Algorithm PREQN: Fortran 77 Subroutines for
Preconditioning the Conjugate Gradient Method

José Luis Morales* Jorge Nocedal'

March 14, 2000

Abstract

PREQN is a package of Fortran 77 subroutines for automatically generating pre-
conditioners for the conjugate gradient method. It is designed for solving a sequence of
linear systems A;x = b;, ¢ = 1,...,t, where the coefficient matrices A; are symmetric
and positive definite and vary slowly. Problems of this type arise, for example, in non-
linear optimization. The preconditioners are based on limited memory quasi-Newton
updating and are recommended for problems in which: i) the coefficient matrices are
not explicitly known and only matrix-vector products of the form A;v can be computed;
or ii) the coefficient matrices are not sparse. PREQN is written so that a single call
from a conjugate gradient routine performs the preconditioning operation and stores
information needed for the generation of a new preconditioner.

Categories and Subject Descriptors: G.1 [Numerical Analysis]: G 1.3 Numerical
Linear Algebra—Linear systems; G 1.6 Optimization— Unconstrained optimization; G.4
[Mathematical Software|:—Efficiency; Reliability and robustness.

General Terms: Algorithms.

Additional Key Words and Phrases: Preconditioning, conjugate gradient method, quasi-
Newton method, Hessian-free Newton method, limited memory method.

“Departamento de Matemadticas, Instituto Tecnolégico Auténomo de México, Rio Hondo 1, Col Tizapédn
San Angel, México D.F. CP 01000, México. jmorales@gauss.rhon.itam.mx. This author was supported by
CONACyT grant 25710-A and by Asociacién Mexicana de Cultura AC.

'ECE Department, Northwestern University, Evanston Il 60208, USA. nocedal@ece.nwu.edu;
www.ece.nwu.edu~nocedal. This author was supported by National Science Foundation grants CCR-
9625613 and INT-9416004 and by Department of Energy grant DE-FG02-87ER25047-A004.

1 Introduction

In this paper we describe Fortran 77 subroutines for preconditioning the conjugate gradient
method. They are designed for solving a sequence of linear systems,

Aip=b;, i=12...,1, (1.1)

where the matrices A; vary slowly and the right hand side vectors are arbitrary. We assume
that each matrix A; is symmetric and positive definite and of size n. A special case of (1.1),
known as the multiple right hand sides problem, occurs when the matrices {A;} are all the
same.

The preconditioners are defined by means of quasi-Newton updating and do not require
explicit knowledge of the matrices A;, but only make use of products A;v. They are par-
ticularly well suited for problems in which these matrix-vector products are expensive to
compute, or when low accuracy in the solution of some of the systems (1.1) is acceptable.
Problems with these characteristics arise, for example, in Newton methods for nonlinear
optimization [10, 6, 8, 11, 12], in the numerical solution of differential equations [9], and in
statistics [1].

We denote the quasi-Newton preconditioner for the i-th system as H;, so that (1.1) is
solved by applying the conjugate gradient (CG) method to

HlAZLE = szza 1= 1, 2, e ,t. (12)

The preconditioners are constructed by means of a limited memory quasi-Newton updating
procedure described below; see also [5]. That paper also presents numerical tests illustrating
the performance of the preconditioner on a wide variety of problems.

PREQN is a package of Fortran 77 subroutines that implements these quasi-Newton
preconditioners. A salient feature of our implementation is that a single call to PREQN
applies the preconditioner and transmits the information that is required in the generation
of the next preconditioner. This allows the user to easily invoke PREQN from any conjugate
gradient routine.

2 Overview of the Quasi-Newton Preconditioners

We start by reformulating the i-th subproblem A;z = b; in the sequence (1.1), as the
following optimization problem

minimize ¢(z) = %(IITA:E — b, (2.3)
where, for notational convenience, the subscript ¢ has been ignored.

Suppose that we apply the BFGS method (see e.g. [2]) to compute the solution of
(2.3). Starting from initial approximations z(®) and H(®, to the solution z* and to A~
respectively, the BFGS method generates new approximations) and HU) by means of
the formulae:

pl) = _H(J')Vq(x(J'))’ 20U+ = £0) 4 @jp(j)’ (2.4)

where @; > 0 is the step length that minimizes ¢ along the direction p1). The quasi-Newton
matrices are updated by means of the BFGS formula,

HUH) — gU) 4 VJ_TH(J')V]. + ,ijjS]T, (2.5)

where
Vi=1I-pjyjsi, pj=1/yjs;, (2:6)
sj = 20+ x(j), yj = Vq(x(j+1)) _ V(I(j)). (2.7)

The pair of vectors (sj,y;) is called a correction pair and satisfies S;ij > 0 because of our
assumption that A is positive definite.
Note that we can also write

sj=ap¥, yj=a;ApV). (2.8)

and since the scalars &; will cancel out in the computation that follows, we prefer to define
the correction pair as

(s, 40y (pU), 4p0)). (2.9)

From (2.5) it is clear that the matrices HU) will usually be dense, and therefore, their
storage and the computation of the matrix-vector product (2.4) are impractical. To over-
come this difficulty, we will not form the matrices H\Y), but only store the vectors 55, Yj
and the scalars p; that form them. More specifically, we can express the update as

gU) = (V};Cl"'VUT)H(I)(VO"'Vj—l) (2.10)
+oo(ViEy -+ Vil)sosg (Vi -+ Vim)

Vj
+p1 (Vi Ve)sist (V- V)

T
TPjSj—185_1-

A recursive formula described in [7] makes use of the structure of (2.10) to compute the
product (2.4) in approximately 4jn floating point operations. The storage requirements for
this computation are 2jn spaces to hold the set of correction pairs, and 25 spaces to hold
the scalars p; and intermediate results. It is now clear that the computational resources
can be kept to a reasonable level by limiting the number of pairs that participate in (2.10).
This gives rise to a limited memory quasi-Newton method.

In summary, the set of correction pairs

S={eY, 4pV)) | j=0,...}

along with the BFGS formula implicitly define an approximation to A~'. In practice we
wish to store only a small subset of S which defines the inverse of A on a small subspace
of R™. This poses the question of how many and which pairs must be chosen, an issue we
discuss next.

2.1 Preconditioning the CG Method

The role of limited memory quasi-Newton matrices as preconditioners for the CG iteration
becomes clear by noting that, when applied to positive definite quadratic functions, the
BFGS and CG methods are equivalent. Therefore, as we solve a linear system by means of
the CG method, we can save the correction pairs (2.9) that determine an approximation to
A~!, and use this approximation to precondition the next system in (1.1).

We start by solving the first system A;xz = b; with the unpreconditioned CG method,
so that Hy = I. During the course of the CG iteration, we collect m correction pairs

P, ApDY, =100, i, (2.11)

where {p(j)}jzl,z,,__ is the sequence of search directions produced by the CG method. (The
choice of the indices l1,[2,...,l, will be discussed below.) The user determines the num-
ber m of pairs to be collected. When the CG method has completed the solution of the
first system Az = by, the m pairs {p{), A;p()} are used to construct a limited memory
quasi-Newton matrix Hy(m) which is the preconditioner for the second system Aoz = bo.
While solving this second system with the preconditioned CG method, we collect new pairs
{p(j),Azp(j)} to define the next preconditioner. We proceed in this manner until all the
linear systems have been solved.

An important question in the design of the quasi-Newton preconditioners is how to
select the m correction pairs {p(j),Aip(j)} during the CG iteration. In the companion
paper [5] we proposed two strategies that have performed well on a wide range of problems:
a (nearly) uniform sample of m pairs collected during the course of the CG iteration, and
the set formed by the last m pairs generated by the CG iteration. These two strategies are
implemented in PREQN.

We use the notation H;(m) to indicate the amount of information used in the precondi-
tioner. Values of m, in the range [4, 20], are recommended for most problems, independently
of the value of n. Of course, the available memory may impose a further restriction on m.
As mentioned earlier, the multiplication of H;(m) with a vector can be performed by a
sequence of inner products involving the correction pairs, and requires approximately 4mn
floating point operations. The application of the preconditioner may therefore be expensive
compared, say, with incomplete Cholesky preconditioning [4], and we advocate its use for
problems in which the coefficient matrices A; are not known, are not sparse, or cannot be
computed cheaply. We should also note that, if a good preconditioner is known, it can be
used to precondition the first problem in (1.1), and the rest of the problems can use the
quasi-Newton preconditioner.

We have coded the quasi-Newton preconditioners so that they can be incorporated easily
in any CG routine. In Section 3 we provide an algorithmic description of the main routine
in PREQN. In Section 4 we describe the parameters of the main routine, and in Section 5
we present a sample of numerical results illustrating the performance of the software.

3 Implementation of the Routines

We begin by stating the CG method (cf. [3]) when applied to the i-th system A;z = b; in
the sequence (1.1).

Preconditioned CG Method

input: A;,b;, m, Hi(m), (0,

output: z;

compute 70 = 4,20 —p;

for j=1,2,...
1. compute 2V~ Y = H;(m)r-1 [PREQN a,c]
2. if convergence test is satisfied, set 2¥ = z(U~1)
and stop

3. pj_t = rG- 075G
4. if j =1 then
p() = (0
else
Bi—1 = pj-1/pj-2
P = 20D 4 g pliD)
end if [PREQN b]
5. aj = pj_1/pD" Aipl) [PREQN c|
6.) = 201 4 q;plh)
7. 10 = 2D 4 o A

end for

As mentioned earlier, one of our goals is to make only one call to PREQN at each
CG iteration. Let us consider the tasks that are required to construct and apply the
preconditioner.

a. We need to compute the product Hi(m)r(j ~1) in step 1 of the preconditioned CG
method. This will be done by means of a call to PREQN.

b. We must decide if the most recently generated pair {p(j),Aip(j)} should be saved
and used to define the new preconditioner H;i(m). This could be done by calling
PREQN near the end of the CG iteration, after the new correction pair has been
computed in steps 4 and 5. To facilitate the use of the software, however, we can
delay this selection process until the next CG iteration, just before the application of
the preconditioner in step 1. Thus the call to PREQN requesting the application of the
residual is accompanied by the transmission of a correction pair {p{?), 4;p")}. The

decision to incorporate this pair into the new preconditioner H;,1(m) is delegated to
the appropriate routine, and depends on the value of the parameter I0P; see next
section.

c. Once a linear system A;z = b; has been solved, we must remove the old preconditioner,
and replace it by the new preconditioner H;;1(m) for the next system A; i1z = bjt1.
This could be done by means of a call to PREQN at the end of step 2, when all the
information from the CG run has been collected. Instead, we inform PREQN during
the call in step 1 that the solution of a new linear system has commenced. The
formation of the new preconditioner thus takes place just before it is applied to the
first residual vector.

This is summarized in the procedure below which outlines the main tasks of PREQN.

% i = problem number; j = CG iteration number
Procedure PREQN

input: i, 7, m, {pU~"), ApU—1} U=,
output: zU~1) « Hi(m)r(j_l),

if j > 1 decide if {pU—1, ApU—D} is to be saved
if i =1 then
201 plG-1) % No preconditioning
else
if 5 =1 build preconditioner H;1(m)
201 — H;(m)r—1
endif

This simultaneous transmission of information greatly facilitates the use of the package.
A code implementing the CG method can be easily modified so that the computation of
the preconditioned residual is done by means of a call to PREQN in step 1.

4 Choice of certain parameters

The calling sequence is

CALL PREQN (N, M, IOP, IPROB, JCG, S, Y, R, Z, W, LW, IW, LIW, BUILD,
INFO, MSSG)

The meaning of the parameters is provided in the code documentation. We now discuss
how to choose three parameters that have an important impact in the performance of the
preconditioner.

The variable M specifies the maximum number m of pairs used in the definition of the
quasi-Newton preconditioner. In our experience, good performance is observed with values
of M in the range [4, 20]; smaller values normally do not provide adequate preconditioning,
whereas values greater than 20 may result in high computing times.

The variable IOP determines the scheme for the selection of correction pairs. If IOP =
1, the pairs are selected as a uniform sample throughout the CG cycle. If IOP = 2, the last
M computed pairs are selected.

When the uniform sampling scheme is chosen (IOP=1) an extra pair may be stored and
used in the construction of the preconditioner, as we now explain. The first M pairs are
selected by the uniform sampling scheme. A routine in the package checks if the last pair
produced by the CG iteration was selected, and if not, saves it. In this case the number of
correction pairs becomes M + 1. We have observed a slight improvement in performance
if the last pair is always included, and since by incorporating it the storage requirements
and computational effort increase only modestly, we have implemented this strategy in the
uniform sampling scheme. The use of IOP = 1 requires M to be an even integer.

The variable BUILD indicates whether the preconditioner for the problem IPROB — 1
should be built. It should be set to .FALSE. before the first call to PREQN. This variable
allows the reuse of a preconditioner for several problems. If BUILD = .TRUE. a precondi-
tioner is computed using the information collected during the CG cycle for problem IPROB
— 1. If BUILD = .FALSE. the information collected during the previous CG cycle is ignored
and superseeded by the information collected during the current CG cycle.

In some situations, it may be useful to apply the same preconditioner for several problems
in the sequence (1.1). One example of this is when the CG iteration performed a very small
number of iterations (say, less than 5) to meet the stopping test for the current problem.
A preconditioner based on so little information is not efficient, and it is preferable to revert
to a previous preconditioner. Another case in which it may be appropriate to reuse the
preconditioner is when the coefficient matrices in (1.1) are constant and only the right hand
side vector varies. In the next section we report numerical tests with problems of this type.
The option BUILD = .FALSE. must be used with caution; in general we recommend that
the preconditioner be recomputed for each new problem in the sequence.

5 Numerical Results

In this section we illustrate the performance of the quasi-Newton preconditioners when

solving a sequence of the form (1.1) where the coefficient matrix is constant and the right

hand side vectors vary. We report results for three matrices arising in finite element compu-

tations, denoted by A;,, A1,, Ag,, which are described in [5]. The tests reported here differ

from those in [5] in that we use a different stopping test to terminate the CG iteration.
For each matrix A, we solve the sequence of problems

Az =b;, i=1,...,51, (5.12)

where the right hand side vectors b;, # = 2,...,51 are obtained as perturbations of an
initial vector by; see [5]. In order to solve (5.12) we proceed as follows: i) the quasi-Newton
preconditioner is computed with the information gathered by the CG method while solving
the first system Az = by; ii) the remaining 50 problems are solved using this preconditioner.
We report in Table 1 the average number of CG iterations (rounded to the nearest integer)
required to solve the 50 preconditioned systems, for various values of m. Both strategies for
forming the preconditioner were used: uniform sampling (IOP = 1) and the last correction
pairs (IOP = 2). The stopping test for the CG method was

[Ir@ oo < 1077 [[r®] . (5.13)
Ay, Ay, As,
m || IOP=1 | IOP=2 || IOP=1 | IOP=2 | IOP=1 | IOP=2
m iter iter iter iter iter iter
0 49 49 449 449 66 66
4 46 46 399 446 79 89
8 32 42 237 442 59 88
12 21 38 191 438 53 87
16 17 34 116 433 47 86
20 16 30 117 430 43 81

Table 1. Results for 3 test matrices using multiple right hand side vectors. The
table reports average number of CG iterations for 50 runs, using different values
of the memory parameter m and different storage schemes. The initial point for
every CG iteration is z(® = 0.

Whereas in these tests the uniform sampling technique performs much better than the
strategy of using the last m pairs, in most of the experiments we have performed, the two
strategies are comparable in performance. Observe that the preconditioner is not always
beneficial, and that its effectiveness tends to increase with the amount of information stored
in it. As is the case in this example, we have observed that the preconditioner is usually
capable of significantly reducing the number of CG iterations, but it is recommended to
experiment with various values of m to find an appropriate setting for the application at
hand.

To give an idea of the types of problems for which the quasi-Newton preconditioner
may be effective, we can estimate the amount of work involved. Consider, for example, the
A, problem with I[OP=1 and m = 16. Since the unpreconditioned algorithm requires 10n
flops per iteration, in addition to the matrix-vector product, the preconditioned algorithm
will be more efficient if the matrix-vector multiplication requires more than 24n operations.
Therefore the preconditioner is unlikely to be useful for very sparse problems. Nevertheless
in optimization , the matrix-vector product is roughly as expensive as the cost of evaluating
a gradient, which can be a large multiple of n in many applications.

Acknowledgements. We thank two referees for several useful suggestions on how to
improve the description of the preconditioner.

References

[1]

[11]

[12]

T. F. CHAN AND M. K. NG, Galerkin Projection Methods for Solving Multiple Linear
Systems, Technical Report (96-31), Department of Mathematics, University of Calif.
at Los Angeles, Los Angeles CA 90024., 1996.

J.E. DENNIS, JR. AND R.B. SCHNABEL, Numerical Methods for Unconstrained Opti-
mization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.

A. GREENBAUM, lterative Methods for Solving Linear Systems, STAM, Philadelphia,
1997.

M. T. JONES AND P. E. PLASSMANN, An Improved Incomplete Cholesky Factorization,
Preprint MCS-P206-0191, MCS Division, Argonne National Laboratory, Argonne, Ill.,
1991.

J.L. MORALES AND J. NOCEDAL, Automatic Preconditioning by Limited Memory
Quasi-Newton Updating, to appear in STAM Journal on Optimization.

S. G. NAsH, Newton-type minimization via the Lanczos method, SIAM Journal on
Numerical Analysis, 21 (1984), pp. 553-572.

J. NOCEDAL, Updating quasi-Newton matrices with limited storage, Math. Comput.,
35 (1980), pp. 773-782.

D. P. O’LEARY, A discrete Newton algorithm for minimizing a function of many
variables, Mathematical Programming, 23 (1982), pp. 20-33.

J. M. ORTEGA AND W. C. RHEINBOLDT, lterative solution of nonlinear equations in
several variables, Academic Press, New York and London, 1970.

T. STEIHAUG, The conjugate gradient method and trust regions in large scale optimiza-
tion, SIAM J. Numer. Anal., 20 (1983), pp. 626—637.

P. L. ToiNT, Towards an efficient sparsity exploiting Newton method for minimization,
in Sparse Matrices and Their Uses, Academic Press, New York, 1981, pp. 57-87.

D. X1iE AND T. T. SCHLICK, Efficient Implementation of the Truncated Newton Method
for Large-Scale Chemistry Applications, to appear in STAM Journal on Optimization.

