
EXPERIENCE WITH TEACHING ASSEMBLY LANGUAG E

D . Crooke s

Department of Computer Scienc e
The Queen ' s University of Belfas t

Belfast

	

BT7 INN
N . Irelan d

1 . INTRODUCTIO N

Even in a world in which the use of hig h
level programming languages has becom e
almost universal, assembly languag e
programming is far from obsolete . Ther e
are times when a programmer is perfectl y
justified in writing in low level assembl y
language (AL) . For this reason, th e
Computer Science department at Queen' s
University, Belfast (QUB) aims to ensur e
that students are taught the basic skill s
of AL programming . This part of thei r
training comes after a course on l hig h
level (HL) programming, using Pascal .

An examination of how these two aspects o f
programming (HL and AL) are often taugh t
in textbooks and elsewhere reveals a n
alarming dichotomy in programmin g
methodology . For HL programming, techni-
ques such as structured programming ai d
stepwise refinement are advocated ' .
Flowcharts, if even mentioned, are cer -
tainly frowned upon . Yet those who aim t o
teach AL programming very frequentl y
recommend (or at least use) low leve l
design tech iques, often based o n
flowcharting '

	

.

This dichotomy in programming methodolog y
has led us to develop a diffenen t
technique for teaching AL programming a t
QUB . The method is rather simple an d
obvious - which may perhaps explain why i t
is rarely taught as an explicit methodo -
logy .

	

The key to the approach is t o
develop a program in two phases : -

(i) design the program, using a H L
language-like notation ;

(ii) implement the design, by followin g
a set of standard translation rule s
(i .e ., doing a sort of manua l
compilation) .

The method has be%n described in detail i n
a separate paper , in which programs ar e
designed in a Pascal-like notation, an d
translated into AL for a system based o n
the Intel 8080 7 . The purpose of th e
present paper is to concentrate on our

experience of teaching AL programmin g
using this method . The principles of th e
method can be covered in about tw o
lectures, and are reinforced by assesse d
practical exercises, in which the student s
are asked to apply the technique to a
variety of problems . Practicals have bee n
organised to cater for up to 200 student s
per week .

The benefits of the approach turned out t o
be surprisingly numerous, both for thos e
involved in teaching it, and for th e
students . Of course, the approach was no t
without its problems and teethin g
troubles . In presenting our experience s
we first consider some of the mai n
advantages (for the student, and then fo r
the teacher), and then some disadvantages .

2 . ADVANTAGES FOR THE STUDEN T

Before introducing the present approach t o
AL programming, students used flowchart s
to design and document their programs . I t
might not be too far from the truth to sa y
that, in some cases, the program wa s
written first, and then the flowchar t
drawn! It was not uncommon for a studen t
during a practical session to appeal fo r
help with an incorrect AL program, whic h
had been modified several times in a n
attempt to get it working, and which ha d
neither clear design nor meaningfu l
documentation . Anyone who has demons-
trated on such a course will be all to o
well aware of the ability of students t o
produce extremely complex and bafflin g
solutions to a relatively simple problem !
Now that the present method has bee n
introduced, the situation has improved .
The following are some of the mor e
significant benefits experienced b y
students :

(i) By splitting the development pro-
cess into two phases, the potentia l
for programmer confusion is reduce d

considerably . The student ca n
first concentrate on getting a
correct and sound design, befor e

becoming involved in detaile d
efficiency and optimisatio n

considerations .

50

50

http://crossmark.crossref.org/dialog/?doi=10.1145%2F382188.382573&domain=pdf&date_stamp=1983-09-01

(ii) It is much easier to spot and cor -
rect logical mistakes, since the y

show up in the design . In fact, w e
are finding that students make muc h
fewer logical mistakes using thi s

approach . This benefit wa s
particularly advantageous i n

examination conditions, wher e
students were under pressure an d

prone to introduce needles s

complexity . The discipline o f

having first to produce a desig n

was a distinct help to student s
under these circumstances .

(iii) The student is able to use a singl e

(HL) programming methodology fo r
all programming tasks .

	

This als o

h elps to avoid the situatio n

o ccurring where the use of lo w
level design techniques begins t o
rub off on a studen t ' s approach t o
high level programming !

(iv)

	

Documentation is more straightfor -

w ard . An AL program can b e

documented by giving its design ,

plus the implementation step s
(storage allocation details, an d
the translation rules which hav e

been applied) .

(v)

	

A student ' s

	

approach to writing A L

programs is portable . A student i s
better fitted to program a range o f
processors, rather than just th e
one on which he/she has bee n

trained .

3 . ADVANTAGES FOR TEACHING

On the teaching side, the main problem s

with the previous low level method aros e

from the resulting lack of clarity ,
structure and simplicity of students '

programs . This increased the tim e
required for practical assistance an d

marking .

	

The new method has brough t

benefit in this area, as well as i n

others . The following are the more majo r

benefits experienced by those on th e

teaching side :

(i) Because we have an explicit an d

systematic methodology, AL progra m -
ming becomes less of an art whic h

is ' caught ', and more of a
technique which can be clearl y

presented and taught .

(ii) The amount of time which demonstra -

tors spend during practical classe s
unravelling and debugging student s '

programs has been considerabl y

diminished . The design can b e

checked first, and then th e

translation steps .

(iii) Assessment is easier, since th e
problem is broken down into a
logical sequence of identifiabl e
steps . Marking of practical exer -
cises also benefits from the fac t
that programs generally have a
logical structure, and can b e
easily followed . With studen t
numbers of the order of 200, thi s
is significant .

(iv) The HL design approach is a ver y
useful medium for presentin g
algorithms during lectures in a
concise yet understandable wa y
(e .g ., for developing subroutine s
for programmed I/0, integer multi-
plication, etc .) .

4 .

	

DISADVANTAGE S

Certain difficulties were experienced i n
implementing the method . The followin g
are some problems which were discovered ,
and which someone might be expected t o
encounter when adopting the approach :

(i) The main problem initially encoun-
tered by students was in graspin g
the translation process . Durin g
the first practical exercise ,
considerable help has been neces-
sary to guide them through th e
various steps (although on e
exercise was generally sufficien t
for the process to be mastered) .
In many respects, this difficulty
is inevitable ; but it can b e
reduced if students are given som e
prior experience of AL program s
(not written by themselves) . Thi s
can be achieved by having student s
examine and analyse AL program s
which have been constructed using
the technique .

(ii) A successful HL design will ofte n
contain some low-level machine -
orientated operations (e .g ., 'shif t
SUM left 1 place ') . Students ca n
find it difficult to strike th e
right balance between high leve l
and low level content during th e
design phase .

(iii) It is possible that a student coul d
produce a design which appear s
correct, but which is extremel y
inefficient to implement . Thi s
pitfall can really only be avoide d
through experience, and by havin g
some foresight of the form of th e
final solution . In the initia l
stages, students can be judiciousl y
guided along the correct path .

(iv) The approach requires a prior know-
ledge of a HL language . If th e
course structure does not provid e
this, the method is difficult t o
adapt .

51

(v) The rewards of using the approac h
are not always apparent when th e
programs attempted are all ver y
short . When this is the case, th e
methodology seems burdensom e
(though the teacher tends to b e
more conscious of this than th e
student) .

(vi) Going into detail on the rules fo r
storage allocation tends to confus e
some students . We have found i t
best to cover just the simpler (an d
more common) cases explicitly .
Given this, most students have ha d
little difficulty in coping wit h
more complex cases . In the earl y
stages, optimisation is no t
actively encouraged .

5 .

	

CONCLUSION S

A major aim of using a HL design metho d
has been to mould the student s ' approac h
to writing AL programs so that it become s
natural to think of an AL program in hig h
level terms . It is this 'way of thinking '
which will be most beneficial to student s
who at some time in the future fin d
themselves having to write AL programs .
An important: feature of the approach i s
its machine independence .

If the purpose of considering AL program -
ming is not so much to be able to write AL
programs as to be able to read them, o r
just to understand the concept of A L
programs, then it is best to concentrat e
on using the design merely as a means o f
representing control flow and progra m
structure .

There is no doubt that the skill o f
students in writing AL programs has bee n
considerably improved by this approac h
(Notably, the weaker students appear t o
benefit significantly) . From the teaching
side, the advantages have also bee n
significant, mainly because the approac h
enables more efficient utilisation o f
teaching resources .

ACKNOWLEDGEMEN T

Thanks are due to Mrs . Jenny Johnston and
the course demonstrators, for providin g
useful insight and feedback on students '
reactions during practical classes .

REFERENCE S

1. Jensen, k . and Wirth, N ., 'Pascal use r
manual and report ' , Second Edition ,
Springer-Verlag (1978) .

2. Dahl, O .J ., Dijkstra, E .W ., and Hoare ,
C .A .R ., ' Structured programming ' ,
Academic Press, New York (1972) .

3. Wirth, N ., ' Program development b y
stepwise refinemen t ' , Comm . ACM, 14 ,
No . 4 (1971), 221-227 .

4 . Wester, J .G ., and Simpson, W .D . ,
' Software design for Microproces-
sor s ' , Texas Instruments Inc . (1976) .

5. Halsall, F ., and Lister, P ., ' Micro -
processor fundamentals ' , Pitma n
(1980) .

6. Crooke s, D ., 'Teaching assembl y
language progamming : a high leve l
approac h ' , Software and Microsystems ,
Vol . 2, No . 2 (1983) .

7. ' MCS-80/85 family user ' s manual ' ,
Intel Corporation (1979) .

ACES PUBLISHES " TOPICS ON COMPUTER
EDUCATION FOR COLLEGES OF EDUCATION "

" Computer Education for Colleges o f
Education" is the latest in a series o f
special " TOPIC S " on education published b y
the Association for Computing Machinery .
This 115 page document contains report s
from fifteen different colleges an d
universities about their programs fo r
training pre-college teachers, includin g
pre-service, in-service and advance d
degree programs . Also included ar e
suggestions for content of specifi c
courses and a report from the AC M
Elementary and Secondary Schoo l
subcommittee which delineates the curren t
situation in computer education for pre -
college teachers and makes a number o f
specific recommendations for improvement .

This issue follows a similar " TOPIC S "
containing recommendations for compute r
use in elementary and secondary schools ,
also produced by the ACM Education Board .
Both publications are available from :

ACM Order Departmen t
P . O . Box 6414 5
Baltimore, MD 2126 4

Tokucs__ComQuter_Education 	 for College s
of Education (1983)

ACM Order No . 81283 0
ACM members $ 9 .0 0
non-members $12 .0 0

Topics :	 Computer Education 	 for	 Elementary
and Secondary Schools (1981)

ACM Order No . 812.81 0
ACM members $ 7 .0 0
non-members $10 .0 0

52

52

