Check for
Updates

A Curriculum for a University
Course in Advanced COBOL

John C.

Staten Island,

Molluzzo
Division of Mathematics and Science
St. John’s University

N.Y.

10301

(212) 447-4343

Introduction

Recently many colleges and universi-
ties have either begun or expanded their
offerings in computer science and data
processing. Many of these institutions
have recognized that the COBOL langugae
should be an integral part of their
programs. This recognition stems from the
widespread use of COBOL in the business
community., While many texts on COBOL are
available representing several approaches
to the language, there are few books that
can be used as a basis for a second, more
advanced course in COBOL. There is,
therefore, a problem for the developers of
such an advanced course - what should be
included, and in what order?

This paper presents a curriculum for
a university course in advanced COBOL,
The curriculum is based on a course (CUS
36 - Advanced Commercial Computing)
developed by the author at the Staten
Island Campus of St. John”s University.

The curriculum we present is for a
university course as opposed to a two-year
college or continuing education course.
It emphasizes understanding COBOL and
producing efficient code, as well as how
COBOL interfaces with its operating
environment. We, therefore, cover
programming techniques, data and file
structures, operating system concepts, and
the relation of COBOL statements to the
computer” s architecture. The aim of the
course is not just to produce COBOL
coders, but rather individuals with a
detailed and profound knowledge of COBOL
and its relationship to the operating
system.

The only absolute prerequisite for
this course is, naturally, an introductory
COBOL course. Students, therefore,should
be familiar with the elementary data
movement and arithmetic verbs, output data
editing, elementary control statements,
serial file processing, tables, and table
searches. It is helpful, although not
necessary, for students to have taken
courses in computer architecture and

44

assembler language, operating systems, and
finite or computer mathematics.

to have an overall
programming philosophy for this course.
We are strict adherents to top-down,
structured programming techniques, and
insist all projects be written using them.
See, for example, Yourdon (1975), Van
Tassel (1978), Chmura and Ledgard (1976),

It is important

or Shelly and Cashman (1978). When
developing solutions to illustrative
programming problems we use several

program design strategies. Included are
discussions of data flow-oriented design,
see DeMarco (1978), Yourdon and
Constantine (1978), or Weinberg (1980),
and data structure-oriented design, see
Jackson (1975), Warnier (1976), Pressman
(1982), or Molluzzo (1981). Data flow
diagrams or data structure diagrams can be
part of the required documentation for all
programming projects. This aspect of the
course provides excellent preparation for
a course in systems analysis and design.

In the next section we present an
outline of the topics covered in the
course, We expand and comment on the

outline more fully in the last section.

Course Outline

Review and Extensions of Elemen-
tary COBOL

Unit I.

a, Review of elementary COBOL
b, Arithmetic efficiencies

1. USAGE clauses

2., Mixing numeric data
types

3. Decimal point alignment

4, When to use COMPUTE

5. When to use indexes

rather than subscripts

c. Input data editing

1. Types of data editing
2. Mod-11 check


http://crossmark.crossref.org/dialog/?doi=10.1145%2F382188.382572&domain=pdf&date_stamp=1983-09-01

Unit 11,
Unit TIII.
Unit IV.

Conditional statements

1. Compound conditions
2. Implied subjects and
objects

Report Writer

Report structure

Report definition

1. RD entry; CONTROL and
PAGE clauses

2. Report group descrip-
tions; TYPE clause,
group and elementary
entry descriptions

3. Control breaks and sum
counters

Report processing;
GENERATE, TERMINATE

Sequential Files

a.

3. Internal and

6. SORT and

Operating and file system
interfaces

1. SELECT and RESERVE
clauses

2. I-0-CONTROL paragraph

3. FD entry; BLOCK and
RECORD CONTAINS clauses

4, EXTEND opening mode

Sorting and merging

1. ASCII and EBCDIC
collating sequences

2. Sort and merge
algorithms

external
sorts

4, SELECT clause for work
files

5. 8D entry

MERGE verbs

with and without input

and output procedures;

RELEASE and RETURN verbs

7. Work file restrictions
(if any)

Application

1. Multiple input files

2. Sequential file updating

Random Access Files

Direct access devices

Hashing functions
File organizations
1. Indexed files

2, Direct files
3. Relative files

INITIATE,

d. Processing random access
files

1. ORGANIZATION and ACCESS
MODE clauses; RECORD,
NOMINAL, and ACTUAL
keys; I-0~CONTROL
paragraph

2. READ, WRITE, REWRITE,
DELETE AND START

e, Comparison of file orgamni-
zations

1. When each should be used

2, Relative speeds of
different file orgamni-
zations in sequentisal
and random processing

Unit V. Additional Topics

a. Subprograms

1, Subprogram Linkage

2. LINKAGE SECTION

3. CALL, CANCEL, and EXIT
PROGRAM verbs

b. Library facilities

1. Sharing files among
programs
2, COPY verb

¢, String manipulation

1. INSPECT
2. STRING
3. UNSTRING

d. Debugging

1. Debugging features of
COBOL

2. Status keys and
DECLARATIVES

3. ABEND debugging and core
dumps

4., Interactive debugging

omments and Suggestions

The following comments are keyed to
the major subdivisions of the topical
outline of the previous section,

Unit I.

We have found one of the better ways
to review elementary COBOL is to discuss,
line~by~line, a complete program. The
program should include as many clementary
features of COBOL as possible, such as
data movement, editing, conditional
statements and flow of control, table
processing and searching, and single level
control breaks,



The topics in I.b, and I.c are not
usually discussed in an elementary course.
They, nevertheless, are simple extensions
of elementary topics, can be covered
quickly, and can be interleaved with the
review. We give a detailed explanation of
USAGE clauses in terms of the resulting
internal bit (or byte) representations and
when to use each type of USAGE. Ve also
discuss how proper decimal point alignment

reduces the number of object code
statements produced by the compiler. It
is important to stress these topics

because their proper implementation can
significantly reduce the execution time of
a program with virtually no effort on the
part of the programmer. See Grauer and
Crawford (1978 and 1979) and Olsen and
Price (1982).

In most elementary COBOL courses, it
is assumed that data input to a program is

"clean", that is the data contain no
errors. Fields that are supposed to
contain alphabetic data do so, numeric
fields do contain numbers, etc. This is
not, unfortunately, the case in the "real
world". Input files contain errors. If

an input file is not already cleaned up by
another program, any program processing
that file should check the validity of the
data it processes. We, therefore, include
in I.c a complete discussion of input data
editing.

Input data editing includes checking
for a blank field, for numeric data (the
class test), for specific values (using
condition names), for reasonableness of
numeric data, and verifying a total
against a check figure. We also discuss
the mod~11l check for transportation and
transcription errors. See Shelly and
Cashman (1978). The mod-11 check is a
good application of arrays and the use of
DIVIDE with the REMAINDER option.

construction and
treated in

The IF...ELSE...
nested IF“ s are usually
elementary COBOL. We include, however, in
I.d the frequently omitted topics of
compound conditions, the rules for their
evaluation, and the rules for implied
subjects and relations. See IBM (GC28-

6396-5). After covering this topic some
of the better students are tempted to
write compound conditions as compactly as

possible. The instructor should, however,
emphasize the need for clarity rather than
brevity.

Unit IX.

The Report Writer is one of the most
useful but, nevertheless, neglected
features of COBOL. There is not much
literature available on the Report Writer.

It is, however, worth the effort to seek
it out. See Chai and Chai (1976), Lyons
(1980), Grauer and Crawford (1979), and

and Kazmier (1982). We

Phillipakis

46

discuss
rolling

multiple level control breaks,
sums forward, cross footing, and
the use of the Report Writer in both
detail and summary reporting. If time
permits, and if the code can be made
available, we show how the Report Writer

expands the REPORT SECTION into executable
code.

All reports produced by course
projects must be generated by the Report
Writer,

At this point in the course we
usually assign the first major project.
Programming assignment 1, Chapter 2, in
Shelly and Cashman (1978) can be easily
expanded to include almost all topics in
Units I and II.

Unit ITII,
Units IIT and IV, sequential and

random access files, form the core of our
course. We begin with a general
discussion of file storage and access
methods and take care to distinguish
between them. We cover blocked records,

interblock gaps, multiple buffering, I/0
interrupts, and the operating system”s
access methods. These teopics are

important for efficient
ENVIORNMENT DIVISION,
at this point to discuss the SELECT clause
and how it provides an interface between
the program and the file system. It may
be necessary, depending on the hardware

coding of the
It is appropriate

and operating system, to give a detailed
explanation of the file system, At St,
John"s, for example, we operate in the
Honeywell MULTICS environment. The
MULTICS 1/0 system is device independent
and the MULTICS file system 1is
hierarchically constructed,. This has a

great effect on the form, interpretation,
and use of the SELECT clause.

It is instructive to give examples of
SELECT clauses 1in COBOL programs
implemented on several systems to stress
their system dependent nature.

We begin topic III.b, sorting and
merging, with a discussion of sort and
merge algorithms such as the selection,
bubble, heap, quick and merge sorts. See
Tremblay and Bunt (1979). We also give
examples of the use of multiple sort keys,
and how the choice of a collating sequence
can affect the outcome of a sort.

To use COBOL”s SORT and MERGE
correctly, especially when using input and
output procedures, students must
understand how these verbs work. Ve,

therefore, give a careful explanation of
which files are opened and closed, by whom
and when during execution of SORT and
MERGE. See Olsen and Price (1982). VWe
also include how the SORT/MERGE utility
works., See Davis and Fisher (1979),



Finally, we discuss the SORT/MERGE work
files and their allocation problems, if
any. (This topic is both hardware and
software dependent.)

Perhaps the most important type of
sequential file processing program is the
sequential file update. Students should

have a thorough understanding of the
problem and know how te comnstruct a
solution. Therefore, in topic III.c we

discuss several sequential file update
algorithms. See McCracken (1976), Shelly
and Cashman (1978), Dijkstra (1976), Dwyer
(1981), and Inglis (1981). Most of these
algorithms rely heavily on the structure
of the files being processed. This topic
can, therefore, be used quite effectively
to illustrate data structure-oriented
program development techniques such as
those of Jackson (1975) and Warnier
(1976). The file update problem is also
an excellent topic for term papers, should
the instructor decide to assign one.

At this point, our second project -
sequentially updating a master file =~ is
usually assigned.

Unit IV,

Because of their more complicated
organization, random access files, Unit
1V, are usually more difficult for
students to understand than are sequential
files. Random access files, however, are
really not more difficult to use than
sequential files. Without getting tied to
a particular hardware device, we discuss

the general characteristics of direct
access devices including techniques of
direct addressing., The discussion of

hashing functions is made easier if the
students have the necessary mathematical
prerequisites. See Molluzzo and Buckley.
If not, they can be covered in a short
time.

The most important random file
organization is indexed organization. Ve,
therefore, discuss in detail at least one
implementation of indexed files. See
Tremblay and Sorensen (1976) for a
discussion of IBM ISAM and Control Data
indexed file organizations. We carefully
distinguish the ENVIRONMENT DIV ISION
statements necessary for each type of file
organization and which processing verbs
can be used with each access made. Great
care should be taken here. We have found
that students easily confuse the different
kinds of keys. Finally, we discuss the
use of each organization in both
sequential and direct file processing.
Note that if the course is IBM based, the
difference between ISAM and VSAM files
should be discussed. See Grauer and
Crawford (1979).

47

Unit V.

in Unit V are independent
and can
the
v.b,

The topics
of the rest of the course material
be introduced at anytime during
course. We usually treat topics V.a,
and V.c after covering Units I, II, III,
and IV, Topics V.b and V.c, however, can
effectively be covered at the beginning of
the course, for example during or
immediately after Unit I.

How and when the instructor covers
debugging depends on the background of the
students and the environment in which they
develop programs, Almost all COBOL
compilers have debugging facilities. For

example, IBM“s READY TRACE and EXHIBIT
statements, the DEBUG card, etc. At the
very least, these features should be
covered. If available in the version of
COBOL being used, the instructor should
discuss the use of status keys and

DECLARATIVES to process I/0 and Report
Writer errors, The use of DECLARATIVES
with the COBOL debugging feature should
also be included, See Phillipakis and
Kazmier (1982).

If the students have taken a course
in assembler language, the instructox
should discuss ABEND debugging using core
dumps. See Grauer and Crawford (1979) and
Rindfleisch (1976).

Many business
installations

and academic computerx
now develop COBOL programs

interactively rather tha in a batch
environment., Frequently, such interactive
systems include a package such as IBM s

TS0 interactive COBOL debugger or MULTICS”
PROBE., If available, an interactive
debugger should be introduced early in the
course and its use encouraged in program
development.

Nearly all sizeable data processing
systems consist of many programs that must
communicate and work together to produce
the end product of the system. It is
important for students to understand how
programs communicate and to gain
experience in designing and coding at
least a small system of programs. Topics
V.a and V.b are, therefore, extremely
important for student in order to obtain
an understanding of how "real world"
systems work.

To fully explain subprogram linkage,
we include a discussion of the
housekeeping responsibilities of both
calling and called programs. See
Phillipakis and Kazmier (1982). Depending
on the preparation of the class, this
topic can be covered at the assembler
languae level, see Yarmish and Yarmish
[1979], and can include calls to programs

in languages other than COBOL.



We discuss the use of COPY to reduce
coding in systems of programs, and the
sharing of files at both the program and
Qevice levels. Since students will write
in the final project several large
programs that will communicate with each
other, it is important that students write
well-structured modular programs., Thus,
we include careful definitions of module
cohesion and independence with appropriate
examples. See Yourdon (1975).

We now assign our final project. The
project involves writing a system of
programs driven by a mainline progranm,
Calls are made to subprograms, which share

files of several types of organization.
Each subprogram in the system is of
substantial length. We, therefore, assign

this project to teams of four or five
students, each student responsible for a
subprogram. A small library of data and
file descriptions is created for use in
the subprograms via the COPY wverb.
Structured walkthroughs are conducted of
both program design aund code. See Shelly
and Cashman (1978).

Conclusion
It is difficult to judge the success

of any course. Student evaluations are
frequently based on their attitudes toward

the instructor, the text book, and many
factors in the classroom environment, The
validity of such evaluations is,
therefore, suspect. Perhaps the most

accurate evaluation of the effectiveness
of a course is one made by an independent
third party who can evaluate what students
have learned. This is particularly true
of a professionally oriented course such
as the one we have described. The
performance of students on examinations
administered to them by prospective
employers is, therefore, a good indication
of the quality of our curriculum.

Employers are, understandably,
reluctant to release information on
results of their interviews are tests.
Hard statistical data was, therefore, not
available for analysis. However, based on
informal interviews with graduates who
took our course and who are now employed
as COBOL programmers or systems analysts
of COBOL-based systems, we can judge our
course a success., Most of these former
students were hired or offered a job by
the first company that gave them a written

COBOL examination or an oral COBOL
technical interview. A few graduates, in
fact, scored high enough on these

examinations to be hired as
programmer/analysts rather than programmer
trainees.

48

1.

10.

11,

L2,

13.

14,

15,

16,

17.

References

Chai, W.A. and Chai, H.W. (1976).
Programming Standard COBOL,

Academic Press, N.Y.

L.J. and Ledgard, H.F.
COBOL with Style, Hayden
Rochelle Park, N.J.

Chmura,
(1976).
Book Co.,

Davis, W.8. and Fisher, R.H. (1979).
COBOL: An Introduction to Structured
Logic and Modular Program Design,
Addison-Wesley, Reading, Mass.

DeMarco, T. (1978). Structure
Analysis and System Specification,

Yourdon, Inc., N.Y.

(1976). A Discipline
Prentice-Hall,
N.J.

Dijkstra, E.VW.
of Programming,
Englewood Cliffs,

Dwyer, B. (1981). One More Time -
How to Update a Master File, CACHM,
v.24, no. 1, 3-8.

(1981).
Englewood Cliffs,

A_COBOL Book,
N.J.

Grauer, R.T,
Prentice~Hall,

Grauer, R.T. and Crawford, M.A.
(1978). COBOL: A Progmatic Approach,
Prentice-Hall, Englewood Cliffs, N.J.

R.T. and Crawford, M.A.
The COBOL Funvironment,
Englewood Cliffs, N.J.

Grauer,

(1979).
Prentice-Hall,

0S8 Full American National
GC28-6396-5, IBM

IBM,
Standard COBOL,
Corporation.

Inglis, J. (1981).
File - Yet One More Time.
v.24, no. 5, 299.

Updating a Master
CACM,

(1975).

Academic Press,

Principles of
N.Y.

Jackson, M.A.
Program Design,

Lyons, N. (1980). Structured CQBOL
for Data Processing, Glencoe Pub.
Co., Encino, CA.

McCracken, D. (1976). A Simplified
Guide to Structured COBOL Program-
ming, John Wiley & Sons, N.Y.

Molluzzo, J.C. (1981)., Jackson
Techniques for Elementary Data
Processing, ACM SIGCSE Bulletin,
v. 13, no. 4, 16-20.

Molluzzo, J.C. and Buckley, F.
Computer Mathematics with

Applications, in preparation.

Olsen, J.L. and Price, W.T. (1982).

Elements of Structured COBOL

Programming, 2nd ed., Holt,
Winston, N.Y.

Rinehart,



18.

19.

20.

21.

22,

23,

25,

26.

27.

28,

29.

Phillipakis, A.S. and Kazmier, L.J.
(1982). Advanced COBOL, McGraw-Hill,
N.Y.

Pressman, R,
Engineering:

(1982)., Software
A Practitioners

Approach, McGraw-Hill, N,.Y.
Rindfleisch, D.H. (1976). Debugging

System 360/370 Programs Using 0S and
V8 Storage Dumps, Prentice-Hall,
Englewood Cliffs, N.J.

S8helly, G. and Cashman, T, (1978).
Advanced Structured GOBOL, Anaheim
Press, Fullerton, CA.

Tremblay, J, and Bunt, R.B. (1979).
An Introduction to Computer Science,

MeGraw-Hill, N.,Y,
Tremblay, J. and Sorensen, P.G,
(1976). An Introduction to Data

Structures with Applications,
McGraw-1ill, N.Y.

Van Tassel, D, (1978), Program
Style, Design, Efficiency, Debugging,
and Testing, Prentice-Hall, Englewood
Cliffs, N.J.

Warnier, J. (1976). Logical
Construction of Programs, Van
Nostrand-Reinhold Co., N.Y.

Weinberg, V. (1980)., Structured
Analysis, Prentice-Hall, Englewood
Cliffs, N.J.

Yarmish, R. and Yarmish, J. (1979),
Assembler language Fundamentals,

Addison~Wesley Pub. Co., Reading,
Mass.,

Yourdon, E. (1975). Techniques of
Program Structure and Design,
Prentice-Hall, Englewood Cliffs, N.J.

L.L.
2nd ed.,

Yourdon, E, and Constantine,
(1978). Structured Design,
Yourdon, Inc., N,Y.

49

(Continued from page 43)

References

[Alsp72] Alspaugh, Carol Ann. "Identification of
Some Components of Computer Programming
Aptitude." Journal for Research in Mathe-

matics Education, March 1972, pp. 89-98.

"BaMV68] Bauer, Roger, William A. Mehrens, and
John F. Vinsonhaler. "Predicting Performance
in a Computer Programming Course." Educa-
tional and Psychological Measurement, 28
(1968), pp. 1159-64.

[FoG181] Fowler, George C. and Louis W. Glorfeld.
"Predicting Aptitude in Introductory Com-
puting: A Classification Model." AEDS
Journal, Winter 1981, pp. 96-109.

[IPAT79] Institute for Personality and Ability
Testing. Administrator's Manual for the
16 PF.

Champaign, I11: IPAT, 1979.

[John72] Johnson, Richard T. Rev. of the Computer
Programmer Aptitude Battery. In the Seventh
Mental Measurements Yearbook. Highland Park,
N. J.: Gryphon Press, 1972.

[Mula71] Mussio, Jerry J. and Merlin W. Wahlstrom.
"Predicting Performance of Programmer
Trainees in a Post-High School Setting."
Proceedings of the Annual Computer Personnel
Research Conference, 1971, pp. 26-45.

[NieN75] Nie, Norman H., et al. Statistical
Package for the Social Sciences. 2nd ed.

New York: McGraw-Hill, 1975,

[Palo74] Palormo, Jean M, Computer Programmer
Aptitude Battery: Examiner's Manual. 2nd ed.
Chicago: Science Research Associates, 1974.

[PeHo79] Petersen, Charles G. and Trevor G. Howe.
"Predicting Academic Success in Introduction

pp. 182-91.

[Wein71] Weinberg, Gerald. The Psychology of Com-
puter Programming. New York: Van Nostrand
Reinhold, 1971,




