Check for
Updates

ASSEMBLER IN A FORTRAN ENVYIRONMENT

WITH A

NEW

DEBUGGING AID

Raymond Pavlak, Jr.
Adir Pridor

Rensselaer Polytechnic Institute

Tr

Introduction

An Assembly Language course is generally
taken as a second course in computer

science., Many students, after finishing
successfully the first (introductory)
course, still find the Assembly Language
course extremely difficult and
time-consuming. It is felt +that the
course should be designed in a manner
that allows a student +to acquire tThe
basic ideas and techniques, while
practicing in actual Assemb |y
programming, within a reasonable amount
of effort and +time +to avoid adverse
effects on his other studies. We

suggest that two important contributions
towards the above goal are (1) employing
an approach that conceives any Assembly
program as a subroutine called by

FORTRAN (or another higher level
language used in the first course), and
(2) providing basic easy~to-use

debugging facilities. In this paper we
report on the experience obtained while
teaching the Assembly course at
Rensselaer Polytechnic Institute
according to the above considerations.

The Assembly Language course at
Rensselaer Polytechnic Institute is
designed to introduce the student to the
machine structure of the IBM 360, the
techniques and ideas involved wlth
programming at the Assembly level, the

syntax of the | BM Assembler £,
interactions between the users! programs
and the Operating System, macro
Iinstructions and Input/Qutput
programming. I+ is felt that +the

student should be diven the opportunity
fo run his own Assembler program as
early as possible. I1f a studentts first
program is a main program written in
Assembler, then he must be provided with
Input/Output instructions, conversion
procedures for numerical data types, and
possibly some general informaticn about
macro Instructions, and the referencing
of files (data sets) by symbolic names
in the Input/Output macro instructions.

oY,

63

New York

Trying to base +the first program on
non-numeric data has the demerit that
most students at this stage are neither
motivated nor reasonably experienced
with alphanumeric processing.

An easier and more productive approach
is to begin The course with the
fixed~point arithmetic instructions and
base the first computer projects on
processing integers. The reading of
input and, more important, printing of
results are done in a main program that

calls the Assembler program as a
subroutine, and is written in a higher
level language |ike FORTRAN. This way
the student does not get info
Input/Output procedures, conversions,
and operating system considerations
until later in the course, thus
concentrating at the initial phase on
the basics of register usage,
addressing, and the elementary

operations. Printing the results by a
FORTRAN program makes it easy for the
beginning student +to label his output
with explanatory titles, and to edit his
results almost without effort. The only
sub ject that may seem difficult to some
students is the |inkage conventions for
subprograms, but since these conventions
are used partly also by "main" programs,
it appears helpful to introduce the
conventions at this wearly stage, and
explain that, to some extent, a '"main"

program can also be considered a
subroutine called by the operating
system, Owing +to +the fact +hat the
students taking the Assembler course
have had experience with FORTRAN in
thelr first computer course, this
approach vwas very instructive and

effective,

In £31 the handling of Input/Output at
the beginning is done by invoking calls
to reading and printing subroutines.
The above suggestion of using +the
FORTRAN environment seems more direct
and natural. The approach in [2]
employs special instructor-prepared
macro instructions for reading data from
cards and printing lines. This does not

http://crossmark.crossref.org/dialog/?doi=10.1145%2F382181.382598&domain=pdf&date_stamp=1977-12-01

avoid the necessary conversions, and the

student still has +to be introduced to
them quite early in The course.

As discussed below, running Assembly
programs in a FORTRAN environment also
helps in providing the students with
debugging facilities, whose vitality at
the iniftial stages cannot be
overemphasized. In this respect, the
approach is self-consistent: i+ puts
students +to actual program running at a
very early stage and, at the same time,
provides a tool without which debugging
would be extremely difficult for the
beginner.

Debugging

Perhaps the single most important
debugging technique is That of observing
intermediate results during program
execution. In most high level
programming languages this presents no

difficulty, just the insertion of output
(print) statements at strategic
locations in the program. Assembler
Language programming, however, presents
some rather unique problems. Many
Assemb ler Language programs are
intimately related with a parficular
computer's hardware feaftures and tThe

resources used to print
information may already be In

normal
diagnostic

use by the program, thus precluding
their use for debugging purposes. On
the IBM System/360, in particular, we
refer to the registers used for
subroutine linkages and addressing
purposes.

The basic requirements for an effective

debugging system are ease of use and
transparency ‘o the program being
debugged. By ease of use, iT is meant
+hat as few changes as possible be made

to the source program and Job Control
Language statements. In addition,
simplicity, especially for the beginner,
should be a major consideration. The
novice programmer should not be required
to learn the intricate details of tThe
operating system or input/output
processing. As far as Tfransparency is
concerned, the debugging routines should
have a minimal effect on the user's
program, and ideally should not require
special resource allocations either.

does provide debugging
facilities through the TRACE and SNAP
macro instructions, it is felt that
their use Is difficult for the beginning
student. The major problems are ‘their
nontransparency and presupposed
knowledge of the operating system (JCL)
and input/output procedures. Foflowing
are some specific examples:

Although 08/360

General
This 1s

1. The macros may alter
Registers 0, 1, 14, and 15.

64

a case of nontransparency to the

program being debugged. The
beginning student may be unaware of
this fact, and might get confused if

his program makes use of any of these
registers.

2. Both macros assume the
of a Save Area and Its assocliated
address in General Register 13. This
is a specialized resource allocation
which the beginning student may very
easily forget to do. In fact, +this
is one of the most common errors.
Using either the SNAP or TRACE macro
without a valid Save Area and address

establishment

in Register 13 may cause
unpredictable results or even an
Addressing Exception.

3. Using the macros requires some

knowledge of the operating system and
input/output procedures, including
the OPEN and DCB macros. This “topic
inevitably causes the most trouble to
Assembler students, and it would seem

that +rying to +teach +this +to the
student in the early stages of the
course might serve to overpower the

student's comprehension. After all
it is rather absurd that debugging be

more difficult and complex than the
original program.

4, In order to use the macros the
student has to modify his Control
Cards (JCL). We have found from

experience that many new students are
initially confused by the Control
Cards necessary to run their program.
Unfortunately the JCL cards must be

modifled in order to use the SNAP or
TRACE macros. I+ would seem that
this only adds to the complexity of

the debugging process,
minimized if possible.

and should be

As a result of these problems with the
currently available debugging software,
we propose a macro instruction for the
0S/360 Assembler Language, In which we

have endeavored to simplify the
debugging process as much as possible.
This macro has proven 1o be very
effective and useful in the course.
Regdump

Macro REGDUMP has been written in
response to a need for a simple
debugging aid for Assembler Language

programs for new students. The function
of REGDUMP is to provide the user with a
snapshot of +the <contents of +the 16
General Registers, the 4 Floating Point
Registers and +the value of the current
Condition Code. As explained above, we
have found a FORTRAN environment very
helpful for teaching a first course in
Assembler, and REGDUMP was written with
this in mind. REGDUMP can thus be used
without modifications +to the JCL cards

for the run, since the FORTRAN output
routines called by REGDUMP are readily
available for use. This, then,

eliminates one of the sources of trouble
to students.

Attacking the next problem,
attempted to minimize the
of REGDUMP with *the normal
the Assembler program
As detailed below, it does not alter the
contents of any registers or other
information that the student is likely
to ever use.

we have
interference
operation of
being debugged.

A typical example of using REGDUMP by a
student would be as follows: the
student has decided that it would be
helpful to observe the contents of the
registers at several points in his
program. All he does is to insert at
those points a card with 'REGDUMP' on
it, and run his job., The program will
be compiled and +the code generated by
REGDUMP will »produce a register dump
each time a REGDUMP call is encountered
during execution.

The output from REGDUMP, illustrated by
Fig., t, provides the wuser with +the
following information at execution time:
1. General Registers 0~15 are printed in
decimal and hexadecimal formats for
convenience in interpreting both
arithmetic and bit operations.

2. Floating Point Registers 0-6 are
printed in both double precision
decimal and hexadecimal formats.

This facilitates checkout of floating
point operations...

3, The current value of +the Condition
Code is printed in decimal in order
to check conditional branches and
follow the flow of logic in the
program.

4. The current Program Mask is fisted in
hexadecimal for monitoring possible
Program Interrupts and/or to
determine what the exact resultfs of
some arithmetic operations will
yield.

5. Some identification information
(detailed below) of the REGDUMP call
is printed to allow determining of
which REGDUMP calil in the course
program s being executed, thus
following program execution.

6. The address of the last instruction
generated by the macro call is given
for convenience in locating the macro
coding when studying Loader Maps,
dumps, or other object Iistings.
This address aids the new student by
giving him an address which lies
between two consecutive source

65

instructions thereby specifying
precisely when the dump occurred.

All output is printed in an easy 1o read
format which is blocked off from +the
program output by a border thus
facilitating differentiation between

diagnostic and program output.

In its final form, REGDUMP was chosen to
be a macro call. The advantage of using

this approach over that of standard
subroutine linkage is that the beginning
student need not concern himself with
all of the linkage detalls. I'n REGDUMP,
all housekeeping and linkage to
auxilliary subroutines is done

intfernally. Thus it is possible to use

REGDUMP without the knowledge of I|inkage
conventions.

fn order to avoid the piffall of a
student forgetting +to establish a Save
Area and its address in General Register
13, REGDUMP c¢reates its own internal
Save Area, This way, REGODUMP performs
normally and the student might detect
the *Trouble by <checking the REGDUMP

contains the contents of
Unreliable results and a

output that
register 13,

possible Addressing Exception are thus
avoided.
One of +the functions of REGDUMP is to

preserve the current status of the
program. This 1s done by copying all
pertinent data to a “temporary storage
area and later restoring this
information. In REGDUMP, this data must

be saved before the general
can be set up for subroutine
For this purpose, an
is generated as
expansion.

registers

linkage.
inline storage area
part of the REGDUMP

To minimize the amount of iniine code,

it was decided +to perform the output
functions by calling a subroutine
external to the macro. In our
implementation, the external subroutine
was written in FORTRAN because, as

explained earlier, REGDUMP was used in a
FORTRAN environment. Furthermore, [t is
much easier for the course instructor to

control the output format in FORTRAN,
The inline area begins with the storage
area, skipped over by a branch

instruction, and followed by a sequence
of instructions that stores the relevantT
information into the storage area, calls
the printing subroutine, restores fthe
registers and condition code, and
resumes normal execution. The storage
area Is organized as follows:

WORDS BYTES CONTENTS

1-3 0-11 Linkage Data to FORTRAN

output subroutine

8 current program mask
and condition code
4«19 12~75 general registers
(0-15) when REGDUMP is
called
20-27

76-107 floating point registers

(0-6)
28-45 108-179 <conventional save area
for FORTRAN output

subroutine

identification
information

46 180-183

Since the inline storage area requires

over 180 bytes, provisions were made to
generate it only once in each control
section. Therefore the macro creates a
compllation-timetable of +the control
sections In which It has been called.
In +the present implementation, there is
provision for up to 10 control sections
in which +the macro may be called. | f

more than 10 control sections are used
(which is rare), +he macro will stit
work, but the full storage area will be
generated for each REGDUMP call from the
11+h control section onward.

As dlscussed earlier, Jjust using

'REGDUMP ' in *he operation-code field is
sufficient +to invoke the debugging
routine. Even with such a simple call,
each dump of Information will be
uniquely identified by an Internally
generated sequence number. Optionally,
the user may specify his own
identiflication number by entering It In
the - operand field. Other than
misspelling 'REGDUMP', it s nearly
impossible +to commit an error in trying
to call REGDUMP. However, should the
user supply an invalld identification
number, the macro will be sure fo print
a message to thils effect and 11 will
generate a number of Ifs own and specify
it to the user. I+ no identification
number was supplied in the call, agaln
the macro will note this and assign a
unique integer for an ID and print it
for the user's Information. Examples of

what REGDUMP calls might look Iike, with
the macro reaction shown on the
following Iine appear in Table 1.

To summarize, REGDUMP Is absolutely

transparent to the student's program In
that it keeps unchanged the contents of
all registers and the condition code.
|+ provides clear fdentification
information so that the student can
easily distinguish between different
REGDUMP calls within the same program,

66

Excellent legibility was made possible
by blocking off the dump output from any
program output that may occur between
dumps. Thus by reading the output, the
student may actually follow the dynamic
flow of his program.

Concluding Remarks

The approach described above of teaching

Assemb ler in a FORTRAN environment
together with +the REGDUMP macro has
proved to be very effective and
successful. A significant improvement

has been noticed relative to previous
years.

A natural addition to REGDUMP would be
to enable dumping of storage areas.
This was not done in the present
implementation in order +to make ‘the
calling sequence as simple as possible.
This extension can be added in an

obvious manner.

In order to implement REGDUMP, one
should have the FORTRAN printing
subroutine in a library consulted by the
Loader. Such a standard library exists
in almost every installation, and if
not, can be appended through the use of
a single JCL card.

Figure 2 <contains a source |Isting of
REGDUMP and Figure 3 shows the FORTRAN
output subroutine.

References

1. |BM Corporation, 0S Assembler
Language, GC28-6514.

2. W. G. Rudd, Assemb |y Language
Programming and +the IBM 360 and 370
Computers, Prentice-Hal Inc.,
Englewood Cliffs (1976).

3. 6. W, Struble, Assembler Language
Programming: the IBM System/360 and
370, 2nd ed., Addison Wesley, Reading
(1975).

REGDUMP (no id given)
*#, REGDUMP ID = 0005 (id assigned by REGDUMP)

REGDUMP 25 (id of 25 specified)
(no message given)

REGDUMP XY7Z (invalid id given)
*, ILLEGAL REGDUMP ID. 0008 USED. (legal id assigned)

Table 1.

yo on @ vo o~ o onN oA urn an -
L ki (=] PR I 1ot [o] AT e T - LT Lol -
O~ oo [] O OD] om oa 1 om ao 1
own wo oo own ao oo own Lo 0o on va oo
0o woe aw oo woe o 00 wo 0o 600 wo OO
OF AN O [XX B Ir .} L O O O O v O
D Om OO0 o Om OO0 o O~ ON BY O ON
4~ o onN r= O on = o oo g~ O co
=~ P=1= - r=1=} - oo — oo
- an -t onN al o ~ (=% 4
=1 ca oo =13
~ ~? hal ™
nag wa Qw om
< o~ < (=23 (=]
ov ow M~ o+ oo A oy o0 On oy oo on
@O N~ A DI N Mn ®0 e Om ad =~ Om
~O 3O e~ ~O O e ~o ta o« ~o so Ca
W am o W dm rear My A o~ e no are
L we o win wa ;o Wi wm Win wo A
O et M T T A] -0 N Mea = BT A L P
on No . oN NG . onN A N o ANo .
o <z a EY] o o vo o =3 za o
—~ — —
~ ra - ~
OB s= ~ oo o® wm o oo oo [l
N (=] [alnl N m - ~AO LD a
00 A oo Qs e ao e
Nao N O3 (a2 % @ B D i Om B OO
oo wo Qo O oo we o= Qo woee O
MMA ah OO a m MmN et OO 1 T T)
O@m O O ©m Om O o oo o= oM~
[a] o O [x] (g [=] a0 a [g] (=)=}
o o O
f=T. 3 oo oo
ov =TS <o
w0 1 ol o
wm o wao | wm |
o> Jal o |
Om O wo [=T) ~ oD oy wmi om ey wmlm
O@ ~Am N Sm ol o®m Aam ate oo ~m 21O 0
~o oo aw o { ~o oo waol ~x oo wao
wm 00 am) wr i "M 00 i N oo . bW [3 .
L @ e wan ol wn wo e W wo NNkl o —~
—0 mN T —_c ol P R R L ~D N Tl O
o~ o ol an Fy on o . o ~Noy «len Q &
= =] (= o ol o R) o =] T (=N N ad ol
—_ I} —1 ~] - [
P il @ | - 1 —- [[oN)
: m ; = g o
- — 3
1 i i .
i ol i o 0
[=T]] o o0 o 1 w0 = [wr O B 4 Q—(
w3 1 wo on P= 1 wm on ~ wm —
Mo 1 mo o] 1 wO o8 (N wO 0D it = &
~——) N 8O DG 1 wo b0 ool wo so ool 5 o
Rt g] 2w O] e W Qe | W W O
w=] e o M] w3 DO W R DO [a) j)
oo l oo o= O 1 o0 o~ onl OO0 O Own O C"‘
Jo o O anit | I O Qo v o oo o
a i o ot N o ool o oo]
-] — P t — A — om | m [
i ~ol o® | ool 0,
i o bl ~1 ~lm
i we ol =Y ocwvlo =
1 oot | o omi o)
e 1 0 oo o~ LN s O N @D Ol
—~eu 1 - o e wn wm ol Wit . O~ o 1oy | 9]
(=3] [=) fems gl ON e onN oON P Ong e y{ a
o o 1w 6 v Noldla 3 WY anile. 5 g =alm
w o 1w o wa wolwnlw n wun A w0 wn wnan |~
®« o la o ~0 MOl o —~O ox O -_-a Mmoo i) w0
-« o 1= o o~ riola © om . <« o o~ R 5
3 1 2 o almy 2 =3 o2 pxs olr~
“ [[- I~ o, %
=] fxey RN RE] 3 I os
w I w o iw w o £ 0
@ I : :x ~ : 3 0
i |
- i - [S 1. 1] o
N wey I we Ow NN wn oD " N wN OB ml
~o i ~50 OSo ol] ~D oD =1 ~on Do ol [J o]
o oor 11y D~ ~o [R RO S v oo~ Fra i —
- 0D b= 00 wvwm ol I = 8O NN =D — 90 m =
G 1l wo wnn oml wo wn wmld Lo oun wml Q m
PEEEN 1l —=on —~o =0l lx a2 ~3 wn|lx —& ~o wal e
O Fivd D= o~ o ivi D~ On wnl il o~ onv wnld
« O bl S o wvol la o o wolla & =y wol o 3
x bora mo1wlx w1 x win 0 n o
[<D 1O <l | anpi~
x i1rx Do I ol T >0l
9 [T wiwil o el lo ol w
[1 ia mo oo wal ba Woen | m— N
] o~ rell o
- 2o 1 s FO OD wnlel * uw 00 wumil 4 uB OO umlo —
N s Ll w0 OnI®lNv WO g2 A~ wo a0 a~10
—_ [N - L P R A e g
A= Liv o wh ADIR v o w~ gl b e~ aglm Q
- > li= o on —~Mmiel- o ON AN e D on e M
o [o o it 2 [T 2 a Tl ~
[1w o =) sl o o o & a NN
w0 Il = a olatlu o = Dliu 0 a3 EYK=] o
[o 1 A
- 1= [il e
0 I 1o 1 10 i 1> [y
o [Ee} [)
- i [l [
o 1o [[
WX XK I Tw xo o] Tw xo xo P lar xu >Xu
- W we | 1= ww ws I wwr we ! |~ e ww
> TS ' Io Ta it Io o Yo Ta
- 1 [ol i
< = 1 [bla
1 | [H
w [[T [N
~ 1] [[
il (I [
£ Lo 1
o e i la) ia
kS tlx [lix
> [oD e i
o2 [I=Y | (=1 =) i
] i3 [Y 15 i
L ™~ i 1o H
o IR [Iy |
i [. |
—_————— i ——— e ——— e

67

COoWUN~OORNONPLWN~OIDNINOELUN~O DD NN &L~

[N R g Y Y N R

[\ NN YL N TT)
GI= 3 QD O

€4

KACU

REGULMP

LI

REGDUKFP PRINTIS A SKAP CF TFrE GEARERAL PURPCSE AND FLODATING

«% PCINT RESS DURING CXECLTIONS IT ALSC GIVES THE CCNCITICN COCE.,
«% FRCGRAM MASK, ACCKR DF TrHE LAST INSTR. CF THE MACRC EXPARSION,
- ® ANC AN ID KNUMBESR. REGULMP DOES NCT ALTER ARY OF THIS INFLRMATION,
«® RECDLMP CALLS FOHTHAN SULORCULTINE REGCMP FCR CUTPULT
¥
+* FRECCUMP WRITTEN dY ADIR FRICOH AND RAY PAVLAK - Ll/14s7¢
*
.
«% £CS LIST OF CSECT RAMES. QKLY ONE STCRAGE AREA FQR EACF CSECT.
-t
GELC £C5(10)
¥
=% ELPCCFLPP. CLERERNT KRULMBER CF NAMES IN E£C5.
¥
GHLA E£FCy&PM
LCLA EP,6ICKHCD
¥
«* £A wILL BE NAME CF STCRAGE AREA.
% -
LCLC EAWEN
ALF (T'EID EQ *C*)oCONTY TC CHCCSE 1D IF CWITTELD
ALF (T'CIC KRE *N')JMESS CrECK IF 10 VALID
ALF (£10 LT 0).NMESS
& 10700 SETA LID-((€1G/10C0)s1000) RECUCE MCG 1000
AGY .CONT
+MESS MNCTE %4'[LLECAL REGCUMP [Ca. ESYSNCX USEDS®
AGO sCUNTZ
«CONT FNOTE #,'REGDLFP [IC = £SYSKDX!
.CCNT2 ANCP
giLMCe SETA ESYSACX CHGOSE IC
«CCONT AND
¥
«% EPKZ10 IS LENGTH OF CSECT LIST (£CS5).
¥
£PM SETa 10
£F SETA 1
¥
.% LCLK FOR CSECT RAME [h TABLE.
a¥
«CHKCS ALF (6P GT LPC).KEWCS
ALF {1ESYSECTY EGC PECS(EF)) NODEF]
ER SETA LR+
AGO S CHKCS
JNOCEFt ANCP
LA SETC "CS''LF* . PREG CREATE AREA NANE
en SETC *ENAV! ATTACK ENAM TC B INSTRLCTION
AGO .NCOEF
o ®
«* IF L£CS NGT FULLL, IKSERT CSECT NANE.
PR
«REWCS ALF (£PC LT EPM).INECS
FNOTE % ,1SEPERATE AREA ASSIGNEC FOR THIS REGOUMP CALL!
A SETC 'PREG'<*ESYSACX?* CREATE AREA NAME
AGQ «DEF
. INSCS ANCP
CPRC SETA EPCH1 ACVYANCE COUNTER
£CSLEPC) SETC 'ELSYSECT! ACC NAWE TO LIST
e A ETC PCSL'EFC! W TFREG? CREATE AREA NANE
ZCEF ANCP
CNCPR 0.8 SAVE STORAGE AREA
ENAM 8 LAtlEa SKIP AREA
A 114 Alw+d) ACDRESS PARAM SENT TO REGLMF
cC V{REGCMF)
Ds a4aF
+NODEF ANOP
.¥
.* SAVE RFGISTERS ARD STATLS, GC TO OUTPUT ROUTINE, AND RESTURE DATA
- ¥
En STM 0s15+LA+12 SAVE AND PASS GENERAL REGISTERS
LA LafA
STD 047611) PASS FLOATING PGINT REGISTERS
STD 2.84(1)
STD 4,9201)
S1C 6,100(1)
LA 13.1cett} ESTABLISK SAVE AREA
L 15.411)
LA 2.61CvO0L PASS IL
ST 2.18€C(1)
BALR 2.0 TAKE CCs MASK, PRCG COUNTER
ST 2e8(1)
EBALK 14415 GO TO OUTPUT SUBROLUTINE
Lo 0.760(1) RESTCRE FLOATING FGINT REGISTERS
Lo 2,84(1)
LC 4,92(1)
Lo 6,10C(1))
SpM 2 RESTQORE (C
Ly 041541201 RESTOARE GENERAL REGISTERS
WEND
Figure 2, Source listing of REGDUMP.

68

0001

o0 oooO0OO
CCoQO OO0 QLOooo
—_———0 00 COCCOCo

[e 5. - NE V)

oocoQoo
WhRI— OO0 m=

0014

ocC1

1]

SUBROLT INE KEGCWMP(N}

C
C PRINTING SLBROLTINE USED BY REGOUWP NMACRO.
C

DATA K24 /21C0C0OCO/
ODIMENSICN NM{44) ,NM(8)
COuBLE PRECISION F(4)
EGUIVALENCE (F, WV}
INTEGER ADCR.«STATUS,CC

subroutine.

69

c
oC 1 1=1,8
1 MELL) = ML+LT)
C
STATUS = M({1)/K24
ACDR = M{1)~-STATLS#K24+424
1¢C = STATLE/LE
MiSK = STATUS~16%1CC
CC = ICC-6
C
C M(44) = REGCUMP 1D NUMBER
C M(2) ==> M(17) ARE GENERAL REGS 0-15
C M(18) ==~> M{25) ARL FLOATING POINT REGS
¢
MRITE(64100)M(A46) yADDRVCCaMASK (N (L) 122,9) 4 (M(I)
X (MEL)al=105107) s (M{T)1=L0417) (M(T) I
c
100 FCRMAT (
A IXy132(0=1)
C
8 /' 1 REGDUMP' 184" AT %,2€4%; CC 1S%,12,%,
C Zlev, REGS AREI"473Xe" 1",
4
) 2(/7¢ 1, 130x,' 1
£ VLY G ISKyPFEXY B2 440100
£ /4 18 G 1SXPCEC! Bl 14y 1")
C
G ZY L, 130X%. 01
C
1 7Y 1V LSX A (Z19aZG) 3R]
J J% 1V, 1EX 40284164010
4
K JIH W 132(%=1)
L)
C
RETURN
END
Figure 3. Source listing of the TFORTRAN output

PGM NASK

