operations arriving at a
newly split node with a search key greater than the high key
use the right link to get to the appropriate node. Such a
sideways traversal is called a link-chase. Merges are also
done in two steps [17], via a half-merge followed by the
appropriate entry deletion at the next higher level.

In B-link ICC protocols, readers and updaters do not lock-
couple during their tree descent. Instead, readers descend
the tree using IS locks, releasing each lock before getting a
lock on the next node. Updaters also behave like readers
until they reach the appropriate leaf node. On reaching the
leaf, updaters release their IS lock and then try to get an X
lock on the same leaf. After the X lock is granted, they may
either find that the leaf is the correct one to update or they
have to perform link-chases to get to the correct leaf.
Updaters use X locks while performing all further link
chases, releasing the X lock on a node before asking for the
next. If a node split or merge is necessary, updaters perform
a half-split or half-merge. They then release the X lock on
the leaf and propagate the updates, using X locks, to the
higher levels of the tree, holding at most one X lock at a
time.

As discussed above, B-link protocols limit each sub-
operation to nodes at a single level. This is in contrast to
Top-Down protocols which break down scope updating
into sub-operations that involve nodes at two adjacent levels
of the tree. B-link protocols also differ from Top-Down
protocols in that they do their updates in a bottom-up
manner. We consider only one B-link protocol here which
exactly implements the above description. This protocol is
referred to as the LY protocol in [31] and was found to have
the best performance of all the above-mentioned protocols
with respect to transaction throughput.

3 REAL-TIME INDEX CONCURRENCY CONTROL

In Section 2, we described the functioning of the various
classical ICC protocols. We now move on to considering the
major issues that arise when incorporating these protocols

in an RTDBS environment. In particular, we discuss how
real-time priorities are incorporated, how transaction serial-
izability is ensured and, finally, how the undos of the index
actions of aborted transactions are implemented.

3.1 Priority Incorporation

Satisfaction of transaction timing constraints is the primary
goal in real-time database systems. Therefore, the schedul-
ing policies at the various resources (both physical and
logical) in the system can be reasonably expected to be
priority-driven with the priority assignment scheme being
tuned to minimize the number of killed transactions. The
ICC protocols described above do not take transaction
priorities into account. This may result in high priority
transactions being blocked by low priority transactions, a
phenomenon known as priority inversion in the real-time
literature [29]. Priority inversion can cause the affected
high-priority transactions to miss their deadlines, and is
clearly undesirable. We, therefore, need to design
preemption schemes for ICC protocols in order to adapt
them to the real-time environment.

We have incorporated priority into all the ICC protocols
considered in our study in the following manner: When a
transaction requests a lock on an index node that is held by
higher priority transactions in a conflicting lock mode, the
requesting transaction waits for the node to be released (the
wait queue for an index node is maintained in priority
order). On the other hand, if the index node is currently
held by only lower priority transactions in a conflicting lock
mode, the lower priority transactions are preempted and the
requesting transaction is awarded the lock. The lower
priority transactions then reperform their current index
operation (not the entire transaction).

Locks on index nodes are typically held only for a short
duration (in contrast to data locks which are usually
retained until EOT) and, as mentioned earlier, commercial
database systems implement such short duration locks as
latches [23]. In our simulation model, index node locks are
also implemented as latches. Since latches are held only for
a short duration, it may be questioned as to whether adding
preemption to latches is really necessary. The reason latch
preemption can make a difference is the following: The time
for which computation is performed on a node is usually
much shorter than the time it takes to retrieve a node from
disk. Given this observation, if two transactions conflict on a
parent node but require access to different children, then, in
the absence of preemption, a higher priority transaction
may have to wait for a lower priority transaction while this
lower priority transaction retrieves its desired child from
the disk. Our experiments (Section 6) show that adding
preemption does have an appreciable performance effect.

The only exception to the above procedure is the
following: In all our protocols, a transaction starts making
a physical update only after all the required nodes are in
memory. Therefore, when a low priority transaction is in
the midst of physically making updates to a node that is
currently locked by it, we do not preempt it (to avoid
undoing the physical updates) until it has completed these
updates and released the lock on the updated node. Since
this operation does not require I/Os, we expect that the
effect of having these extremely short priority inversion
periods is negligible.

432 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 3, MAY/JUNE 2000



3.2 Transaction Serializability

As mentioned in Section 1, the KillPercent performance
metric applies over entire transactions, not on individual
index actions. We, therefore, need to consider transactions
which consist of multiple index actions and ensure that
transaction serializability is maintained. In our study, we
use a real-time variant of the well-known ARIES Next-Key-
Locking protocol [21] to provide transaction data concur-
rency control (DCC). In the following discussion of this
protocol, we use the term ªkeyº to refer to key values in the
index and the term ªnext keyº (with respect to a key value k)
to denote the smallest key value in the index that is � k.

Our variant of the Next-Key-Locking protocol works as
follows: A transaction that needs to perform an index
operation with respect to a specific key (or key range) first
descends the tree to the corresponding leaf. It then obtains
the appropriate lock(s) on the associated key(s) from the
database concurrency control manager. For point searches,
an S lock is requested on the search key value (or the next
key with respect to the search key, if the search key is not
present). A range search operation has to acquire S locks on
each key that it returns. In addition, it also acquires an S lock
on the next key with respect to the last (largest) key in the
accessed range. Inserts acquire an X (exclusive) lock on the
next key with respect to the inserted key, then they acquire
an X lock on the key to be inserted, insert the key, and then
release the lock on the next key. Deletes, on the other hand,
acquire an X lock on the next key with respect to the deleted
key, acquire an X lock on the key being deleted, delete the
key, and then release the lock on the deleted key.

In traditional Next-Key-Locking, all the above mentioned
locks (unless otherwise indicated) are acquired as needed
and released only at the end of the transaction (i.e., strict
2PL). For our study, we use a real-time version of 2PL called
2PL-HP [1] which incorporates a priority mechanism
similar to that described above for the ICC protocols.5 An
important difference, however, is that transactions restarted
due to key-value-lock preemptions have to commence the
entire transaction once again, not just the current index
operation.

We wish to clarify here that serializability considerations
are relevant with regard to the data locks discussed above,
not the latches discussed in the previous subsection whose
goal is to maintain physical consistency of index nodes
during tree traversal.

3.3 Undo Transactions

As mentioned in Section 1, transactions in an RTDBS may
be aborted due to priority resolution of data conflicts (the
2PL-HP protocol mentioned above), or due to being killed.
For aborted transactions, it is necessary to undo any effects
they may have had on the index structure. We, hereafter,
use the term undo transaction to refer to transactions that

require undoing of their index actions. The undo transac-
tion removes all the changes that the original transaction
had made on the index structure and also releases all its
data locksÐwe explicitly model these operations in our
study.

To ensure that undo transactions complete quickly they
are treated as ªgoldenº transactions, that is, they are
assigned higher priority than all other transactions execut-
ing in the system. Among the undo transactions, the relative
priority ordering is the same as that existing between them
during their earlier (preabort) processing.

4 INCORPORATING ADMISSION CONTROL

In Section 3, we discussed how adding priority cognizance
is important in the RTDBS context to maximize the number
of transactions deadlines that are met. We move on in this
section to determining why augmenting priority cognizance
with mechanisms for appropriately limiting the system
multiprogramming level could help the RTDBS to further
reduce the number of killed transactions.

In an RTDBS, a transaction that is eventually killed,
nonetheless, makes use of the physical and logical resources
during its sojourn in the system. This resource usage may
result in even more transactions missing their deadlines, that
is, there may be a ªcascadingº effect. Therefore, if it was
possible to design an admission control policy that would
ªmagicallyº recognize (at entry time itself) and shut out
those transactions that will eventually miss their deadlines,
then it appears likely that the overall system performance
would improve. Based on this observation, we have
designed an admission policy called GUARD (Gatekeeping
Using Adaptive Earliest Deadline), which is described in
Section 4.1.

4.1 The GUARD Admission Policy

The GUARD admission policy is a modified version of the
Adaptive Earliest Deadline (AED) priority assignment me-
chanism proposed in [12]. The mechanism is based on the
following observation. The Earliest Deadline (ED) priority
assignment policy [19] (transactions with earlier deadlines
have higher priority than transactions with later deadlines)
minimizes the number of killed transactions when the
system is lightly loaded. At heavier loads, however, its
performance steeply degrades; in fact, it has been observed
to perform worse than even random scheduling in this
region. The goal of the GUARD policy is to, therefore,
stabilize the overload performance of ED without sacrifi-
cing its light-load virtues. It does this by using a feedback
process to estimate the number of transactions that are
sustainable under an ED schedule, as explained below.

4.1.1 Group Assignment

In the GUARD policy, all transactions entering the system
are dynamically split into two groups, ADMIT and DENY, as
illustrated in Fig. 1. The assignment of transactions to
groups is done in the following manner: Each newly-
arrived transaction T is assigned a random integer key, IT ,
and then inserted into a IT -ordered list of transactions. The
position posT of this transaction in the list is noted. If the
value of posT is less than or equal to ADMITcapacity,

HARITSA AND SESHADRI: REAL-TIME INDEX CONCURRENCY CONTROL 433

5. Earlier studies of DCC protocols in firm RTDBS have shown optimistic
algorithms to usually perform better than locking protocols (e.g., [10]),
especially in environments with significant data contention. However, since
almost all the experiments discussed here consider only negligible data
contention (but significant index contention) situations, the choice of DCC
mechanism has negligible effect on performance and, therefore, for
simplicity, a locking protocol has been used. Further, open problems
remain with respect to integrating optimistic DCC schemes with index
management [9], [22].



which is a dynamic control variable of the GUARD policy,
the transaction is assigned to the ADMIT group; otherwise, it
is assigned to the DENY group. A transaction is removed
from the transaction list either when it completes or when
its deadline expires.

The goal of the splitting process is to collect in the ADMIT

group the largest set of transactions that can be completed
before their deadlines. It tries to achieve this by dynamically
controlling the size of the ADMIT group, using the
ADMITcapacity variable. Then, by having an Earliest
Deadline priority ordering within the ADMIT group, the
algorithm incorporates the observation discussed earlier.
Transactions that cannot be accommodated in the ADMIT

group are estimated to miss their deadlines and are,
therefore, assigned to the DENY group. These transactions
are denied entry to the system and are eventually discarded
when their deadlines expire.

4.1.2 Feedback Process

The key to the successful operation of the above mechanism
is the proper setting of the ADMITcapacity control
variable. In GUARD, the setting is chosen using a feedback
process that has two (integer) parameters, ADMITbatch
and ALLbatch, and uses two system output measure-
ments, HitRatio(ADMIT) and HitRatio(ALL). The
process operates as follows: Assume that the ADMITcapa-
city value has just been set. The next set of ADMITbatch
transactions that are assigned to the ADMIT group are
marked with a special label. At the RTDBS output, the
completion status (in-time or killed) of these specially-
marked transactions is monitored. When the last of these
ADMITbatch transactions exits the system, HitRa-

tio(ADMIT) is measured as the fraction of these transac-
tions that were in-time. Concurrently, HitRatio(ALL) is
measured as the fraction of the last ALLbatch transactions
that arrived at the system (including those that were denied
entry) that turned out to be in-time.

Using the above measurements, and denoting the
number of transactions currently in the system by Num-

Trans, the ADMITcapacity control variable is reset with
the following two-step computation:
Step 1

ADMITcapacity :�
HitRatio�ADMIT � �ADMITcapacity � 1:05d e:

Step 2

ifHitRatio�ALL� < 0:95 then

MaxCapacity :� HitRatio�ALL� �NumTrans � 1:25d e
ADMITcapacity :�Min�ADMITcapacity;MaxCapacity�:

4.1.3 Computation Rationale

We now describe the rationale for the above computation of
the ADMITcapacity control variable.

Step 1 of the computation incorporates the feedback
process in the setting of ADMITcapacity. By conditioning
the new ADMITcapacity setting based on the observed hit
ratio in the ADMIT group, the size of the ADMIT group is
adaptively changed to achieve a 1.0 hit ratio. Our goal,
however, is not just to have a HitRatio(ADMIT) of 1.0,
but to achieve this goal with the largest possible transaction
population in the ADMIT group. It is for this reason that
STEP 1 includes a 5 percent expansion factor. This
expansion factor ensures that the ADMITcapacity is
steadily increased until the number of transactions in the
ADMIT group is large enough to generate a
HitRatio(ADMIT) of 0.95, that is, a five percent kill level.
At this point, the transaction population size in the ADMIT
group is close to the ªrightº value, and the
ADMITcapacity remains stabilized at this setting (since
0:95 � 1:05 ' 1:0).

Step 2 of the ADMITcapacity computation is necessary
to take care of the following special scenario. If the system
experiences a long period where HitRatio(ALL) is close
to 1.0 due to the system being lightly loaded, it follows that
HitRatio(ADMIT) will be virtually 1.0 over this extended
period. In this situation, the ADMITcapacity can become
very large due to the 5 percent expansion factor, that is,
there is a ªrunawayº effect. If the transaction arrival rate
now increases such that the system becomes overloaded
(signaled by HitRatio(ALL) falling below 0.95), incre-
mentally bringing the ADMITcapacity down from its
artificially high value to the right level could take a
considerable amount of time (with the feedback process of
STEP 1). This means that the system may enter the unstable
high-miss region of Earliest Deadline as every new
transaction will be assigned to the ADMIT group due to
the high ADMITcapacity setting. To prevent this from
occurring, MaxCapacity, an upper bound on the ADMIT-
capacity value, is used in STEP 2 to deal with the
transition from a lightly-loaded condition to an overloaded
condition. The MaxCapacity is set to be 25 percent greater
than an estimate of the ªrightº ADMITcapacity value,
which is derived by computing the number of transactions
that are currently making their deadlines. (The choice of
25 percent is based on our expectation that the estimate is

434 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 3, MAY/JUNE 2000

Fig. 1. GUARD Admission Policy.



fairly close to the desired value.) After the ADMITcapa-

city is quickly brought down in this fashion to near the
appropriate setting, the HitRatio(ADMIT) value then
takes over as the ªfine tuningº mechanism in determining
the ADMITcapacity setting.

At system initialization time, ADMITcapacity is set
equal to the database administrator's estimate of the
number of concurrent transactions that the RTDBS can
handle without missing deadlines. Note that this estimate
does not have to be accurate; even if it were grossly wrong,
it would not impact system performance in the long run.
The error in the estimate only affects how long it takes the
ADMITcapacity control variable to reach its steady state
value at system startup time.

4.2 Comparison with the AED Policy

As mentioned at the beginning of Section 4, the GUARD
admission policy is based on the AED priority assignment
policy of [12]. The primary difference between GUARD and
AED is the following: In GUARD, transactions assigned to
the DENY group are not permitted to enter the system. That
is, they are ªput on the shelfº until their deadline expires
and are not allowed to use any of the system resources.
However, in AED, even these transactions are allowed to
utilize the system, albeit with a priority less than that of all
those belonging to the ADMIT group. Further, a Random-
Priority assignment is used for transactions within the
DENY group in the AED policy.

If AED's group assignment is working correctly, most of
the transactions of the DENY group will end up missing
their deadlines as anticipated and will, therefore, be finally
aborted. Further, these transactions may be repeatedly
aborted during their sojourn in the system due to data
conflicts with the higher priority transactions of the ADMIT
group. A problem with these aborts is that all the index
operations completed by the transaction before the abort
have to be undone, thereby imposing an overhead on the
system. It is for this reason that we choose to have an
admission policy since transactions that are denied entry
into the system obviously do not attract any undo overhead.

We would also like to note here that in our earlier work
[6], a different admission policy was utilizedÐthis policy
implemented a simple feedback mechanism that monitored
the utilization at all the system resources and prevented
new transactions from entering the system whenever the
utilization of the bottleneck resource exceeded a prescribed
amount. For a variety of reasons explained in detail in [26],
the GUARD approach is preferable to our earlier
p o l i c y Ð t h i s e x p e c t a t i o n w a s a l s o c o n f i r m e d
experimentally.

4.3 Integration with ICC Protocols

As mentioned above, the GUARD policy can be applied in
conjunction with any of the classical ICC protocols. Due to
space limitations, we will restrict our attention in this paper
to the combination of the GUARD policy with the real-time
version of B-link, which we will hereafter refer to as the
GUARD-link protocol. The results for other combinations
are available in [25].

5 SIMULATION MODEL AND METHODOLOGY

To evaluate the performance of the various real-time ICC
protocols described in the previous sections, we developed
a detailed simulation model of a firm-deadline, real-time
database system (as mentioned Section 1, firm deadlines
means that transactions which miss their deadlines are
immediately killed). The simulation model is described in
the remainder of this section.

The organization of our RTDBS model is based on a
combination of the real-time database model of [10] and the
B-tree system model of [31], and is shown in Fig. 2. There
are six components in the model: The Source generates
transactions, the Transaction Manager models the execution
of transactions, the Concurrency Control Manager controls
access to shared data, the B-tree Manager implements the
B-tree structure and the ICC protocols, the Resource Manager
models the physical resources in the system, and finally, the
Sink gathers statistics on transactions exiting from the
RTDBS.

HARITSA AND SESHADRI: REAL-TIME INDEX CONCURRENCY CONTROL 435

Fig. 2. Simulation Model.



A summary of the parameters used in the model are
given in Table 2. The following subsections describe the
workload generation process, the B-tree model, and the
hardware resource configuration.

5.1 Transaction Workload Model

Transactions arrive in a Poisson stream and each transac-
tion has an associated deadline. A transaction consists of a
sequence of index access operations such as search (point or
range), insert, delete, or append of a key value. After each
index operation, the corresponding data access is made
after obtaining the appropriate locks (for a range search, the
data access is made for each key-value in the range that is
found in the tree). The data access itself is not explicitly
modeled, but is assumed to take a period of time equal to
one disk I/O. A transaction that is restarted due to a data
conflict makes the same index accesses as its original
incarnation. If a transaction has not completed by its
deadline, it is immediately killed.

The ArrRate parameter specifies the mean rate of
transaction arrivals. The number of index operations made
by each transaction varies uniformly between 0.5 and
1.5 times the value of TransSize. The overall proportion of
searches, inserts, deletes, and appends in the workload is
given by the SearchProb, InsertProb, DeleteProb, and Append-
Prob parameters, respectively. While generating a new
transaction, the type of each operation in the transaction
is chosen according to this probability distribution. As
mentioned earlier, searches can be either point or range
operations, whereas all updates are point operations. For
range searches, rather than specifying a range from the
domain space, we specify it in terms of the number of keys
that are to be retrieved. This number is set using the
RangeKeys parameter.

Transactions are assigned deadlines with the formula
DT � AT � SF �RT , where DT , AT and RT are the deadline,
arrival time and resource time, respectively, of transaction
T , while SF is a slack factor. The resource time is the total
service time at the resources that the transaction requires for
its data processing. The slack factor is a constant that
provides control over the tightness/slackness of deadlines.6

5.2 B-Tree Model

For simplicity, only a single B-tree is modeled and all
transaction index accesses are made to this tree. The initial
number of keys in the index is determined by the InitKeys
parameter. Each index node corresponds to a single disk
block and the MaxFanout parameter gives the node key
capacity, that is, the maximum number of keys in a node.
We assume that all keys are of the same size, and that the
indexed attribute is a candidate key of the source relation. If
an update transaction is aborted, any index modifications
that it has made have to be undone to maintain index
consistency.

5.3 Resource Model

The physical resources in our model consist of processors,
memory, and disks. There is a single queue for the CPUs
and the service discipline is Preemptive-Resume, with
preemptions being based on transaction priorities. Each of
the disks has its own queue and is scheduled with a priority
Head-of-Line policy.

Buffer management is implemented using a two-level
priority LRU mechanism. Higher priority transactions steal
buffers from the lowest priority transaction that currently
owns one or more buffers in the memory pool. The least-
recently used clean buffer of this transaction is the one
chosen for reallocation. If all its buffers are dirty, the least-
recently used dirty buffer is flushed to disk and then
transferred to the high priority transaction. The lowest
priority transaction itself uses a similar LRU mechanism
within the set of buffers currently allocated to it.7

The NumCPUs, NumDisks, and NumBufs parameters
quantitatively determine the resource configuration. The
processing cost parameters for each type of index operation
are also given in Table 2.

5.4 Priority Assignment

For simplicity, we assume here that all transactions have the
same ªcriticalityº or ªvalueº [32].8 Therefore, the goal of the
priority assignment is to minimize the number of killed
transactions.

The transaction priority assignment used in all the
experiments reported here is Earliest Deadline [19]. Specifi-
cally for the GUARD-link protocol, this priority assignment
is operational only within the set of transactions assigned to
the ADMIT group, as described in Section 4.1.

436 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 3, MAY/JUNE 2000

TABLE 2
Model Parameters

6. Although the workload generator utilizes information about transac-
tion resource requirements in assigning deadlines, the RTDBS system itself
has no access to such information since this knowledge is usually hard to
come by in practical environments.

7. Pinned buffers are, of course, not eligible to be replaced.
8. For applications with transactions of varying criticalities, one of the

value-cognizant priority assignment mechanisms proposed in the literature
can be utilizedÐsee [11] for a detailed study of this issue, including a value-
based extension of AED called Hierarchical Earliest Deadline [11].



5.5 Performance Metrics

The primary performance metric of our experiments is
KillPercent, which is the percentage of input transactions
that the system is unable to complete before their deadlines.
A long-term operating region where the KillPercent is high
is obviously unrealistic for a viable RTDBS. Exercising the
system to high kill percentages (as in our experiments),
however, provides valuable information on the response of
the protocols to brief periods of stress loading. All the
KillPercent graphs of this paper show mean values that
have relative half-widths about the mean of less than
10 percent at the 90 percent confidence level, with each
experiment having been run until at least 20,000 transac-
tions were processed by the system. Only statistically
significant differences are discussed here.

Apart from the KillPercent metric, we also evaluate two
additional performance metrics related to fairness: Size-
Fairness (SF) and TypeFairness (TF). The SF factor captures
the extent to which bias is exhibited towards transactions
based on their sizes and is evaluated using the formula:

SF � Average Size of Inÿ Time Transactions
Average Size of Input Transactions

In similar fashion, the TF factor captures the extent to which
bias is exhibited towards transactions based on their type.
We identify two types of transactions, read-only and
updateÐread-only transactions are composed exclusively
of search index actions while update transactions include at
least one update (insert, delete, or append) index action. TF
is computed with the following formula:

TF �
No: of InÿTime ReadÿOnly Transactions

No: of InÿTime Transactions
No: of Input ReadÿOnly Transactions

No: of Input Transactions:

With the above formulations, a protocol is ideally fair with
respect to these metrics if SF and TF are both equal to one.

The simulator was instrumented to generate a number of
other statistical information, including resource utilizations,
number of index node splits and merges, number of link-
chases for B-link protocols, number of restarts for optimistic
protocols, etc. These secondary measures help to explain the
performance behavior of the ICC protocols under various
workloads and system conditions.

5.6 Baseline Parameter Settings

The default settings used in our experiments for the
workload and system parameters are listed in Table 2.
They were chosen to be in accordance with those used in
the earlier ICC [31] and RTDBS [10] studies. While the
absolute performance profiles of the ICC protocols would of
course change if alternative parameter settings are used, we
expect that the relative performance of these protocols will
remain qualitatively similar since the model parameters are
not protocol-specific.

The initial B-tree is built over a key space that consists of
integer values between 1 and 300,000. A random permuta-
tion of all the keys that are multiples of three in this key
space is inserted into the B-tree, that is, the initial number of
keys in the B-tree is 100,000. The fanout (key capacity) of
each node of the B-tree is set to 300. With this fanout, the

resultant initial tree is three levels deep, consisting of three
internal nodes and 506 leaf nodes. The tree nodes are
assumed to be uniformly distributed across all the disks.

Search operations can use all key values in the key space.
In contrast, inserts can only use key values that are not exact
multiples of three, whereas deletes can only use the
remaining keys (i.e., exact multiples of three). This opera-
tion-to-key assignment scheme is designed to ensure that
inserts and deletes do not interfere at the level of key values.
Finally, the keys for appends are chosen sequentially from
300,001 onwards.

For all the experiments described here, unless explicitly
mentioned otherwise, the resource parameter settings are:
NumCPUs � 1, NumDisks � 8, and NumBufs � 250. For
the GUARD-link protocol, the feedback-related parameter
settings are the same as those used in [12]: ADMITbatch � 20
and ALLBatch � 20.

6 EXPERIMENTS

Using the firm-deadline RTDBS model described in
Section 5, we conducted an extensive set of simulation
experiments comparing the real-time performance of the
various ICC protocols. In all our experiments, no appreci-
able difference was observed between the performance of
the corresponding protocols from the Bayer-Schkolnick and
Top-Down classes (i.e., between B-X and TD-X, B-SIX and
TD-SIX, B-OPT, and TD-OPT). This is to be expected since
the B-tree used in our experiments, as described above, has
only three levels due to the large fanout. Consequently, the
number of exclusive locks held at one time on the scope of
an update is hardly different in the two cases. We will
therefore simply use X, SIX, and OPT to denote these
protocols in the following discussions.

We present our experimental results in four stages: First,
in Section 6.1, we evaluate the KillPercent and Fairness
performance of the real-time versions of the various ICC
protocols, including our new GUARD-link protocol, under
varying index contention environments. Then, in Section 6.2,
we explore the effectiveness and robustness of the GUARD
admission policy. Subsequently, we model the performance
effects of incorporating undos in Section 6.3. Finally, the
performance effects of range searches are considered in
Section 6.4.

6.1 ICC Protocol Performance

In this Section, we study the performance of the real-time
versions of the various ICC protocols (X, SIX, OPT, B-link,
and GUARD-link) under three representative environments
that correspond to system conditions of Low Index
Contention (LIC), Moderate Index Contention (MIC),
and High Index Contention (HIC), respectivelyÐthese
experiments capture environments similar to those con-
sidered in [31]. In addition, we present two experiments, No
Index Contention(NIC) and No Resource Contention
(NRC), that attempt to isolate the specific impact of index
concurrency control on the overall system performance.

6.1.1 Low Index Contention (LIC)

In our first experiment, a workload that consisted of
80 percent searches, 10 percent inserts and 10 percent

HARITSA AND SESHADRI: REAL-TIME INDEX CONCURRENCY CONTROL 437



deletes was used. The high percentage of reads as
compared to updates results in a low index contention
environment. Moreover, the balance of insert and delete
index operations limits the number of index node splits and
merges. The performance results for this experiment are
shown in Figs. 3a-c as a function of the transaction arrival
rate.

In Fig. 3a, which profiles the KillPercent behavior, we
first observe that the X protocol performs poorly with
respect to the other protocols. This is due to the root of the
B-tree becoming a severe bottleneck, as also observed in
[15], [31]. The root bottleneck forces transactions to wait
much longer to acquire their desired index locks, thereby
resulting in many more killed transactions.

Moving on to the other protocols, we observe that the
performance of OPT is almost identical to that of
B-linkÐthis is as expected since the number of splits and
merges is rather low in this experiment. The relative
performance of B-link and SIX shows a more interesting
behavior. In the corresponding (nonreal-time) experiment
in [31], B-link performed much better than SIX throughout
the loading range. Here, however, although B-link performs
the best for low arrival rates, the situation is reversed at
high arrival rates where SIX is noticeably better than B-link.
The explanation for this changed behavior is as follows: SIX

gives preferential treatment to read index operations over
update index operations (by allowing readers to overtake
updaters during tree traversal) [31]. This results in
commensurately better performance for transactions that
have either no updates or only a few updates. A
quantitative confirmation of this explanation is shown in
Fig. 3c, which captures the TypeFairness metric. Here, we
see that SIX exhibits an extreme bias in favor of read-only
transactions, whereas B-link is comparatively much more
even-handed. In fact, our measurements showed that at
higher loads SIX completes almost exclusively only the read-
only transactions, which form approximately 20 percent of
the workload (in this experiment).

An additional point to note is that in the conventional
DBMS of [31], the slower updaters of SIX used to clog up
the system, resulting in much higher contention levels and
poor performance in the firm real-time environment,
however, that does not happen because transactions are
discarded as soon as their deadlines expire. Therefore, this
type of clogging is inherently prevented.

If we view the above result from a different angle, we
observe that SIX, by giving preferential treatment to read-
only transactions, is applying a form of load control. On the
other hand, B-link tends to saturate the disk due to largely
treating transactions uniformly independent of type and,

438 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 3, MAY/JUNE 2000

Fig. 3. Low index contention. (a) Kill percent, (b) Size fairness, and (c) Type fairness.



therefore, misses significantly more deadlines than SIX.
This naturally suggests that the performance of B-link could
be improved by adding a load-control component without
sacrificing its desirable type fairness feature.

The above observation is incorporated into the design of
the GUARD-link protocol, as discussed in Section 4. The
performance of GUARD-link is also shown in Fig. 3a and
we observe here that a dramatic improvement is
achievedÐthe overload performance of GUARD-link is
significantly better than that of both B-link and SIX. This is
due to GUARD-link's admission control policy which
ensures that the bottleneck resource (in this case, the disk)
does not become saturated, thereby comfortably completing
the admitted transactions. Also note that the admission
control policy of GUARD-link takes effect ªgracefullyº in
that there are no discontinuities in the KillPercent behavior.

From the fairness graphs of Figs. 3b and 3c, it is clear that
GUARD-link does not purchase its good KillPercent perfor-
mance by selectively completing one or the other class of
transactions, but instead, is almost ideally fair with respect
to both size and type. In contrast, the classical protocols are
noticeably unfair with regard to one or both metrics. For
example, B-link and OPT progressively favor smaller-sized
transactions with increasing loading levels (Fig. 3b).
Similarly, SIX shows extreme bias favoring readers
(Fig. 3c), as explained above.

The reason for GUARD-link's fairness is simpleÐits
admission control policy is nondiscriminatory in that it does
not selectively admit transactions having a specific char-
acteristic, but instead randomly assigns transactions to the
ADMIT or DENY groups. Therefore, the composition of the
ADMIT group is a ªminiatureº replica of the system input
workload. Since the protocol ensures that almost all the
transactions belonging to the ADMIT group are successfully
completed, fairness is automatically ensured.

6.1.2 Moderate Index Contention (MIC)

In our next experiment, the workload consisted of
100 percent inserts, resulting in a moderate index conten-
tion environment. For this experiment, the performance

results are shown in Figs. 4a and 4b (the TypeFairness
metric is not meaningful here since all transactions are
updaters).

In Fig. 4a, we observe that SIX and X behave identically
with respect to KillPercentÐthis is only to be expected
since, in the absence of readers, SIX locks do not permit any
concurrent access, just like X locks. Note also that the
performance of these protocols is considerably below that of
OPT and B-link.

In the corresponding (nonreal-time) experiment in [31],
B-link performed noticeably better than OPT. This was
because OPT suffered from a large number of restarts
caused by high contention, thereby resulting in the root
becoming a bottleneck due to the large number of second-
pass updaters. In our experiment, however, we observe that
the performance of OPT and B-link is very close. The reason
for this surprising result is that the number of restarts for
OPT in the real-time environment is, in contrast, quite
small. This reduction in restarts arises from the priority
feature incorporated in the ICC protocols. To verify this, we
ran the same experiment without preemption for index
node locks and found that the number of restarts for OPT
was significantly higher than in the prioritized case. This
shows that adding preemption to index latches can result in
tangible performance benefits (the other ICC protocols also
exhibited similar improvement due to incorporating
preemption).

The explanation for priority resulting in fewer restarts is
as follows: In the no priority case, several first pass
transactions see the same unsafe leaf node before the first
transaction which saw it as unsafe has completed its second
pass and made the leaf safe (by splitting or merging). This is
the source of the large number of restarts. In the prioritized
environment, however, the highest priority transaction
overtakes other transactions at the nodes it traverses during
its descent and, therefore, completes its second pass very
quickly. This results in only relatively few other transac-
tions seeing the leaf node while it is unsafe. In essence, the
time period for which a node is unsafe is much smaller in the

HARITSA AND SESHADRI: REAL-TIME INDEX CONCURRENCY CONTROL 439

Fig. 4. Moderate index contention. (a) Kill percent and (b) Size fairness.



prioritized environment as compared to the nonreal-time
environment.

Moving on to the GUARD-link protocol, we observe that
its KillPercent performance is again clearly better than that
of all the other protocols. In fact, at an arrival rate of
50 transactions per second, GUARD-link reduces the kill
percentage by over 20 percent as compared to B-link, and at
an arrival rate of 100 transactions per second, by almost 30
percent.

With respect to the SizeFairness metric (Fig. 4b), we
observe that as in the LIC experiment, GUARD-link
provides almost ideal fairness, whereas the other protocols
progressively favor the smaller-sized transactions that are
relatively easier to complete before their deadlines.

6.1.3 High Index Contention (HIC)

In the next experiment, the workload consisted of 25 percent
searches and 75 percent appends. The appends create
extremely high contention for the few right-most nodes in
the tree, and as a side-effect, ensure that these nodes are
permanently in the buffer pool. The keys for the searches
are randomly generated and searches therefore interfere
only minimally with the appends. The results of this
experiment are shown in Figs. 5a and 5b. (The X protocol
is not shown in these figures since its kill percentage was
already close to 50 percent even at arrival rates where the
other protocols had a zero kill percentage. Also, similar to
the previous MIC experiment, the TypeFairness metric is
not meaningful here since less than 0.1 percent of the
transactions are read-only).

In Fig. 5a, we observe that the KillPercent of SIX is much
worse than that of both OPT and B-link. This is again due to
the root becoming a bottleneck, resulting in much higher
average lock waiting times as compared to OPT and B-link.

The gap between the performance of OPT and B-link in
Fig. 5a is slightly larger than that in the MIC experiment
discussed previously. The reason for the increased separa-
tion is that the probability of transactions restarting here is
higher than in the MIC case since 75 percent of the index

actions are directed towards the right end of the tree. Once
again, just as in the MIC case, we experimented with having
no preemption for index node locks and found that OPT
without preemption had many more restarts than the
prioritized OPT protocol. The reduction in the number of
restarts for the prioritized OPT protocol makes the
performance differences between OPT and B-link to be less
significant here than they would otherwise be.

Finally, notice that in this experiment GUARD-link also
provides the best KillPercent performance although the
bottleneck resource is now the CPU, and not the disk as in
earlier experiments. In addition, its SizeFairness is virtually
ideal, unlike the other protocols which favor smaller-sized
transactions.

6.1.4 No Index Contention (NIC)

In the previous experiments, transactions that missed their
deadlines did so to the cumulative effect of three factors: The
conflict for the data, the conflict for the physical resources
(processors, disks, memory), and the conflict for the index.
We now move on to analyzing the specific extent to which
each of these factors contributed to the overall kill
percentage.

The data conflict due to key value locking was negligible
since the number of restarts suffered by a transaction on
average was never greater than 0.2 percent in the above
experiments. In order to study the relative extent to which
index conflict and (physical) resource conflict contributed to
the kill percentage, we conducted an experiment where
there were no index conflicts. For this experiment, the
workload and system configuration were identical to the
LIC experiment except that all the index operations were
searches. Fig. 6 shows the performance of B-link and
GUARD-link for this full-search workload and the
corresponding figures for the mixed workload of the LIC
experiment. Note that the performance of B-link for the full-
search workload is significantly better than its performance
with the mixed workload. The difference corresponds to the
performance drop due to data conflicts at index nodes. This

440 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 3, MAY/JUNE 2000

Fig. 5. Hign index contention. (a) Kill percent and (b) Size fairness



difference is quite substantial even at very high arrival rates
and clearly demonstrates that index conflict is a significant
performance-determining factor even for the B-link proto-
col, which is reputed to provide the maximum concurrency.
A similar performance difference is observed for the
GUARD-link protocol as well.

The above experiment, by demonstrating that index
conflict has considerable impact on the real-time perfor-
mance, clearly highlights the need for designing sophisti-
cated real-time ICC protocols.

Another point to note is that even in the complete
absence of index contention (full search), the RTDBS begins
to miss transaction deadlines when the transaction arrival
rate exceeds a certain levelÐthis is due to the effect of
resource contention becoming noticeable and its impact
increases at higher arrival rates, as should be expected.

6.1.5 No Resource Contention (NRC)

In the previous experiment, we observed that both index
contention and resource contention had a significant role to
play in determining the kill percentage. Index contention is
primarily determined by the transaction workload char-
acteristics and since the workload is typically decided by
the users, the only unilateral performance improvement
option available for the RTDBS designer is to reduce
resource contention. One method of reducing resource
contention is to purchase more and/or faster resources. In
the experiment described below, the KillPercent perfor-
mance is evaluated for an ªinfinite resourceº system, that is,
a system where there is no queueing for resources. While
abundant resources are usually not to be expected in
conventional database systems, they may be more common
in RTDBS environments since many real-time systems are
sized to handle transient heavy loading. This directly relates
to the application domain of RTDBSs, where functionality,
rather than cost, is often the driving consideration.

We conducted an experiment to evaluate the KillPercent
performance that could be achieved for the transaction
workload of the LIC experiment in the absence of resource
contention. For this experiment, the entire index tree was
resident in memory and the number of CPUs was
infiniteÐthe kill percentage was therefore determined
solely by index contention. Note that this means that the
performance numbers observed in this experiment capture

the best performance that each index concurrency control
protocol can deliver for the chosen transaction workload.

The performance in this experiment is shown in Table 3
for SIX, OPT, B-link, and GUARD-link (the values for
GUARD-link are identical to those of B-link since the kill
percentage is very low and therefore GUARD-link's
admission control policy does not kick in). Note that OPT
and B-link manage to complete almost all the submitted
transactions, even at an arrival rate of 20,000 transactions/
sec. In contrast, SIX misses close to 80 percent of transaction
deadlines at higher arrival rates. However, the kill
percentage of SIX does not degrade beyond 80 percent.
This is yet another indication of the fact that SIX preferen-
tially completes only the read-only transactions (recall that
the percentage of read-only transactions is approximately
20 percent in the LIC workload).

6.2 Analysis of the GUARD-link Protocol

The results of the above set of experiments (LIC, MIC, HIC,
NIC, NRC) indicate that the GUARD-link protocol is
capable of simultaneously providing both the lowest kill
percentage and close to ideal fairness. We now wish to
verify whether the admission control policy of GUARD-link
operated as designed for in maintaining the ªrightº multi-
programming level in the system, resulting in the improved
performance. To this end, we measured the ªhit ratioº for
the ADMIT group in the above set of experimentsÐthe hit
ratio is the fraction of transactions that complete before their
deadlines. These results are shown in Figs. 7a-d for the LIC,

HARITSA AND SESHADRI: REAL-TIME INDEX CONCURRENCY CONTROL 441

Fig. 6. No index contention.

TABLE 3
Kill Percent for No Resource Contention



MIC, HIC, and NIC environments, respectively. The graphs

clearly indicate that the GUARD admission policy is

uniformly successful in maintaining a hit ratio of 1.0 in

the underload region and a hit ratio close to 0.95 in the

overload region, thus meeting its design goals.
As discussed before, the GUARD-link protocol uses two

algorithmic parameters, ADMITbatch and ALLbatch, in its

feedback process. These parameters were both set to 20 in

the above set of experiments (these settings are the same as

those recommended for the AED priority assignment policy

in [12]). To evaluate the performance sensitivity to these

protocol parameters, we conducted two experiments

wherein the ADMITbatch and ALLbatch parameters were

individually varied from 16 to 24, respectively, keeping the

other parameter fixed at 20.
The results of these experiments for the LIC environment

are shown in Figs 8a and 8b for ADMITbatch and

ALLbatch, respectively. Note that GUARD-link behaves

442 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 3, MAY/JUNE 2000

Fig. 7. Hit Ratio for ADMIT group (GUARD-link). (a) Hit Ratio (LIC), (b) Hit Ratio (MIC), (c) Hit Ratio (HIC), and (d) Hit Ratio (NIC).

Fig. 8. GUARD-link Sensitivity Analysis. (a) Sensitivity to ADMITbatch (LIC) and (b) Sensitivity to ALLbatch (LIC).



almost indistinguishably for all the ADMITbatch and
ALLbatch range of values that were considered. This
robustness of the GUARD policy to the choice made for the
feedback parameters was also observed for the AED policy
in [12]. In summary, these experiments indicate that the
performance of GUARD-link is reasonably stable and does
not depend critically on the choice of algorithmic
parameters.

6.3 Effect of Undos

We now move on to considering the performance impact of
modeling the undos of the index actions of the aborted
transactions. It is tempting to surmise that there is really no
need to explicitly evaluate this feature based on the
following argument, which was advanced in [6]: The
number of undos can be expected to be directly related to
the transaction kill percentage, that is, a higher kill
percentage leads to more undos. Given this, implementing
undos in the model would only result in further increasing
the difference in performance of the protocols seen in the
above experiments. This is because the poorly performing
algorithms would have moreclean-up work to do than the
better protocols and therefore miss even more transaction
deadlines. In summary, there is a direct positive feedback
between the undo overhead and the kill percentage. Due to
this relationship, incorporating undo actions will corre-
spondingly increase, but not qualitatively alter, the ob-
served performance differences between the various
protocols.

While the above argument may appear plausible at first
sight, we will now show that the impact of undos is not so
simply characterized and that unexpected effects can show
up in certain environments.

With the inclusion of undos, Figs. 9a-b, 9c-d, and 9e-f
present the results for the LIC, MIC, and HIC environments,
respectively. For graph clarity, we separately show the
performance of the B-link-based protocols and the other
protocols. To aid in understanding the effects of the undos,
we have also included the corresponding results for the
ªno-undoº model.

We first see in these figures that the effect of undos is
significant only in the HIC environment (Figs. 9e-f) but in
the LIC and MIC environments (Figs. 9a-b, 9c-d), the undos
at most have only a marginal adverse impact on perfor-
mance. Note that this marginal impact phenomenon is not
limited to light loadsÐit also occurs for high kill percentage
values where we would expect the undo overheads to be
considerable due to the large number of aborted
transactions.

Even more interestingly, we see in the LIC and MIC
environments that the protocols often perform better with
undos than in the absence of undos, especially in the lower
range of the loading spectrum! While the improvement is
typically small, for SIX we observe a significant improve-
ment in the LIC environment (Fig. 9b). These results, which
suggest that the presence of overheads results in improved
performance may appear at first glance to be illogical. A
careful investigation showed, however, that there are subtle
effects that come into play in the undo model which do
indeed cause this apparently strange behavior. We explain
these reasons below.

First, the primary reason for little adverse performance
impact in the LIC and MIC environments is that the disk is
the bottleneck in these experiments. Undo operations,
however, typically only need the CPU since the index
pages they require will usually be already resident in the
buffer pool as they have been accessed recently. This was
quantitatively confirmed by measuring the buffer hit ratio
of undo operationsÐit was typically about 90 percent, as
against a hit ratio of only around 50 percent for the normal
operations. In essence, undo operations primarily impose a
CPU overhead, not a disk overhead. This means that only
when the CPU itself is a bottleneck, as in the HIC
environment, are there the large differences that we might
intuitively expect to see.

For the GUARD-link protocol specifically, an additional
factor is at work. Its use of admission control and
completion of most of the transactions that it admits means
that the overhead arising out of transactions that are
admitted and then miss their deadlines is very small.
Moreover, no undo actions are necessary for transactions
that are denied entry since they do not execute at all. In
essence, the undo overhead is inherently small in the
GUARD-link protocol. This is confirmed in Fig. 9e, where
we see that even in the HIC environment, where undos
were found to have a significant effect on the classical
protocols, the GUARD-link protocol is hardly affected.

Second, the number of index node splits and merges reduces
significantly in the presence of undos. This is because they
compensate for the actions of aborted transactions. For
example, in the MIC environment, where the workload
consists of 100 percent inserts, the number of splits in the
undo model was much fewer as compared to that for the
no-undo model since many of the inserts were undone. This
is especially significant in light of the fact that index node
splits and merges are expensive operations since they
necessitate additional disk I/O.

Third, the reason for SIX performing so much better with
undos at low arrival rates in the LIC environment is that the
average latch wait time for the normal operations is greatly
reduced by the presence of undo operations. This is
explained as follows: In SIX, readers usually descend the
tree very quickly since they use IS locks which are
compatible with the SIX locks of updaters. Updaters, on
the other hand, have to wait for each other since SIX locks
are mutually incompatible. Due to the lock-coupling nature
of SIX, this may result in a convoy phenomenon, wherein
there is a chain of updaters from the leaf to the root, each
holding a latch that the next one wants. Since index trees are
usually of small height, such convoys can occur very easily.
Moreover, the convoy may persist for quite a while since
the updater on the leaf node typically has to wait for the leaf
node to be brought from the disk before it can release its
latch on the parent node (and that too, only if the leaf is
safe).

The presence of undo transactions eliminates the convoy
bottlenecks described above. This is because, by virtue of
their ªgoldenº priority, they preempt during undo
processing all transactions holding an incompatible latch
in their tree descent. In particular, they preempt updaters
holding leaf level latches and waiting for their disk requests
to be completed. This eliminates the convoy bottleneck and

HARITSA AND SESHADRI: REAL-TIME INDEX CONCURRENCY CONTROL 443



allows other updaters to gain possession of the higher level
latches and quickly descend to the leaf nodes, especially
since latching times are very small as compared to disk

access times. (The preempted leaf-level-latch-holder-upda-
ter will not request the root latch until its disk operation is
completed.)

444 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 3, MAY/JUNE 2000

Fig. 9. Effect of undos. (a) and (b) Low Index Contention (LIC), (c) and (d) Moderate Index Contention (MIC), and (e) and (f) High Index Contention

(HIC).



The benefit of convoy elimination is felt only under light
and moderate loads but not under heavy loads. This is
because, under heavy loads, the disk is almost fully utilized
and becomes the primary bottleneck. In this situation,
removing the latching bottleneck proves ineffective and is
actually harmful since it increases the amount of wasted
work due to the large number of preemptions.

6.4 Range Queries

We now move on to considering the impact of range queries
on the performance of the ICC protocols. For this experi-
ment, we used an index operation mix similar to that of the
LIC experiment, which was composed of 80 percent
searches, 10 percent inserts and 10 percent deletes. The
only difference here is that each search now is a range search
which retrieves RangeKeys key values, set equal to 10 for this
experiment. The results for this experiment are presented in
Figs. 10a-e.

In Fig. 10a, which shows the KillPercent performance of
the ICC protocols, we first observe that the results are
qualitatively similar to those seen for the original LIC
experiment with point queries (Fig. 3a). Quantitatively,
however, the performance differences between the proto-
cols generally increase. For example, the difference between
B-link and GUARD-link is significantly larger than that seen
in Fig. 3a. The reason for this increase is that range searches
significantly increase the level of data contention in the
system since they hold locks on several key values
simultaneously. This is verified in Fig. 10e, which captures
the percentage of transactions that were restarted due to
key-value contentionÐthe figure shows a relatively high
value of data contention in the system as compared to the
equivalent point query workload.

We further observe in Figs. 10a-c that the GUARD-link
protocol provides the best performance for all metrics in
this experiment also by maintaining, as desired, a 0.95 hit
ratio in the overload region (Fig. 10d).

6.5 Other Experiments

We conducted several other experiments to explore various
regions of the workload space. In particular, we evaluated
the sensitivity of the results to the transaction deadline slack
factor, the transaction size, the database size, the feedback
parameters, etc. The relative performance of the protocols in
these additional experiments remained qualitatively similar
to those seen in the experiments described here and we
therefore do not discuss them further in this paper.

7 CONCLUSIONS

In this paper, we investigated, for the first time in the
RTDBS literature, the problem of index concurrency control
for real-time applications with firm deadlines. Using a
detailed simulation model, we studied the real-time
performance of three different classes of ICC protocols:
Bayer-Schkolnick, Top-Down, and B-link, under a range of
workloads and operating conditions. We also proposed and
evaluated a new ICC protocol called GUARD-link, which
augmented the classical B-link protocol with an admission
control mechanism. The performance metrics in our
experiments were the percentage of killed transactions

and the fairness with respect to transaction size and type.
We also included the modeling of undos of index actions of
aborted transactions in the experimental framework and
evaluated the performance effects of range queries.

Our experimental results showed that two factors
characteristic of the (firm) real-time domain: Addition of
priority and discarding of late transactions, significantly
affected the performance of the ICC protocols. In particular,
B-link missed many more deadlines at high loads as
compared to lock-coupling protocols. This was in contrast
to conventional DBMS where B-link always exhibited the
best throughput performance. In fact, the very reason for its
good performance in conventional DBMS (full resource
utilization) turned out to be a liability here. Secondly, the
optimistic protocol, OPT, performed almost as well as
B-link even under high index contention conditions (in
contrast to conventional DBMS). This was because prior-
itization of transactions caused a marked decrease in the
number of index operation restarts. In short, our experi-
mental results show that in moving from the conventional
DBMS domain to the RTDBS domain, there are new
performance-related forces that come into effect and that
these factors can cause index performance behaviors that
were valid in a conventional DBMS setting to be signifi-
cantly altered in the corresponding RTDBS setting.9

The new GUARD-link protocol, by virtue of its
admission control policy, which successfully limited trans-
action admissions to a sustainable number, significantly
reduced the kill percentage of B-link in the overload region
and thereby provided the best performance over the entire
loading range. This clearly demonstrates the need for
admission control in index management for real-time
database systems. Interestingly, such need for load control
has also been identified in other modules of real-time
database systems (e.g., [12], [27]).

Apart from its good KillPercent performance, GUARD-
link also provided close to ideal fairness, not discriminating
either based on transaction size or on transaction type. In
contrast, all the classical protocols showed bias in favor of
smaller-sized transactions and in favor of read-only
transactions with increasing loading levels. Finally, we
showed that GUARD-link is relatively robust to the settings
chosen for its algorithmic parameters.

Performing the undos of index actions of aborted
transactions was expected to significantly increase, but not
qualitatively alter, the performance differences between the
protocols. However, our results indicate that the adverse
performance impact of making undos is only felt when the
CPU is a bottleneck, and that too only for the classical
protocols. For the GUARD-link protocol, due to its admis-
sion control policy, undos have virtually no effect under
any contention level. In addition, undos can have an
unanticipated beneficial impact of 1) reducing the number
of index node splits and merges, and 2) for the SIX
protocols, preventing extended formation of updater con-
voys. Finally, our experiments involving range queries
showed GUARD-link to perform far better than B-link.

Although not explicitly discussed in this paper, we have
also found the design and performance of GUARD-link to

HARITSA AND SESHADRI: REAL-TIME INDEX CONCURRENCY CONTROL 445

9. A similar, though unrelated, phenomenon has been observed for data
concurrency control also [10].



be significantly superior in several ways to that of LAB-link

(the protocol that we had proposed in an earlier effort [6]

based on a different admission policy)Ðthe details of the

improvements are available in [26].
In summary, we suggest that designers of real-time

database systems may find the GUARD-link protocol

proposed in this paper to be a good choice for real-time

index concurrency control.

7.1 Future Work

In our study, we have not considered a high-performance

ICC protocol called ARIES/IM that was proposed in [23]. In

[31], several reasons were advanced as to why ARIES/IM

might be expected to exhibit performance behavior similar

to that of the B-link protocol in the conventional database

domain. While we expect a similar outcome to also arise in

the real-time environment, confirmation of this expectation

446 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 3, MAY/JUNE 2000

Fig. 10. Range queries. (a) Kill percent, (b) Size fairness, (c) Type fairness, (d) Hit ratio, and (e) Data abort percent.



requires actual implementation and evaluation of the

ARIES/IM protocolÐwe intend to do this in our future

research work.
Another interesting issue is to extend our analysis to

multidimensional index structures such as, for

example, Rÿ trees [8]. We expect that these structures

would be utilized in real-time applications such as mobile

databases that include spatial data in their repositories.

ACKNOWLEDGMENTS

Preliminary and partial versions of the work reported here

were presented earlier in [6], [13]. Brajesh Goyal, S.R.

Narayanan, and V. Srinivasan made significant contribu-

tions to the research effort. Krithi Ramamritham provided

expert feedback on early drafts of this paper.
The work of J.R. Haritsa was supported in part by

research grants from the Department of Science and

Technology and the Department of Bio-technology, Govern-

ment of India.

REFERENCES

[1] R. Abbott and H. Garcia-Molina, ªScheduling Real-Time Transac-
tions: A Performance Evaluation,º Proc. 14th Int'l Conf. Very Large
Data Bases, Aug. 1988.

[2] R. Bayer and M. Schkolnick, ªConcurrency of Operations on B-
trees,º Acta Informatica, vol. 9, 1977.

[3] A. Biliris, ªA Comparative Study of Concurrency Control
Methods in B-trees,º Proc. Aegean Workshop on Computing, July
1986.

[4] D. Comer, ªThe Ubiquitous B-tree,º ACM Computing Surveys,
vol. 11, no. 4, 1979.

[5] A. Bestavros, ed., ªSpecial Issue on Real-Time Database Systems,º
SIGMOD Record, vol. 25, no. 1, Mar. 1996.

[6] B. Goyal, J. Haritsa, S. Seshadri, and V. Srinivasan, ªIndex
Concurrency Control in Firm Real-Time DBMS,º Proc. 21st Int'.
Conf. Very Large Data Bases, Sept. 1995.

[7] J. Gray, ªNotes on Database Operating Systems,º Operating
Systems: An Advanced Course, R. Graham, R. Bayer and G.
Seegmuller, eds., Springer-Verlag, 1979.

[8] A. Guttman, ªR-trees: A Dynamic Index Structure for Spatial
Searching,º Proc. ACM SIGMOD Int'l. Conf. Management of Data,
May 1984.

[9] T. Haerder, ªObservations on Optimistic Concurrency Control
Schemes,º Information Systems, vol. 9, no. 2, 1984.

[10] J. Haritsa, M. Carey, and M. Livny, ªData Access Scheduling in
Firm Real-Time Database Systems,º J. Real-Time Systems, Sept.
1992.

[11] J. Haritsa, M. Carey, and M. Livny, ªValue-based Scheduling in
Real-Time Database Systems,º Int'l. J. on Very Large Data Bases,
vol. 2, no. 2, Apr. 1993.

[12] J. Haritsa, M. Livny, and M. Carey, ªEarliest Deadline Scheduling
for Real-Time Database Systems,º Proc. 1991 IEEE Real-Time
Systems Symp., Dec. 1991.

[13] J. Haritsa and S. Seshadri, ªReal-Time Index Concurrency
Control,º SIGMOD Record, vol. 25, no. 1, Mar. 1996.

[14] T. Imielinski and B. Badrinath, ªQuerying in Highly Mobile
Distributed Environments,º Proc. 18th Int'l Conf. Very Large Data
Bases, Sept. 1992

[15] T. Johnson and D. Shasha, ªA Framework for the Performance
Analysis of Concurrent B-tree Algorithms,º Proc. ACM Symp.
Principles of Database Systems, Apr. 1990.

[16] Y. Kwong and D. Wood, ªA New Method for Concurrency in B-
trees,º IEEE Trans. Software Eng., vol. 8, no. 3, May 1982.

[17] V. Lanin and D. Shasha, ªA Symmetric Concurrent B-tree
Algorithm,º Proc. Fall Joint Computer Conf., 1986.

[18] P. Lehman and S. Yao, ªEfficient Locking for Concurrent
Operations on B-trees,º ACM Trans. Database Systems, vol. 6,
no. 4, 1981.

[19] C. Liu and J. Layland, ªScheduling Algorithms for Multiprogram-
ming in a Hard Real-Time Environment,º J. ACM, Jan. 1973.

[20] D. Lomet and B. Salzberg, ªAccess Method Concurrency with
Recovery,º Proc. ACM SIGMOD Int'l Conf. Management of Data,
June 1992.

[21] C. Mohan, ªARIES/KVL: A Key-Value Locking Method for
Concurrency Control of Multiaction Transactions Operating on
B-tree Indexes,º Proc. 16th Int'l Conf. Very Large Data Bases, Sept.
1990.

[22] C. Mohan, ªLess Optimism about Optimistic Concurrency
Control,º Proc. Second Int'l Workshop RIDE: Transaction and Query
Processing, Feb. 1992.

[23] C. Mohan and F. Levine, ªARIES/IM: An Efficient and High
Concurrency Index Management Method Using Write-Ahead
Logging,º Proc. ACM SIGMOD Int'l Conf. Managment of Data, June
1992.

[24] Y. Mond and Y. Raz, ªConcurrency Control in B�-trees Databases
Using Preparatory Operations,º Proc. 11th Int'l Conf. Very Large
Data Bases, Sept. 1985.

[25] S. Narayanan, ªIndex Concurrency Control in Firm Real-Time
DataBases,º MS thesis, Dept. of Computer Science and Automa-
tion, Indian Institute of Science, Jan. 1997.

[26] S. Narayanan, B. Goyal, J. Haritsa, and S. Seshadri, ªRobust Real-
Time Index Concurrency Control,º Technical Report TR-97-03,
DSL/SERC, Indian Institute of Science, 1997.

[27] H. Pang, M. Carey, and M. Livny, ªManaging Memory for Real-
Time Queries,º Proc. ACM SIGMOD Int'l Conf. Management of
Data, May 1994.

[28] Y. Sagiv, ªConcurrent Operations on B�-trees with Overtaking,º J.
Computer and System Sciences, vol. 33, no. 2, 1986.

[29] L. Sha, R. Rajkumar, and J. Lehoczky, ªPriority Inheritance
Protocols: An Approach to Real-Time Synchronization,º Technical
Report CMU-CS-87-181, Depts. of CS, ECE, and Statistics,
Carnegie Mellon Univ. 1987.

[30] D. Shasha and N. Goodman, ªConcurrent Search Structure
Algorithms,º ACM Trans. Database Systems, vol. 13, no. 1, Mar.
1988.

[31] V. Srinivasan and M. Carey, ªPerformance of B-tree Concurrency
Control Algorithms,º Proc. ACM SIGMOD Int'l Conf. Managment of
Data, May 1991.

[32] J. Stankovic and W. Zhao, ªOn Real-Time Transactions,º ACM
SIGMOD Record, Mar. 1988.

[33] A. Thomasian and I. Ryu, ªPerformance Analysis of Two-Phase
Locking,º IEEE Trans. Software Eng., Mar. 1991.

[34] O. Ulusoy, ªResearch Issues in Real-Time Database Systems,º
Technical Report BU-CEIS-94-32, Dept. of Computer Eng. and
Information Science, Bilkent Univ., Turkey, 1994.

Jayant R. Haritsa received the BTech degree in
electronics and communications engineering
from Indian Institute of Technology (Madras),
and the MS and PhD degrees in computer
science from the University of Wisconsin (Madi-
son). Currently, he is on the faculty of the
Supercomputer Education and Research Centre
and the Department of Computer Science and
Automation at the Indian Institute of Science,
Bangalore. His research interests are in data-

base systems and real-time systems. He is a senior member of IEEE
and a member ACM, and an associate editor of the International Journal
of Real-Time Systems.

S. Seshadri received his BTech degree in
computer science from Indian Institute of Tech-
nology (Madras) and then the MS and PhD
degrees from the University of Wisconsin (Ma-
dison). Currently, he is a member of the
technical staff at Lucent Bell Laboratories,
Murray Hill, New Jersey and also on the faculty
of the Indian Institute of Technology (Bombay).
His current research interests are in database
systems and the world wide web.

HARITSA AND SESHADRI: REAL-TIME INDEX CONCURRENCY CONTROL 447


