
A Curriculum for a University
Course in Advanced COBOL

John C . Molluzz o
Division of Mathematics and Scienc e

St . John ' s Universit y
Staten Island, N .Y . 1030 1

(212) 447-434 3

Introductio n

Recently many colleges and universi -
ties have either begun or expanded thei r
offerings in computer science and dat a
processing . Many of these institution s
have recognized that the COBOL languga e
should be an integral part of thei r
programs .

	

This recognition stems from th e
widespread use of COBOL in the busines s
community . While many texts on COBOL ar e
available representing several approache s
to the language, there are few books tha t
can be used as a basis for a second, mor e
advanced course in COBOL . There is ,
therefore, a problem for the developers o f
such an advanced course - what should b e
included, and in what order ?

This paper presents a curriculum fo r
a university course in advanced COBOL .
The curriculum is based on a course (CU S
36 - Advanced Commercial Computing)
developed by the author at the State n
Island Campus of St . John's University .

The curriculum we present is for a
university course as opposed to a two-yea r
college or continuing education course .
It emphasizes understanding COBOL an d
producing efficient code, as well as ho w
COBOL interfaces with its operatin g
environment . We, therefore, cove r
programming techniques, data and fil e
structures, operating system concepts, an d
the relation of COBOL statements to th e
computer ' s architecture . The aim of th e
course is not just to produce COBO L
coders, but rather individuals with a
detailed and profound knowledge of COBO L
and its relationship to the operatin g
system .

The only absolute prerequisite fo r
this course is, naturally, an introductor y
COBOL course . Students, therefore,shoul d
be familiar with the elementary dat a
movement and arithmetic verbs, output dat a
editing, elementary control statements ,
serial file processing, tables, and tabl e
searches . It is helpful, although no t
necessary, for students to have take n
courses in computer architecture and

assembler language, operating systems, an d
finite or computer mathematics .

It is important to have an overal l
programming philosophy for this course .
We are strict adherents to top-down ,
structured programming techniques, an d
insist all projects be written using them .
See, for example, Yourdon (1975), Va n
Tassel (1978), Chmura and Ledgard (1976) ,
or Shelly and Cashman (1978) . Whe n
developing solutions to illustrativ e
programming problems we use severa l
program design strategies . Included ar e
discussions of data flow-oriented design ,
see DeMarco (1978), Yourdon an d
Constantine (1978), or Weinberg (1980) ,
and data structure-oriented design, se e
Jackson (1975), Warnier (1976), Pressma n
(1982), or Molluzzo (1981) . Data flo w
diagrams or data structure diagrams can b e
part of the required documentation for al l
programming projects . This aspect of th e
course provides excellent preparation fo r
a course in systems analysis and design .

In the next section we present a n
outline of the topics covered in th e
course . We expand and comment on th e
outline more fully in the last section .

Course	 Outlin e

Unit I .

	

Review and Extensions of Elemen -
tary COBO L

a .

	

Review of elementary COBOL

b .

	

Arithmetic efficiencie s

1. USAGE clause s
2. Mixing numeric dat a

type s
3. Decimal point alignmen t
4. When to use COMPUT E
5. When to use indexe s

rather than subscript s

c .

	

Input data editin g

1. Types of data editin g
2. Mod-11 chec k

44

http://crossmark.crossref.org/dialog/?doi=10.1145%2F382188.382572&domain=pdf&date_stamp=1983-09-01

d .

	

Conditional statement s

1. Compound condition s
2. Implied subjects an d

object s

Unit II .

	

The Report Write r

a .

	

Report structur e

b .

	

Report definitio n

1. RD entry ; CONTROL and
PAGE clause s

2. Report group descrip -
tions ; TYPE clause ,
group and elementary
entry description s

3. Control breaks and sum
counters

Unit V .
c .

	

Report processing ; INITIATE ,
GENERATE, TERMINAT E

Unit III . Sequential File s

a .

	

Operating and file syste m
interface s

1. SELECT and RESERV E
clause s

2. 1--0--CONTROL paragrap h
3. FD entry ; BLOCK and

RECORD CONTAINS clause s

4. EXTEND opening mode

d .

	

Processing random acces s
files

1. ORGANIZATION and ACCES S
MODE clauses ; RECORII ,
NOMINAL, and ACTUA L
keys ; I—0 — CONTROL
paragrap h

2. READ, WRITE, REWRITE ,
DELETE AND STAR T

e

	

Comparison of file organi-
zation s

1. When each should be use d
2. Relative speeds o f

different file organi -
zations in sequentia l
and random processin g

Additional Topic s

a

	

Subprogram s

1. Subprogram Linkag e
2. LINKAGE SECTION
3. CALL, CANCEL, and EXI T

PROGRAM verb s

b .

	

Library facilitie s

1. Sharing files amon g

program s
2. COPY ver b

c .

	

String manipulatio n
b .

	

Sorting and merging

1. ASCII and EBCDI C
collating sequence s

2. Sort and merg e
algorithm s

3. Internal and externa l
sort s

4. SELECT clause for wor k
file s

5. SD entr y
6. SORT and MERGE verb s

with and without inpu t
and output procedures ;
RELEASE and RETURN verb s

7. Work file restriction s
(if any)

c .

	

Applicatio n

1. Multiple input file s
2. Sequential file updatin g

Unit IV .

	

Random Access File s

a .

	

Direct access device s

b .

	

Hashing function s

c .

	

File organization s

1. Indexed file s

2. Direct file s
3. Relative files

1. INSPEC T
2. STRING
3. UNSTRING

d .

	

Debuggin g

1. Debugging features o f

COBOL
2. Status keys an d

DECLARATIV E S
3. ABEND debugging and cor e

dump s
4

	

Interactive debuggin g

Comments and Suggestion s

The following comments are keyed t o

the major subdivisions of the topica l
outline of the previous section .

Unit I .

We have found one of the better way s
to review elementary COBOL is to discuss ,

line—by—line, a complete program . Th e
program should include as many elementar y
features of COBOL as possible, such a s

data movement, editing, conditiona l

statements and flow of control, tabl e

processing and searching, and single leve l
control breaks .

4b

The topics in I .b, and I .c are no t
usually discussed in an elementary course .
They, nevertheless, are simple extension s
of elementary topics, can be covere d
quickly, and can be interleaved with th e
review . We give a detailed explanation o f
USAGE clauses in terms of the resulting
internal bit (or byte) representations an d
when to use each type of USAGE . We als o
discuss how proper decimal point alignmen t
reduces the number of object cod e
statements produced by the compiler . I t
is important to stress these topic s
because their proper implementation ca n
significantly reduce the execution time o f
a program with virtually no effort on th e
part of the programmer . See Grauer an d
Crawford (1978 and 1979) and Olsen an d

Price (1982) .

In most elementary COBOL courses, i t

is assumed that data input to a program i s

"clean " , that is the data contain n o
errors . Fields that are supposed t o
contain alphabetic data do so, numeri c
fields do contain numbers, etc .

	

This i s
not, unfortunately, the case in the "rea l
world" . Input files contain errors . I f
an input file is not already cleaned up b y
another program, any program processin g
that file should check the validity of th e
data it processes . We, therefore, includ e
in I .c a complete discussion of input dat a
editing .

Input data editing includes checkin g
for a blank field, for numeric data (th e
class test), for specific values (usin g
condition names), for reasonableness o f

numeric data, and verifying a tota l
against a check figure . We also discus s
the mod-11 check for transportation an d

transcription errors .

	

See Shelly an d
Cashman (.1978) . The mod-11 check is a
good application of arrays and the use o f

DIVIDE with the REMAINDER option .

The IF . . .ELSE . . . construction an d

nested IF ' s are usually treated i n
elementary COBOL . We include, however, i n

I .d the frequently omitted topics o f
compound conditions, the rules for thei r
evaluation, and the rules for implie d
subjects and relations .

	

See IBM (GC28 -
6396-5) . After covering this topic som e
of the better students are tempted t o
write compound conditions as compactly a s
possible . The instructor should, however ,
emphasize the need for clarity rather tha n
brevity .

Unit II .

The Report Writer is one of the mos t

useful but, nevertheless, neglecte d

features of COBOL . There is not muc h
literature available on the Report Writer .
It is, however, worth the effort to see k

it out .

	

See Chai and Chai (1976), Lyon s

(1980), Grauer and Crawford (1979), an d

Phillipakis and Kazmier (1982) .

	

We

discuss multiple level control breaks ,
rolling sums forward, cross footing, an d
the use of the Report Writer in bot h
detail and summary reporting . If tim e
permits, and if the code can be mad e
available, we show how the Report Write r
expands the REPORT SECTION into executabl e
code .

All reports produced by cours e
projects must be generated by the Repor t
Writer .

At this point in the course w e
usually assign the first major project .
Programming assignment 1, Chapter 2, i n
Shelly and Cashman (1978) can be easil y
expanded to include almost all topics i n
Units I and II .

Unit III .

Units III and IV, sequential an d
random access files, form the core of ou r
course . We begin with a genera l
discussion of file storage and acces s
methods and take care to distinguis h
between them . We cover blocked records ,
interblock gaps, multiple buffering, I/ O
interrupts, and the operating system' s
access methods .

	

These topics ar e
important for efficient coding of th e
ENVIORNMENT DIVISION . It is appropriat e
at this point to discuss the SELECT claus e
and how it provides an interface betwee n
the program and the file system . It ma y
be necessary, depending on the hardwar e
and operating system, to give a detaile d
explanation of the file system .

	

At St .
John's, for example, we operate in th e
Honeywell MULTICS environment . Th e
MULTICS I/O system is device independen t
and the MULTICS file system i s
hierarchically constructed . This has a
great effect on the form, interpretation ,
and use of the SELECT clause .

It is instructive to give examples o f
SELECT clauses in COBOL program s
implemented on several systems to stres s
their system dependent nature .

We begin topic III .b, sorting an d
merging, with a discussion of sort an d
merge algorithms such as the selection ,
bubble, heap, quick and merge sorts .

	

Se e
Tremblay and Bunt (1979) . We also giv e
examples of the use of multiple sort keys ,
and how the choice of a collating sequenc e
can affect the outcome of a sort .

To use COBOL ' s SORT and MERG E
correctly, especially when using input an d
output procedures,

	

students mus t
understand how these verbs work . We ,
therefore, give a careful explanation o f
which files are opened and closed, by who m
and when

	

during execution of SORT an d
MERGE .

	

See Olsen and Price (1982) .

	

We
also include how the SORT/MERGE utilit y
works .

	

See Davis and Fisher (1979) .

46

Finally, we discuss the SORT/MERGE wor k
files and their allocation problems, i f
any . (This topic is both hardware an d
software dependent .)

Perhaps the most important type o f
sequential file processing program is th e
sequential file update . Students shoul d
have a thorough understanding of th e
problem and know how to construct a
solution .

	

Therefore, in topic III .c w e
discuss several sequential file updat e
algorithms .

	

See McCracken (1976), Shell y
and Cashman (1978), Dijkstra (1976), Dwye r
(1981), and Inglis (1981) .

	

Most of thes e
algorithms rely heavily on the structur e
of the files being processed . This topi c
can, therefore, be used quite effectivel y
to illustrate data structure-oriente d
program development techniques such a s
those of Jackson (1975) and Warnie r
(1976) . The file update problem is als o
an excellent topic for term papers, shoul d
the instructor decide to assign one .

At this point, our second projec t
sequentially updating a master file - i s
usually assigned .

Unit IV .

Because of their more complicate d
organization, random access files, Uni t
IV, are usually more difficult fo r
students to understand than are sequentia l
files . Random access files, however, ar e
really not more difficult to use tha n
sequential files . Without getting tied t o
a particular hardware device, we discus s

the general characteristics of direc t
access devices including techniques o f
direct addressing . The discussion o f
hashing functions is made easier if th e
students have the necessary mathematica l
prerequisites . See Molluzzo and Buckley .
If not, they can be covered in a shor t
time .

The most important random fil e
organization is indexed organization . We ,
therefore, discuss in detail at least on e
implementation of indexed files . Se e
Tremblay and Sorensen (1976) for a
discussion of IBM ISAM and Control Dat a
indexed file organizations . We carefull y
distinguish the ENVIRONMENT DIVISIO N
statements necessary for each type of fil e
organization and which processing verb s
can be used with each access made .

	

Grea t
care should be taken here .

	

We have foun d
that students easily confuse the differen t
kinds of keys . Finally, we discuss th e
use of each organization in bot h
sequential and direct file processing .
Note that if the course is IBM based, th e
difference between ISAM and VSAM file s
should be discussed .

	

See Grauer an d
Crawford (1979) .

Unit V .

The topics in Unit V are independen t
of the rest of the course material and ca n
be introduced at anytime during th e
course . We usually treat topics V .a, V .b ,
and V .c after covering Units I, II, III ,
and IV .

	

Topics V .b and V .c, however, ca n
effectively be covered at the beginning o f
t he course, for example during o r
immediately after Unit I .

How and when the instructor cover s
debugging depends on the background of th e
students and the environment in which the y
develop programs .

	

Almost all COBO L
compilers have debugging facilities .

	

Fo r
example, IBM ' s READY TRACE and EXHIBI T
statements, the DEBUG card, etc .

	

At th e
3 ery least, these features should b e
covered . If available in the version o f
COBOL being used, the instructor shoul d
discuss the use of status keys an d
DECLARATIVES to process I/O and Repor t
Writer errors . The use of DECLARATIVE S
with the COBOL debugging feature shoul d
also be included . See Phillipakis an d
Kazmier (1982) .

If the students have taken a cours e
in assembler language, the instructo r
should discuss ABEND debugging using cor e
dumps . See Grauer and Crawford (1979) an d
Rindfleisch (1976) .

Many business and academic compute r
installations now develop COBOL program s
interactively rather tha in a batc h
environment . Frequently, such interactiv e
systems include a package such as IBM' s
TSO interactive COBOL debugger or MULTIC S '
PROBE . If available, an interactiv e
debugger should be introduced early in th e
course and its use encouraged in progra m
development .

Nearly all sizeable data processin g
systems consist of many programs that mus t
communicate and work together to produc e
the end product of the system . It i s
important for students to understand ho w
programs communicate and to gai n
experience in designing and coding a t
least a small system of programs . Topic s
V .a and V .b are, therefore, extremel y
important for student in order to obtai n
an understanding of how "real world "
systems work .

To fully explain subprogram linkage ,
w e i n c l u d e a d i s c u s s i o n of t h e
housekeeping responsibilities of bot h
calling and called programs .

	

Se e
Phillipakis and Kazmier (1982) . Dependin g
on the preparation of the class, thi s
topic can be covered at the assemble r
languae level, see Yarmish and Yarmis h
[1979], and can include calls to program s
in languages other than COBOL .

47

We discuss the use of COPY to reduc e
coding in systems of programs, and th e
sharing of files at both the program an d
device levels . Since students will writ e
in the final project several larg e
programs that will communicate with eac h
other, it is important that students writ e
well-structured modular programs . Thus ,
we include careful definitions of modul e
cohesion and independence with appropriat e
examples .

	

See Yourdon (1975) .

We now assign our final project . Th e
project involves writing a system o f
programs driven by a mainline program .
Calls are made to subprograms, which shar e
files of several types of organization .
Each subprogram in the system is o f
substantial length . We, therefore, assig n
this project to teams of four or fiv e
students, each student responsible for a
subprogram . A small library of data an d
file descriptions is created for use i n
the subprograms via the COPY verb .
Structured walkthroughs are conducted o f
both program design and code .

	

See Shell y
and Cashman (1978) .

Conclusio n

It is difficult to judge the succes s
of any course . Student evaluations ar e
frequently based on their attitudes towar d
the instructor, the text book, and man y
factors in the classroom environment .

	

Th e
3a l i d i t y of s u c h e v a l u a t i o n s i s ,
therefore, suspect . Perhaps the mos t
accurate evaluation of the effectivenes s
of a course is one made by an independen t
third party who can evaluate what student s
have learned . This is particularly tru e
of a professionally oriented course suc h
as the one we have described . Th e
performance of students on examination s
administered to them by prospectiv e
employers is, therefore, a good indicatio n
of the quality of our curriculum .

Employers are, understandably ,
3eluctant to release information o n
results of their interviews are tests .
Hard statistical data was, therefore, no t
available for analysis . However, based o n
informal interviews with graduates wh o
took our course and who are now employe d
as COBOL programmers or systems analyst s
of COBOL-based systems, we can judge ou r
course a success . Most of these forme r
students were hired or offered a job b y
the first company that gave them a writte n
COBOL examination or an oral COBO L
technical interview . A few graduates, i n
fact, scored high enough on thes e

e x a m i n a t ions to be hired a s
programmer/analysts rather than programme r
trainees .

Reference s

1.

	

Chai, W .A . and Chai, H .W . (1976) .
programming Standard COBOL ,
Academic Press, N .Y .

2.

	

Chmura, L .J . and Ledgard, H .F .
(1976) .

	

COBOL with Style, Hayde n
Book Co ., Rochelle Park, N .J .

3.

	

Davis, W .S . and Fisher, R .H . (1979) .
COBOL :	 An Introduction to Structure d
Logic and Modular Program Design ,
Addison-Wesley, Reading, Mass .

Yourdon, Inc ., N .Y .

Dijkstra, E .W . (1976) .

	

A

	

Disciplin e

6. Dwyer, B . (1981) . One More Time -
How to Update a Master File, CACM ,
v .24, no . 1, 3-8 .

7.

	

Grauer, R .T . (1981) .

	

A COBOL Book ,
Prentice-Hall, Englewood Cliffs, N .J .

Prentice-Hall,

	

Englewood

	

Cliffs, N .J .

Grauer,

	

R .T .

	

and

	

Crawford,

	

M .A .

(1979) .

	

The

	

COBOL

	

Environment ,
Prentice-Hall,

	

Englewood

	

Cliffs, N .J .

10.

	

IBM, OS	 Full American Nationa l
Standard COBOL, GC28-6396-5, IB M
Corporation .

11.

	

Inglis, J . (1981) .

	

Updating a Maste r
File - Yet One More Time .

	

CACM ,
v .24, no . 5, 299 .

12.

	

Jackson, M .A . (1975) .

	

Principles	 o f
Program Design, Academic Press, N .Y .

13.

	

Lyons, N . (1980) .

	

Structured COBO L
for Data Processing, Glencoe Pub .
Co ., Encino, CA .

14.

	

McCracken, D . (1976) .

	

A Simplifie d
Guide to Structured COBOL Program -
ming, John Wiley & Sons, N .Y .

15.

	

Molluzzo, J .C . (1981) .

	

Jackso n
Techniques for Elementary Dat a
Processing, ACM SIGCSE Bulletin ,
v . 13, no . 4, 16-20 .

16. Molluzzo, J .C . and Buckley, F .
Computer Mathematics wit h
Applications, in preparation .

17 .

Winston, N .Y .

4 .

	

DeMarco, T . (1978) .

	

Structur e
Analysis and System Specification ,

5 .
of Programming, Prentice-Hall ,
Englewood Cliffs, N .J .

8 .

	

Grauer, R .T . and Crawford, M .A .
(1978) .

	

COBOL : A Progmatic Approach ,

9 .

Olsen,

	

J .L . and

	

Price, W .T . (1982) .
Elements

	

of Structured COBO L
programming, , 2nd

	

ed ., Holt, Rinehart ,

48

18. Phillipakis, A .S . and Kazmier, L .J .
(1982) .

	

Advanced COBOL, McGraw-Hill ,
N .Y .

19. Pressman, R . (1982) .

	

Software
Eng ineering, :	 A_ Practitioner s
Approach, McGraw-Hill, N .Y .

20. Rindfleisch, D .H . (1976) .

	

Debugging
System 360/370 Programs Using OS and
VS StorageDumps, Prentice-Hall ,
Englewood Cliffs, N .J .

21. Shelly, G . and Cashman, T . (1978) .
AdvancedStructured COBOL, Anahei m
Press, Fullerton, CA .

22. Tremblay, J . and Bunt, R .B . (1979) .
An	 Introduction to Computer Science ,
McGraw-Hill, N .Y .

23. Tremblay, J . and Sorensen, P .G .
(1976) .

	

An _Introduction to Dat a
Structures_ with Applications ,
McGraw-Hill, N .Y .

24. Van Tassel, D . (1978) .

	

Progra m
Style, Design, Efficient, Debugging ,
and	 Testing, Prentice-Hall, Englewoo d
Cliffs, N .J .

25

	

Warnier, J . (1976) .

	

Logica l
Construction of Programs, Va n
Nostrand-Reinhold Co ., N .Y .

26

	

Weinberg, V . (1980) .

	

Structure d
Analysis, Prentice-Hall, Englewoo d
Cliffs, N .J .

27. Yarmish, R . and Yarmish, J . (1979) .
Assembler Language Fundamentals ,
Addison-Wesley Pub . Co ., Reading ,
Mass .

28. Yourdon, E . (1975) .

	

Techniques o f
Program Structure and Design ,
Prentice-Hall, Englewood Cliffs, N .J .

29. Yourdon, E . and Constantine, L .L .
(1978) .

	

Structured Design, 2nd ed . ,
Yourdon, Inc ., N .Y .

(Continued from page 43)

Reference s

[Alsp72] Alspaugh, Carol Ann .

	

"Identification o f
Some Components of Computer Programmin g
Aptitude ." Journal for Research in Mathe_
matics Education, March 1972, pp . 89-98 .

EBaMV68] Bauer, Roger, William A . Mehrens, and
John F . Vinsonhaler .

	

"Predicting Performanc e
in a Computer Programming Course ." Educa-
tional and Psychological Measurement, 28
7968), pp . 1159-64 .

[FoGl81] Fowler, George C . and Louis W . Glorfeld .
"Predicting Aptitude in Introductory Com -
puting : A Classification Model ." AED S
Journal, Winter 1981, pp . 96-109 .

[IPAT79] Institute for Personality and Ability
Testing . Administrator's Manual for the
16	 PF .

	

Champaign, Ill : IPAT, 1979 .

[John72] Johnson, Richard T . Rev . of the Computer
Programmer Aptitude Battery . In the Sevent h
Menta l	 Measurements Yearbook . Highland Park ,
N . J . : Gryphon Press, 1972 .

[MuWa7l] Mussio, Jerry J . and Merlin W . Wahlstrom .
"Predicting Performance of Programme r
Trainees in a Post-High School Setting . "
Proceedings of the Annual Computer Personne l
Research Conference, 1971, pp . 26-45 .

[NieN75] Nie, Norman H ., et al . Statistica l
Package for the Social Sciences .

	

2nd ed .
New York : McGraw-Hill, 1975 .

[Palo74] Palormo, Jean M . Computer Programme r
Aptitude Battery : Examiner's Manual . 2nd ed .
Chicago : Science Research Associates, 1974 .

[PeHo79] Petersen, Charles G . and Trevor G . Howe .
"Predicting Academic Success in Introductio n
to Computers ." AEDS Journal, Fall 1979 ,
pp . 182-91

. [Wein7l] Weinberg, Gerald . The Psychology of Com -
puter Programming . New York : Van Nostrand
Reinhold, 1971 .

49

