
ASSEMBLER IN A FORTRAN ENVIRONMEN T
WITH A NEW DEBUGGING AI D

Raymond Pavlak, Jr .
Adir Prido r

Rensselaer Polytechnic Institut e
Troy, New Yor k

Introductio n

An Assembly Language course is generall y
taken as a second course

	

in compute r
science .

	

Many students, after finishin g
successfully

	

the

	

first

	

(introductory)
course, still find the Assembly Languag e
course

	

extremely

	

difficult

	

an d
time-consuming .

	

It

	

is

	

felt

	

that th e
course should be designed

	

in

	

a

	

manne r
that

	

allows

	

a

	

student

	

to acquire th e
basic

	

ideas

	

and

	

techniques,

	

whil e
practicing

	

in

	

actual

	

Assembl y
programming, within a reasonable

	

amoun t
of

	

effort

	

and time to avoid advers e
effects on his other studies . We
suggest that two important contribution s
towards the above goal are (1) employin g
an approach that conceives any Assembl y
program

	

as

	

a

	

subroutine

	

called

	

b y
FORTRAN

	

(or

	

another

	

higher

	

leve l
language used in the first course),

	

an d
(2)

	

providing

	

basic

	

easy-to-us e
debugging facilities .

	

In this paper

	

w e
report on the experience obtained whil e
teaching

	

the

	

Assembly

	

course

	

a t
Rensselaer

	

Polytechnic

	

Institut e
according to the

	

above

	

considerations .

A.ssemblY in

	

FORTRAN Environmen t

—

	

------- ---- ------

The

	

Assembly

	

Language

	

course

	

a t
Rensselaer

	

Polytechnic

	

Institute

	

i s
designed to introduce the student to th e
machine

	

structure of

	

the IBM 360, th e
techniques

	

and

	

ideas

	

involved

	

wit h
programming

	

at

	

the Assembly level, th e
syntax of

	

the

	

IBM

	

Assembler

	

[1] ,
interactions between the users' program s
and

	

the

	

Operating

	

System,

	

macr o
instructions

	

and

	

Input/Outpu t
programming .

	

It

	

is

	

felt

	

that

	

th e
student should be given the opportunit y
to

	

run

	

his own

	

Assembler

	

program a s
early as possible .

	

If a student's firs t
program is a main

	

program written

	

i n
Assembler, then he must be provided wit h
Input/Output

	

instructions,

	

conversio n
procedures for numerical data types, an d
possibly some general information

	

abou t
macro

	

instructions, and the referencin g
of files (data sets) by

	

symbolic

	

name s
in

	

the Input/Output macro instructions .

Trying to

	

base the

	

first program o n
non-numeric data

	

has the demerit tha t
most students at this stage are

	

neithe r
motivated

	

nor

	

reasonably experience d
with alphanumeric processing .

An easier and more productive approac h
is

	

to

	

begin

	

the

	

course

	

with

	

th e
fixed-point arithmetic instructions

	

an d
base the first computer projects on
processing

	

integers .

	

The

	

reading

	

o f
input

	

and,

	

more important, printing o f
results are done in a main program

	

tha t
calls

	

the

	

Assembler

	

program

	

as

	

a
subroutine, and is written in

	

a

	

highe r
level

	

language

	

like FORTRAN .

	

This wa y
the

	

student

	

does

	

not

	

get

	

int o
Input/Output

	

procedures,

	

conversions ,
and operating

	

system

	

consideration s
until

	

later

	

in

	

the

	

course,

	

thu s
concentrating at the

	

initial

	

phase

	

o n
the

	

basics

	

of

	

register

	

usage ,
addressing,

	

and

	

the

	

elementar y
operations .

	

Printing

	

the results by a
FORTRAN program makes it easy for th e
beginning

	

student

	

to

	

label his outpu t
with explanatory titles, and to edit hi s
results almost without effort .

	

The onl y
subject that may seem difficult to som e
students is the linkage conventions fo r
subprograms, but since these convention s
are used partly also by "main" programs ,
it

	

appears

	

helpful

	

to

	

introduce

	

th e
conventions

	

at

	

this

	

early

	

stage, an d
explain that, to some extent,

	

a

	

"main "
program

	

can

	

also

	

be considered

	

a
subroutine

	

called

	

by

	

the

	

operatin g
system .

	

Owing

	

to the

	

fact that th e
students

	

taking

	

the Assembler

	

cours e
have

	

had experience with FORTRAN

	

i n
their

	

first

	

computer

	

course,

	

thi s
approach

	

was

	

very

	

instructive

	

an d
effective .

In [3] the handling of

	

Input/Output

	

a t
the

	

beginning is done by invoking call s
to

	

reading

	

and

	

printing

	

subroutines .
The

	

above

	

suggestion of

	

using th e
FORTRAN environment seems

	

more direct '
and

	

natural .

	

The

	

approach

	

in

	

[2]
employs

	

special

	

instructor-prepare d
macro instructions for reading data fro m
cards and printing lines .

	

This does no t

63

http://crossmark.crossref.org/dialog/?doi=10.1145%2F382181.382598&domain=pdf&date_stamp=1977-12-01

avoid the necessary conversions, and th e
student still has to be introduced t o
them quite early in the course .

As

	

discussed

	

below,

	

running

	

Assembl y

programs

	

in

	

a FORTRAN environment als o

helps in

	

providing

	

the

	

students

	

wit h

debugging

	

facilities, whose vitality a t

the

	

initial

	

stages

	

cannot

	

b e
overemphasized .

	

In

	

this

	

respect, th e

approach is

	

self-consistent :

	

it

	

put s

students

	

to actual program running at a
very early stage and, at the same

	

time ,

provides

	

a tool without which debuggin g

would be

	

extremely

	

difficult

	

for

	

th e

beginner .

Debu2ain2

Perhaps

	

the

	

single

	

most

	

importan t
debugging technique is that of observin g
intermediate

	

results

	

during

	

progra m

execution .

	

In

	

most

	

high

	

leve l
programming languages this

	

presents

	

n o
difficulty, just the insertion of outpu t
(print)

	

statements

	

at

	

strategi c

locations

	

in

	

the

	

program .

	

Assemble r

Language

	

programming, however, present s

some rather

	

unique

	

problems .

	

Man y

Assembler

	

Language

	

programs

	

ar e

intimately

	

related

	

with

	

a

	

particula r

computer's hardware

	

features and th e

normal

	

resources

	

used

	

to

	

prin t
diagnostic information may already be i n

use

	

by

	

the

	

program,

	

thus

	

precludin g

their use for

	

debugging

	

purposes .

	

O n

the

	

IBM

	

System/360,

	

in particular, we

refer to

	

the

	

registers

	

used

	

for

subroutine

	

linkages

	

and

	

addressin g

purposes .

The basic requirements for an

	

effectiv e

debugging

	

system

	

are ease of use an d

transparency to

	

the

	

program

	

bein g

debugged . By ease of use, it is mean t
that as few changes as possible be mad e
to the source program and Job Contro l

Language

	

statements .

	

In

	

addition ,
simplicity, especially for the beginner ,

should

	

be

	

a

	

major consideration .

	

The

novice programmer should not be require d

to learn the intricate

	

details

	

of

	

th e

operating

	

system

	

or

	

input/outpu t

processing .

	

As far as

	

transparency

	

i s

concerned, the debugging routines shoul d

have

	

a

	

minimal

	

effect

	

on

	

the user ' s

program, and ideally should not

	

requir e
special resource allocations either .

Although

	

OS/360 does provide debuggin g

facilities through the

	

TRACE

	

and

	

SNAP

macro

	

instructions,

	

it

	

is

	

felt

	

tha t
their use is difficult for the beginnin g

student .

	

The major problems

	

are thei r

nontransparency

	

and

	

presuppose d

knowledge of the operating system

	

(JCL)

and

	

input/output procedures .

	

Followin g

are some specific examples :

1 . The

	

macros

	

may

	

alter

	

Genera l

	

Registers

	

0, 1, 14, and 15 .

	

This is

a case of nontransparency to th e
program

	

being

	

debugged .

	

Th e
beginning student may be

	

unaware o f
this fact, and might get confused i f
his program makes use of any of thes e
registers .

2. Both macros assume the establishmen t
of

	

a

	

Save

	

Area

	

and its associate d
address in General Register 13 .

	

Thi s
is a specialized resource

	

allocatio n
which

	

the beginning student may ver y
easily forget to do .

	

In

	

fact,

	

thi s
is one of the most common errors .
Using either the SNAP or TRACE macr o
without a valid Save Area and addres s
in

	

Register

	

13

	

may

	

caus e
unpredictable

	

results

	

or

	

even

	

a n
Addressing Exception .

3. Using the macros requires som e
knowledge of the operating system an d
input/output

	

procedures,

	

includin g
the OPEN and DCB macros . This topi c
inevitably causes the most trouble t o
Assembler students, and it would see m
that trying

	

to teach

	

this to th e
student in the early

	

stages

	

of

	

th e
course might serve to overpower th e
student's comprehension .

	

After

	

al l
it is rather absurd that debugging b e
more

	

difficult

	

and complex than th e
original program .

4. In order to use the macros

	

th e
student

	

has

	

to modify

	

his Contro l
Cards

	

(JCL) .

	

We

	

have

	

found

	

fro m
experience that many new students ar e
initially confused by the Contro l
Cards necessary to run their program .
Unfortunately the JCL cards must b e
modified

	

in order to use the SNAP o r
TRACE macros .

	

It

	

would

	

seem

	

tha t
this

	

only

	

adds to the complexity o f
the debugging process, and should

	

b e
minimized if possible .

As

	

a

	

result of these problems with th e
currently available debugging

	

software ,
we propose a macro instruction for th e
OS/360 Assembler Language, in

	

which

	

w e
have

	

endeavored

	

to

	

simplify

	

th e
debugging process as much

	

as

	

possible .
This

	

macro

	

has proven to be ver y
effective and useful in the course .

Re dun

Macro REGOUMP has been

	

written

	

i n
response

	

to

	

a

	

need

	

for

	

a

	

simpl e
debugging

	

aid

	

for

	

Assembler

	

Languag e
programs for new students .

	

The functio n
of REGDUMP is to provide the user with a
snapshot of the contents of

	

the 1 6
General Registers, the 4 Floating

	

Poin t
Registers

	

and

	

the value of the curren t
Condition Code .

	

As explained above,

	

we
have found a FORTRAN environment ver y
helpful for teaching a first

	

course

	

i n
Assembler,

	

and REGOUMP was written wit h
this in mind .

	

REGDUMP can thus be

	

use d
without modifications

	

to the JCL card s

64

for the run, since the FORTRAN outpu t
routines

	

called

	

by REGDUMP are readil y
available for use . This, then ,
eliminates one of the sources of troubl e
to students .

Attacking

	

the

	

next

	

problem,

	

we hav e
attempted to minimize

	

the

	

interferenc e
of

	

REGDUMP with the normal operation o f
the Assembler

	

program being

	

debugged .
As detailed below, it does not alter th e
contents

	

of any registers or othe r
information that the student

	

is

	

likel y
to ever use .

A

	

typical example of using REGDUMP by a
student

	

would

	

be

	

as

	

follows :

	

th e
student

	

has

	

decided

	

that

	

it would b e
helpful to observe the contents of

	

th e
registers

	

at

	

several

	

points

	

in

	

hi s
program .

	

All he does is

	

to

	

insert

	

a t
those

	

points

	

a

	

card with 'REGDUMP ' o n
it, and run his job .

	

The

	

program

	

wil l
be compiled and the code generated b y
REGDUMP will

	

produce

	

a

	

register

	

dum p
each

	

time a REGDUMP call is encountere d
during execution .

The output from REGDUMP, illustrated

	

b y
Fig .

	

1,

	

provides

	

the

	

user

	

with

	

th e
following information at execution time :

1. General Registers 0-15 are printed i n
decimal and hexadecimal

	

formats

	

fo r
convenience

	

in

	

interpreting

	

bot h
arithmetic and bit operations .

2. Floating

	

Point

	

Registers

	

0-6

	

ar e
printed

	

in

	

both

	

double

	

precisio n
decimal and hexadecimal formats .
This facilitates checkout of floatin g
point operations . . .

3. The current value

	

of

	

the

	

Conditio n
Code

	

is

	

printed in decimal in orde r
to

	

check

	

conditional

	

branches

	

an d
follow

	

the

	

flow

	

of

	

logic

	

in

	

th e
program .

4. The current Program Mask is listed i n
hexadecimal for

	

monitoring

	

possibl e
Program

	

Interrupts

	

and/or

	

t o
determine what the exact results o f
some

	

arithmetic

	

operations

	

wil l
yield .

5. Some

	

identification

	

information
(detailed

	

below) of the REGDUMP cal l
is printed to

	

allow

	

determining

	

o f
which

	

REGDUMP Fall

	

in

	

the cours e
program

	

is

	

being

	

executed,

	

thu s
following program execution .

6. The address of the

	

last

	

instructio n
generated

	

by the macro call is give n
for convenience in locating the macr o
coding when

	

studying

	

Loader Maps ,
dumps,

	

or

	

other

	

object

	

listings .
This address aids the new student b y
giving

	

him

	

an

	

address

	

which

	

lie s
between

	

two

	

consecutive

	

source

	

instructions

	

thereby

	

specifyin g
precisely when the dump occurred .

All output is printed in an easy to rea d
format which is

	

blocked

	

off

	

from

	

th e
program

	

output

	

by

	

a

	

border thu s
facilitating

	

differentiation

	

betwee n
diagnostic and program output .

In its final form, REGDUMP was chosen t o
be a macro call .

	

The advantage of usin g
this

	

approach over that of

	

standar d
subroutine linkage is that the beginnin g
student need not

	

concern

	

himself

	

wit h
all of the linkage details .

	

In REGDUMP ,
all

	

housekeeping

	

and

	

linkage

	

t o
auxilliary

	

subroutines

	

is

	

don e
internally . Thus it is possible to us e
REGDUMP without the knowledge of linkag e
conventions .

In order

	

to

	

avoid

	

the

	

pitfall

	

of

	

a
student

	

forgetting

	

to establish a Sav e
Area and its address in General Registe r
13, REGDUMP

	

creates

	

its

	

own

	

interna l
Save Area .

	

This way, REGDUMP perform s
normally and the

	

student might

	

detec t
the 1-rouble

	

by

	

checking

	

the REGDUMP
output that contains the contents o f
register

	

13 .

	

Unreliable results and a
possible Addressing Exception

	

are

	

thu s
avoided .

One of the

	

functions of REGDUMP is t o
preserve the current status of

	

th e
program .

	

This

	

is

	

done by copying al l
pertinent data to a temporary storag e
area

	

and

	

later

	

restoring

	

thi s
information .

	

In REGDUMP, this data mus t
be saved before

	

the

	

general

	

register s
can be set up for subroutine linkage .
For this purpose, an inline storage are a
is generated as part of the REGDUM P
expansion .

To

	

minimize

	

the amount of inline code ,
it was decided

	

to perform the outpu t
functions

	

by

	

calling

	

a

	

subroutine
external

	

to

	

the

	

macro .

	

In

	

ou r
implementation,

	

the external subroutin e
was written

	

in

	

FORTRAN because,

	

a s
explained earlier, REGDUMP was used in a
FORTRAN environment . Furthermore, it i s
much easier for the course instructor t o
control the output format in FORTRAN .

The

	

inline area begins with the storag e
area,

	

skipped

	

over

	

by

	

a

	

branc h
instruction, and followed by a sequenc e
of instructions that stores the relevan t
information into the storage area, call s
the printing

	

subroutine,

	

restores

	

th e
registers

	

and

	

condition

	

code,

	

an d
resumes normal execution .

	

The storag e
area is organized as follows :

65

WORDS BYTE S
----- -----

1-3 0-1 1

8

4-19 12-7 5

20-27 76-10 7

28-45 108-17 9

46 180-183

Since

	

the

	

inline storage area require s
over 180 bytes, provisions were made

	

to

generate

	

it only once in each contro l

section .

	

Therefore the macro creates a
compilation-timetable

	

of

	

the

	

contro l
sections in which it

	

has

	

been

	

called .
In

	

the present implementation, there i s
provision for up to 10 control

	

section s
in

	

which

	

the

	

macro may be called .

	

I f
more than 10 control sections

	

are

	

used

(which

	

is

	

rare),

	

the macro will stil l
work, but the full storage area will b e
generated for each REGDUMP call from th e
11th control section onward .

As

	

discussed

	

earlier,

	

just

	

usin g

'REGDUMP ' in the operation-code field i s

sufficient

	

to

	

invoke

	

the

	

debuggin g

routine .

	

Even with such a simple call ,

each

	

dump

	

of

	

Information

	

will

	

b e
uniquely

	

identified

	

by

	

an

	

internall y
generated sequence number .

	

Optionally ,

the

	

user

	

may

	

specify

	

his

	

own

identification number by entering it

	

i n
the

	

operand

	

field .

	

Other

	

than

misspelling

	

'REGDUMP',

	

it

	

is

	

nearl y

impossible

	

to commit an error in tryin g

to call REGDUMP .

	

However,

	

should

	

th e

user

	

supply

	

an

	

invalid identificatio n

number, the macro will be sure to

	

prin t

a

	

message

	

to

	

this

	

effect and it wil l
generate a number of its own and specif y
it to the user .

	

If

	

no

	

identificatio n

number

	

was

	

supplied in the call, agai n
the macro will note this

	

and

	

assign

	

a

unique

	

integer

	

for

	

an ID and print i t
for the user's information .

	

Examples o f
what REGDUMP calls might look like, wit h

the macro

	

reaction

	

shown

	

on

	

th e
following line appear in

	

Table 1 .

To

	

summarize,

	

REGDUMP

	

is

	

absolutel y
transparent to the student's program

	

i n

that

	

it keeps unchanged the contents o f
all registers and

	

the

	

condition

	

code .

It

	

provides

	

clear

	

identificatio n
information so that the student ca n

easily

	

distinguish

	

between

	

differen t
REGDUMP calls within the

	

same

	

program .

Excellent legibility was made possibl e
by blocking off the dump output from an y
program output that may occur betwee n
dumps .

	

Thus by reading the output, th e
student may actually follow the

	

dynami c
flow of his program .

Concluding Remark s
--------- ------

The approach described above of teachin g
Assembler in a FORTRAN environmen t
together with the REGDUMP macro ha s
proved

	

to

	

be

	

very

	

effective an d
successful .

	

A

	

significant

	

improvemen t
has

	

been

	

noticed

	

relative to previou s
years .

A natural addition to REGDUMP

	

would

	

b e
to enable dumping of

	

storage

	

areas .
This was not done

	

in

	

the

	

presen t
implementation

	

in order to make th e
calling sequence as simple as

	

possible .
This

	

extension

	

can

	

be

	

added

	

in

	

a n
obvious manner .

In

	

order

	

to

	

implement REGDUMP,

	

on e
should

	

have

	

the

	

FORTRAN

	

printin g
subroutine in a library consulted by th e
Loader .

	

Such a standard library

	

exist s
in almost every installation, and i f
not, can be appended through the use o f
a single JCL card .

Figure 2 contains a source listing o f
REGDUMP and Figure 3 shows the FORTRA N
output subroutine .

Reference s

1. IBM

	

Corporation,

	

OS

	

Assemble r
Language, GC28-6514 .

2. W . G . Rudd, Assembly Languag e
Programming and the IBM 360 and 37 0
Computers, Prentice-Hall Inc . ,
Englewood Cliffs (1976) .

3. G .

	

W .

	

Struble,

	

Assembler

	

Languag e
Programming : the IBM System/360 an d
370, 2nd ed ., Addison Wesley, Readin g
(1975) .

CONTENT S

Linkage Data to FORTRA N
output subroutin e

current program mas k
and condition cod e

general register s
(0-15) when REGDUMP i s
calle d

floating point register s
(0-6)

conventional save are a
for FORTRAN outpu t
subroutin e

identificatio n
information

66

- I	
R
E
U
U
U
M
P

	

2
5

A
T

1
8
6
1
6
6

;
C
C

IS
2
.

P
U
M

X
A
S
K

	

S

1
,

R
f
f
L
S

A
R
E

:
H
E
x

	

0
3
0
0
0
1
1
4

	

D
O
I
E
6
0
7
E

	

0
0
0
0
0
0
1
4

	

4
0
1
4
7
3
8
0

	

U
D
I
F
S
7
0
0

	

D
0
8
3
0
0
)
0

	

2
0
1
F
5
1
8
0

	

4
6
0
0
0
0
1

4
0E

(

	

2
7
6

	

1
9
9
0
7
8
2

	

2
)

	

1
0
8
9
/
4
1
8
0
9

	

2
0
5
3
0
8
8

	

8
0
9
8
6
1
8

	

2
0
5
4
0
6
4

	

1
1
7
4
4
0
5
1
4

0
H
E
x

	

0
0
0
0
8
1
0
0

	

O
C
l
F
5
7

;7
6

	

0
0
1
8
5
7
8
9

	

0
0
1
E
5
0
0
0

	

4
2
1
E
6
0
1
5

	

2
0
1
8
5
2
1
4

	

4
2
1
8
6
4
5
0

	

0
0
1
8
6
0
1

0
DE

C

	

5
7
7
6
0

	

2
0
5
3
8
6
E

	

2
0
5
4
1
3
6

	

1
9
9
0
6
5
6

	

/
1
0
9
2
8
6
9
3
4

	

1
9
9
1
1
8
8

	

1
1
0
9
2
8
8
0
1
6

	

0
4
9
0
6
7

2
4
1
L
D
O
C
S
3

O
A
3
C
8
1
6
5

	

3
4
2
0 .
7
4
0
E

7
6
1
0
0
0
0
0

	

4
1
0
0
C
E
9
E

0
0
0
0
0
0
0
3

	

3
9
7
1
3
7
0.
5

0
0
0
0
0
0
0
0

	

`̀

	

0
.
1
3
8
I
5
5
0
5
8
8
0
6
0
1
6
3
0

0
2

	

0
.
9
8
6
5
1
7
8
7
6
0
4
5
5
9
3
2
0
-
0
8

	

0
.
1
3
8
6
2
9
4
3
6
4
9
2
9
1
9
9
0

3
2

	

0
.
1
6
4
7
5
2
9
4
4
6
2
0
2
6
1
0
0
-
0
8

!

-
R
E
G
D
U
M
P

2

A
l

1
E
6
2
0
8

;
C
C

1S
2
,

P
G
M
M
A
S
K

S

2
.

R
E
D
S

A
R
E

:

H
E
x

	

0
0
0
0
0
1
F
C

	

0
0
1
E
6
0
7
E

	

3
0
0
)
0
)
1
1

	

4
D
F
F
F
F
F
F

	

0
0
1
1
5
7
0
0

	

0
3
3
0
)
0
)
7

	

0
0
1
F
5
7
B
O

	

4
6
0
0
0
0
F
C

D
E
C

	

5
0
8

	

1
9
9
0
7
8
2

	

2
5
2

	

1
0
9
0
5
1
9
0
3
9

	

2
0
5
3
0
8
8

	

8
3
8
8
6
3
8

	

2
0
5
4
0
6
4

	

1
1
7
4
4
0
5
3
7
2

H
E
x

	

0
0
0
0
E
]
A
0

	

0
0
1
1
5
7
0
0

	

0
0
1
1
5
7
5
9

	

3
0
1
E
6
3
0
3

	

4
2
1
E
6
0
1
6

	

0
0
1
E
6
2
1
4

	

4
2
1
E
6
4
5
0

	

0
0
1
E
6
0
1
0

1
D
E
C

	

5
1
7
6
0

	

2
0
5
3
8
8
8

	

2
0
5
4
1
3
6

	

1
9
9
0
6
5
6

	

1
1
0
9
2
8
6
9
3
4

	

1
9
9
1
1
3
8

	

1
1
0
9
2
8
8
0
1
6

	

1
9
9
0
6
7
2

1

4
2
0
E
0
C
4
F

9
A
F
F
F
F
F
1

	

3
5
1
0
0
0
0
0

0
3
0
0
0
0
0
0

	

4
2
0
E
6
0
4
8

0
0
0
)
0
)
0
3

	

3
4
9
0
0
0
0
0

0
0
0
0
0
0
0
0

	

II

	

-
_
_

0
.
1
7
4
6
/
3
0
8
9
6
1
3
0
5
5
8
0

_
0
3
	

0
_
3
5
5
2
7
1
3
6
7
5
8
0
0
0
0
8
0
-
1
4

	

0
.
1
7
4
6
7
3
0
8
9
9
8
1
0
7
9
1
0

03

	

0
.
1
7
1
6
3
5
6
0
3
9
4
0
0
2
5
0
0
-
1
4

1

-
R
E
L
U
U
X
P

2

A
T

1
E
6
2
0
9

;
C
C

1
S

2

.
P
0
M

M
A
S
K

S

2

.

R
E
0
S

A
R
E

:

H
E
X

	

0
0
0
0
0
1
F
C

	

0
0
1
E
6
0
7
E

	

0
0
0
3
0
0
1
0

	

4
D
F
F
F
F
F
F

	

0
)
1
F
5
7
0
0

	

0
0
8
3
0
0
)
0

	

0
0
1
E
5
7
8
0

	

4
5
0
0
0
0
F

C
D
E
C

	

5
0
8

	

1
9
9
0
7
8
2

	

2
5
2

	

1
0
9
0
5
1
9
0
3
9

	

2
0
5
3
8
8
8

	

8
3
8
8
6
)
8

	

2
0
5
4
0
6
4

	

1
1
7
4
4
0
5
3
7
2

k

H
E
X

	

3
0
0
0
1
8
8
0

	

0
0
1
5
5
7
0
0

	

2
0
1
8
5
7
1
9

	

0
0
1
5
6
3
0
7

	

4
2
1
5
4
0
1
5

	

3
0
1
5
6
2
0
7

	

4
2
1
8
6
4
5
0

	

0
0
1
8
5
0
1
0

{{{{{{1
D
E
C

	

5
]
]
6
0

	

2
0
5
3
8
8
8

	

2
0
5
4
1
3
6

	

1
4
9
0
6
5
6

	

1
1
0
9
2
8
6
9
3
4

	

1
9
9
1
3
6
0

	

1
1
0
9
2
8
8
0
1
6

	

1
9
9
0
6
1
2

4
4
2
A
E
A
C
4
F

9
A
F
F
F
F
F
I

	

3
5
1
0
0
0
0
0

0
0
0
0
0
0
0
0

	

4
2
A
E
A
C
4
F

0
0
0
0
0
3
3
3

	

3
4
8
0
0
0
0
0

0
0
0
0
0
0
0

0
	

2
.
1
7
4
5
9
3
)
5
9
5
8
3
0
5
5
8
0
_
3
3

	

	
0
_
3
5
5
2
7
1
3
6
7
8
8
0
0
5
0
1
0
_
1
4

	

-
_
0
_
1
7
4
6
7
3
0
8
9
9
8
1
0
7
9
1
0

_
0
3
-
_

	

0
.
1
7
7
6
3
5
6
8
3
9
4
0
0
2
5
0
0
-
1
4

1

0
.
7
2
3
7
0
0
5
3
_

7
6

	

0
.
1
7
4
6
7
3
1
0
E

0
3

	

0
.
1
1
4
6
1
3
0
8
E

0
3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
--

--
- -

F
i
g
u
r
e

1
.

S
a
m
p
l
e

o
u
t
p
u
t

f
r
o
m

R
E
G
D
U
M
P

(
n
u
m
b
e
r

s

o
u
t
s
i
d
e

b
o
x
e
s

a
r
e

p
r
o
g
r
a
m

o
u
t
p
u
t
)

.

ti•

	

m

E
ro

	

ro•

	

F
ro

COC C0
H

-

	

no
'-

	

F-'
- '.

S'
d
W

o

a

a

o
c

	

5
o

	

O
H

-
H

	

CD
 I

-h

	

C
0

R

.
H
-

	

U]

	

m
r

C
l

	

UI
N

	

H
-
t

:1
(0

	

S
L

U
]

	

v
0

H

-
W

H
D

44
0
)

a

	

CD
D

)

	

(0
 (

D
r

	

T
O

	

ED
,
0

O

	

0
(D

H
-

H
-

	

H
-
0

	

0
R
C

	

C

r
•

	

"C
(D

	

(D
I-

h

¢
 0

	

O
H

-
(
3

-
-

	

`-
-

(D

	

m
CH

	

SZ

	

0
H
-

	

-
-

	

0
W

	

C
0 (0

	

ro
1i

I

	

H
E
x

	

0
0
0
0
0
1
1
4

	

0
0
1
E
6
0
1
E

	

0
0
0
0
0
0
1
4

	

4
0
F
4
2
3
F
0

	

0
7
1
8
5
1
0
0

	

0
9
5
)
)
3
)
)

	

3
0
1
1
5
7
5
0

	

4
6
J
D
0
0
2
4

1
DE

C

	

2
7
6

	

1
9
9
0
7
6
2

	

2
)

	

1
0
8

	

2
3
5
3
8
8
8

	

9
3
8
8
6
)
8

	

2
0
5
4
0
6
4

	

1
1
7
4
4
0
5
1
4

0
H
O
C

	

3
0
0
0
E
1
1
0

	

0
0
1
1
5
7
0
0

	

0
0
1
8
5
7
8
9

	

0
0
1
E

6
0
0
0

	

'.
2
1
9
5
0
1
5

	

0
0
1
E
5
2
0
0

	

4
2
1
8
6
4
5
0

	

0
0
1
8
6
0
1

0
D
E
C

	

5
7
7
6
0

	

2
0
0
3
8
8
6

	

2
0
0
4
1
3
6

	

1
9
9
0
6
5
5

	

1
1
0
9
2
8
5
9
3
4

	

1
9
9
1
3
6
0

	

1
1
0
9
2
8
9
0
1
6

	

1
9
9
0
6
7

2

4
1
0
0
0
(
.5

3
0
A
3
0
8
1
6
5

	

3
5
3
1
1
4
0
8

7
6
1
0
0
0
0
0

4
1
0
0
1
E
9
E

0
0
0
0
0
0
0

0
I	

J
_
1
3
X
1
5
5
0
8
5
8
0
5
0
1
5
3
0

_
U
2
	

0
_
9
9
6
5
1
7
6
7
6
0
4
0
5
4
3
2
0
_
U
B
	

0
_
1
3
8
6
2
9
4
3
6
4
9
2
9
1
9
9
0
_
)
2
	

0
_
1
6
4
7
5
2
9
4
4
6
2
0
2
6
1
1
0
0

8
3
9
1
1
3
7
0
5

0
0
0
0
0
0
0

0

0
.
9
9
9
9
9
9
)
)
8

06

	

0
.
1
3
8
1
5
5
1
1
E

02

	

0
.
1
3
8
1
3
5
3
9
E

U

2
I

R
E
0
0
0
1
1
P

	

2
5

A
T

1
E
6
1
8
6
1

C
C

IS
2
,

P
1
M

M
A
S
K

I
S

2
,

R
E
L
S

A
R
E

:

I

	

MAC•A C
2 &NAM

	

REGULNP

	

L1 U
3 . s
4 .• REGDUMP PRINTS A SNAP CF TEE GENERAL PURPOSE AND FLOATIN G
5 .•

	

PCINT REDS DLEING EXECUTION .

	

IT ALSC GIVES THE CCNCITICN COLE .
6 .s PROGRAM MASK . ACCH OF THE LAST INSTR . CF THE MACRO EXPANSION .
7 .• ANC AN ID NUMBER .

	

REGCLNP DOES NCT ALTER ANY OF THIS INFLRMAT(ON ,
8 .• REGDUMP CALLS FCRTRAN SLCRLLTINE REGCNP FCR OUTPU T
9 . s

10 .s

	

REGCLNP WRITTEN 8Y ADIR FRICOH AND RAY PAVLAK – 11/14/7 6
ll . s
12 .s LC`_ LIST OF CSECT NAMES . ONLY ONE STCRAGE AREA FOR EACH CSECT .
13 . ♦
14

	

GBLC

	

LC5(10)
15 . s
16 .s

	

&PCC=LPN . CURRENT nLMCER Cf NAMES IN LCS .
17 . s
IA

	

COLA CFC .LP N
19

	

LCLA

	

ER .L ICMC D
20 . s
21 .s LA 4ILL BE NAME CF STCRAGE AREA .
22 .s

	

-
23

	

LCLC LA .L N
24

	

AIF

	

(T'LID E0 'C') .CONT1

	

TC CHCCSE ID IF ONITTE C
25

	

AIF

	

(T'LIC NE 'N') .NEES

	

CHECK IF IG VALI D
26

	

AIF

	

(LID LT 0) .NES S
27 LIDMOO

	

SETA LID–((LI0/1000) .1000)

	

RECUCE MCC 100 0
28

	

AGO

	

.CON T
29 .MESS

	

MNOTE $.'ILLECAL REGCLNP IC . LSYSNCX USED . '
30

	

AGO

	

.CUNT 2
31 .CONTI

	

MNCTE * .'REGCLNP IC = LSYSNUX '
32 .CCNT2

	

ANC P
33 LICNCC

	

SETA LSYSNCX

	

CHOOSE I C
34 .CONT

	

ANO P
35 . •
36 .•

	

LPM=IO IS LENGTH OF CSECT LIST (LCS I .
37 . s
38 LPM

	

SETA

	

I D
39 LF

	

SETA

	

I
40 . ♦
41 .s

	

LCCA FOR CSECT NAME IN IABLE .
42 . 4
43 .CHKCS

	

AIF

	

(LP ET 1.PC) .NE8C S
44

	

AIF

	

(GSYSE CT

	

EC

	

LCS(LP)') .NODEF I
45 LP

	

SETA LPA I
46

	

AGO

	

.CHKC S
47 .',OGEFI

	

ANC P
48 LA

	

SETC

	

' CS' .'LF' .'PPEG'

	

CREATE AREA NAM E
49 GA.

	

SETC

	

'LNAR'

	

ATTACH LNAN TC 8 INSTRUCTIO N
50

	

AGC

	

.NCDE F
51 . 0
52 .•

	

IF LCS NOT FULL . INSERT CSECT NAME .
53 . s
54 .NEACS

	

AIF

	

(LPC LT LPM),INEC S
59

	

MNOTE s .'SEPERATE AREA ASSIGNEC FOR THIS REGDUMP CALL . '

56 LA

	

SETC

	

'PREG' . .&SYSNCX'

	

CREATE AREA NAME
57

	

AGO

	

.DE F

58 .INSCS

	

ANC P
59 LPC

	

SETA GPC+1

	

ACVANCE COUNTE R

60 LCSILPCI SETC

	

'LSYEECT'

	

ACC NAME TO LIS T

61 GA

	

SETC

	

'CS' .'LFC' .' PREG'

	

CREATE AREA NAM E

62 .CEF

	

ANC P
63

	

CNCP 0 .8

	

SAVE STORAGE ARE A
64 GNAN

	

8

	

LA+184

	

SKIP ARE A

65 LA

	

DC

	

A(s+8)

	

ADDRESS PARAM SENT TO REGCM F

66

	

CC

	

_ VIREGCMP)
67

	

DS

	

44F

68 .NODEF

	

ANO P

69 . s
70 . n SAVE REGISTERS AND STATES . GC TO OUTPUT ROUTINE . AND RESTORE DAT A

71 . s
72 EN

	

5TM

	

0 .15 .LA+12

	

SAVE AND PASS GENERAL REGISTER S

73

	

LA

	

I .(A

74

	

STD

	

0 .76(1)

	

PASS FLOATING POINT REGISTER S

75

	

STD

	

2 .84(1 1

76

	

STD

	

4 .92(1)
77

	

ETC

	

6 .100(1)
78

	

LA

	

I3 .ICEl l)

	

ESTABLISH SAVE ARE A

79

	

L

	

15 .4(1 1
80

	

LA

	

2 .LICvOL

	

PASS I L

8l

	

ST

	

2 .IAC(I I

82

	

BALR

	

2 .0

	

TAKE CC . MASK . PRCG COUNTE R

83

	

ST

	

2 .8(1 1

84

	

BALH

	

14 .15

	

GO TO OUTPUT SUEROLTIN E

85

	

LC

	

0 .76(1)

	

RESTCRE FLOATING PC1NT REGISTER S

E6

	

LD

	

2 .84(1)
87

	

LC

	

4,92(1)

EE

	

LO

	

6,100(1 1

89

	

5PM

	

2

	

RESTORE C C

90

	

LM

	

0 .15 .12(11

	

RESTORE GENERAL REGISTER S

91

	

MEN D

Figure 2 . Source listing of REGDUMP ,

68

0001

	

SUPPOLTINE REGCMP(N)
C
C PRINTING SLDROLTINE USED ©V PEGDUNP MACRO .
C

DATA K24 /21000000 /
DIMENSION N(44),NM(8)
COUOLE PRECISION F(4)
EQUIVALENCE (F,MM)
INTEGER ADCP,STATUE .C C

DC 1 1=1) 8
NM(1) = N(I417)

STATUS = M(1)/K2 4
ACDR = P(1)-STATLS*K24+2 4
IOC = STATUS/1 6
MASK = STATLS-16«IC C
CC = 1CC- 4

M(44) = REGCUMP ID NLMOE R
M(2) --> M(l7) ARE GENERAL BEGS 0-1 5

,M(l8) --> M(25) ARE FLOATING POINT PEG S

HRITE(6 .100(M(441,ADOR,CC .MA5K).(4)1),1=2 .V) .1M(11 4 1=2,9) ,
X

	

(MII1 .1=10,17),(P(1),I=10 .17),IMI II•1=L8,25), F

FORMAT (
A

	

1X .122('-')

B

	

/' 1 REGDUMP' .14 .' AT

	

.1E .') CC 15' .120, PGM MASK I5 ' .
C

	

Zl . . BEGS ARE :'173X0I' .

U 2(/' 1',130X .'1 '
E /' I' .15x,'FEX'•8214 .'I '
F

	

/'

	

I' 0 15)(,'CEC' .5114 .'I' 1
C

G /' I',130X,'I '

1

	

/'

	

I',15x,4(Zl9 .,ZS),3x,'I '
J /' I' . IEX .4025 .1E,'I '

C
K

	

/1H .132('-')
L)

C
OOZE

	

RETUR N
0017

	

END

Figure 3 . Source listing of the FORTRAN outpu t

subroutine .

000 2
000 2
000 4
000 5
000E

C

1
C

000 7
000 E

000 9
001 0
001 1
001 2
0013

C
C
C
C
C

0014

C
10 0

C

0015

C

C

69

