
A Concept for Functional Programming

and Distributed Data Processing in a Local Area Network

and Its Implementation

Tsuet~n T. Drashnns~y

Faculty of Mathematics and Computer Science

University of Sofia

"Anton Ivanov" Str., 5

1126 Sofia, Bulgaria

Abstract: In th~s papem me descm~be a new ap;x-ouch to the pure

~unct~onal vogr'c~m~ng watch ~s based on the use o~ a local area netmor~

and ex terv~l ~t~es. This approach essentially ~ncneases the e ~ c t e n c y ar~

the field o I the possible application ol the functional pr'ogr'~8. Our

concepts are tmpZemented fn the Incm~on~ of a FP-lt~e lunctfonel language

named FP, through the system FP,/88N. Hene we state the bestc mechanism8 o.f

the different system modules mhtch demonstrate the new ideas. The

eduentczge8 o~ the ne~)appr'oechore emplafnedond compar'ed to those known by

now. The experimental upp~cat tom9 o I FP*/88N pr'oue the ez~stance qf
oppo~tun~ttes to create usable epp l t ed pr'ogr'ams tn pure lunct tonaZ s t y l e .

l.Introduction,

Recently, plenty of scientists point out the advantages of Backus' FP

systems. Backus' type flmctional languages posses the positive features of

any pure functional language. Besides that they have some additional

properties ([Bac 78], [Bac 81], [Ve~J) : the lack of an argument in the

programs permits creation of an algebra of programs as well as setting up

the way of thinking of the programmers on a new higher level - relations

between functions and not between objects. An important peculiarity is

their relative simplicity, which makes them easy to learn and use. Some of

the possible interesting applications of a system based on such a language

are database systems with an amorphous structure, word processing systems,

information systems, etc.

The original version of the FP-like languages [Bac 78] has some

significant shortcomings - inconvenient syntax for the creation of large

programs, the ability to work with external storage is not available, there

are no opportunities for writing interactive programs. In [Rad 873 A.

Radensky offers a programming language FP* which supports nondeterministic

programming, lazy evaluation, processing of infinite data objects. FP* is

i i
SIGPLAN NOTICES V25 #7, July 1390

http://crossmark.crossref.org/dialog/?doi=10.1145%2F382076.382641&domain=pdf&date_stamp=1990-07-01

an extention of FP systems.

In this paper we suggest a concept for functional programming with

distributed data processing in a local area network and relatively free use

of all ex÷ue~,,a~ ~ devices in terms of the language FP*. The implementation of

this concept in programming system FP*/88N permits the creation of a large

number of programs in an almost pure functional style. The system gives

means for an entirely free operation with data on files and other

computers. These means are very easy to be used in programming and at the

same time they have better opportunities in using external devices than the

known to us systems for pure functional programming. For example, there are

no functions for input and output (with side effects) in FP*/88N.

We developed experimental programs on the basis of the system FP*/88N.

The most interesting of them are the distributed filer and the information

system FP_INFO. We would like to stress on the fact that the changes which

were necessary for the implementation of the concept do not affect the

syntax of the language FP* and thus its good properties as a pure

functional language. In this way the distributed filer and the system

FP_INFO are relatively large programs of such class (written in a pure

functional language) which can be applied in reality.

We consider also as an advantage the following feature of FP*/88N. In

some similar systems the programmer has to pass commands to the system,

while his program is executed (or enter such commands in the program) to

manage the usage of files and external devices. There is no need of

commands for that purpose in our system. The programs are sufficient for

full control of data streams and external devices.

In general, our concept gives to that pure functional lan~e means

for using most of the resources of modern hardware and thus reveals the

expressive power of pure functionalism on von Neumann type computers.

The programming system FP*/88N, the distributed filer and the

information system FP_INFO permit to carry out experiments on real

nondeterminism and parallel execution of pure functional programs.

2.Some ir~orna¢ion abou¢ Che language, Che sysCem and Che

envlronraen't .

The language FP* is a Backus' type functional lan~e. It is

discribed in detail in [Rad 87]. FP* is designed for processing lists.

Lists are sequences of elements. Every element may be an atom or

another list. The numbers, the characters and the identifiers are atoms. A

special object is the so-called 'undefined object' which is denoted by '?'.

12

It represents, in general, the result of an ~msuooesfull computation.

Examples for lists in terms of FP* are:
f/ <a b c> ~34 aaa sss <'a' 'b' 'c'>>> <>

Programs in Fpz consist of function definitions. Functions always have

one argument. (This is not a restriction, because we can form a list

consisting of all n arguments of an n-argument function and this list will

be the single argument of this function in FP*.) The argument is not

written in the programs. So the function definitions include names of

primitive or defined by the user functions and functional forms. The most

of Backus' denotations ([Bac 78], [Bac 81]) remain valid in FP*. But here a

function f applied to an object X is denoted by x : f. So the composition

f, :f2 means 'fz is applied after f ' [Rad 87]. These denotations are more

convenient for program building than the original ones.

The programming system FP*/88N includes a compiler which takes the

source programs and produces a code in abstract machine instructions, and

an interpreter which executes that code. (Their old versions are described

in [Rad 87] but the opportunities for the usage of files are not functional

and not powerful; there are no means for distributed data processing.) The

compiler and the interpreter ara written in TURBO Pascal. The compiler

works on a IBM P0/XT/AT computer and compatibles. The computer system in

which the interpreter works, Tepresents a local area network consisting of

IBM PC/XT/AT computers connected with the adapters of a MULTILINK LAN. The

topology of this LAN is a ring. A copy of the interpreter works on ever?

computer in the network which executes a specified function (on different

computers they may be different). The execution represents an application

of a compiled function f to a given object X. The user specifies the name

of the function and then inputs its argument. Parts of X or the entire one

can be received from the other computers in the network or from files in

the external storage. The result from the application may be sent to the

screen, to a file or to other computer(s).

3, The concept and its implementa%ion,

The basic ideas of the concept are concentrated in the work of the

interpreter which we shall consider now.

Suppose that the user has specified for execution (application) the

fLmction f. f has to take its argument - X. We shall not consider the oases

in which x is an atom because they are of no interest. Let X is a list and

it appears as

x = < x . . . >

13

The objects Xi,...,X,... (the elements of X) we shall call objects on

~rst leueZ o~ ~nc~us~on ~n x.

In order to begin the application x has to be presented in an

appropriate way in RAM. We can imagine that x is presented as a sequence of

its elements Xi,...,x , In order to start the application, however, it

is not necessary all the elements of X to be presented in RAM (in FP* they

can be infinitely many). Even x may be enough. This is a side of the

principle of lazy evaluation accepted here. According to that principle

every action in the system is started when its result is of immediate

necessity (i.e. the application of the function can't continue without this

result). Every action is interrupted when its result is not necessary at

that moment. Here 'action' means not only evaluation but also a data input.

Hence, every x~ is placed at the disposal of the flmction f when it is

needed.

Let us consider where the current X~ is taken from (fig. I). Data

enters the computer through 3 channels in the described environment:

- from the keyboard;

- from other computers, i.e. from the computer serial port RS 232

connected to the network adapter of that computer

- from files in the external storage

/e $creenl
6oar~

i 8uff~r for
1 fo,. ,,<.eo, I

~n~ert'eavin~
/unt~ion

apFtlca~ion

______• 6,Hek /or !
~he pot4]

~.terpre.~er'
~ . 1

1z~

We shall concentrate ourselves on the first two channels. An

information is received from them unpredictably in time. The interpreter

consists of a few programs working pseudoparallelly (in a time-shari~g

manner). Two of them take the data comming from the channels and store it

in two cyclic buffers in RAW. A system of pointers and control characters

structures the information in these buffers in complete objects (in the

sense of FP*). When the interpreter has to input the current X it takes a
k

complete object from where there is such one. For example, if the bmffer

for the keyboard contains

<<2 3> a b> 145 fff

and the bmffer for the port contains

< <45 67 a> b c ...

then next X L will be <<2 3> a b>, because the list in the port buffer is

not complete yet. If x~ is taken from the port bugler it appears as

x~ = <from comp name_o~_sen~er data>

The lack of the predefined identifier from_comp as a first element of ~:~

means that x~ is taken from the keyboard buffer. The f~mction f can choose

the necessary information (through the means of a filter written in FP*)

and form its argument (if, for example, f needs data tossing only from one
place).

Thus, a nondeterministic interleaving of two data streams is obtained

through the described method. This interleaving is performed always and

independently of the contents of the function f, but the user can write

some elementary functions in FP* which filtrate the interleaved data

stream.

When Z~ is placed at the disposal of the function f, the input of X**

is delayed until it is needed. (Obviously, both buffers - for the keyboaa:d

and for the port are filled with data continuously.)

In general, if we don't take into account the third channel, X

consists of elements on first level of inclusion, which are input from the

keyboard or from the port according to their chronological arrival.

From the third channel the data is included in the input stream by

request of the user. Eve~-y file in FP* consists of only one list, that is,

its format is amorphous, completely corresponding to the data format used

in FP* programs. If the programmer includes in his program the construction

<' from_file $~lerzome>

then he may think that instead of that expression in the processed object

stands the list from the file named $~lenz~e.

15

Such a construct may be included in the program (and thus in the input

stream) on an arbitrary level of inclusion. Let us note that the remaining

part of the current input object (on first level) is input from the initial

channel. The ~uput of the objects on the first level of inclusion of the

file is also delayed, so the file contents is read only and Imtil it is

necessary. As we see, data stored in files are included in the input stream

easily, with elementary programming means. This method in combination with

the list processing instruments in FP*, however, offers to the progran~ners

almost unrestricted opportunities for using information from files.

Let us consider now the output data stream of the interpreter. In

fact, the output data stream is the result y of application of the function

f to the object Z. Let y be a list. y is constructed by the function, i.e.,

by the programmer, y can consist of lists on an arbitrary level of

inclusion. Every list can be sent through one of the following channels:

- the screen;

- the port;

- to an external file.

,Screen

' scre ,

L i • Ill"
seriae poll

2

16

Data can be distributed to the places that are addressed (fig 2). For

example, through the third channel data may be stored in different files on

different devices; through the port information may be addressed to

different computers and so on. Besides, if a given list is addressed to a

certain destination, every included in it list can be sent to a different

place. The distribution is made in the following way:

The identifiers to_screen, %o_comp, to_file and flle are predefined ~

FP*/88N. If the list z is a part of the input object and its first element

is one of those identifiers, then z will be sent correspondingly to the

screen, to a specified (as a second element of Z) computer, will be added

to a specified (as a second element of z) file or the contents of z will be

stored as a new file. After Z is sent, the output continues as was

specified before. If the first element of Z is not a predefined identifier,

then Z is sent to the same place as the list in which Z is included. The

data portions intended for different destinations can be included into

oneanother in arbitrary ma~ner.

The fourth possible output channel - the printer, is used to duplicate

the information, destinated to the screen (by the user's request).

This functional method for a program results distribution gives the

programmers quite powerful means for the structuring of processed data. But

it leads to some conflicts. We would like to mention some of them.

Splitting of data portions, on one side, and the peculiarities of

operations with the output channels, on the other side, impose the joining

of the portions into different buglers and their sen~ng in an appropriate

way. In fact, the need of output of information triggers every function

application (accord~ug to the principle of lazy evaluations). Many

conflicts here are related to the case when a complete part of the output

is available but the input from the destination of this output is not

finished. All those conflicts are successfully solved by the system.

4, Summary.

Our concept can be applied to any similar to FP* language or to FP* in

arbitrary environment but we explain it here on the basis of FP* and in the

environment described above.

The described approach permits the creation of entirely usable almost

pure functional programs. These programs are very short - for example, the

distributed file system occupies 3 pages of source. Because of the file

structure in PP*, one can build database or information systems in which

17

data is stored and processed independently of its structure and format and,

hence, any new information can be easy received in these systems.

When we use distributed data processing in a local area network we can

easily (with simple programs) exchange messages among the users, use/store

information from/in external storage of other computers, protect any data

in our own files, etc. The major advantage of our system is that it permits

an easy creation of working and applicable distributed functional programs

from such a wide field.

5, References,

[~ C 78] Baokus, J.

[Bac

[Veg

[Ran

"Can Programming Be Liberated from the von

Neumann Style? A Punotional Style and Its Algebra of Programs",

Comm..4CI, Vol. 21, Aug. 1978

8~ | Baokus, J. "The Algebra of Punotional Programs : Function

Level Reason~, Linear Equations, and Extended Definitions."

!:~'oc. I n t . CoZ~oq. on For'maZ~sutt~on o,,1" .P r ' og r ' ~ng concepts,
Pentsc0Za, Spurn, LNOS, Vol. 107, Heidelberg, Springer Verlag,

1981.

84] Vega=hl,S.R. "A Survey o f Proposed A r c h i t e c t u r e s f o r the

Execution of Functional Languages", IIIE rr'uns, on Computer's,

Vol. 12, Dec. 1984.

87] Radensky,A. "Lazy Evaluation and Nondeterminism Make

Baokus' FP-systems More Practical", SIGPLAN NotZce8, Vol.22,

N.4, Apr. 1987.

18

