TEACHING GOOD PROGRAMMING TECHNIQUES

J. L.

Lowther and 7. C.

Motteler

Michigan Technological University

A goal of any programming class
should be to design and write readable,
understandable, and correct programs. Too
often, a beginning programming class will
cover language features and generate
examples illustrating language features,
presenting very little, if anything, con-
cerning proper programming style and
methodology. At Michigan Technological
University, such a situation exists. (S
110, Basic FORTRAN, is a multisection two
quarter hour course taught by instructors
from a wide variety of backgrounds.
Because of the time constraints of the
course, very little beyond the basic fea-
tures fo FORTRAN may be taught. Students
who emecrge from this course can typically
produce ''correct" programs, in the sense
that these programs do what they are
supposed to in a sort of minimal sense,
but poor programming practices are rvife.
Programs are riddled with hopelessly com-
plicated control structures, output is
poorly formatted and there is often no
heading to tell what it is, programs have
either no comments at all or so many that
it is difficult to find the code, and so
forth.

To remedy this situation, CS111,
Advanced Programming Techniques, empha-
sizes good programming habits and encour-
ages the design and writing of readable,
understandable, and correct programs. In
addition to teaching students structured
and topdown programming techniques, proper
documentation, etc., a major goal of the
course is to inculcate into them a profes-
sional attitude twoard their programming.
No program ever receives an A 1f, the
instructor's judgment, a very particular
(and knowledgeable) employer would send
it back for further work. Programs must
be complete, comprehensive, reusable, and
easy to alter.

The portion of the course which
teaches structured programming techniques
is particularly interesting. The students
are introduced to D charts and D struc-

tures, following Mills [1], i.e., compo-
sition, alternation (if-then-else struc-
tures), and iteration (do while struc-

tures). These are then extended to what

Ledgard and Marcotty [2] call D' struc-
tures (if-then, repeat-until, and case
statements). The students learn how to

10

recognize non-well-structured programs and
flowcharts and various techniques to con-
vert them to properly structured programs
(as described for instance by Yourdon [2},
pp. 153-168). Finally, they are encour-
aged--even required--to produce well-
structured programs in fulfillment of the
course,

Although Algol, PL/1, and other Lan-
guages available on Michigan Tech's Univac
1110 have many of the structured commands
available, these languages are not as
fully implemented and reliable as TFORTRAN.
As a result, faculty members have designed
two FORTRAN preprocessors {4, 5], the
first of which allows the D structures and
an INCLUDE statement, the second of which
has a rich repertoire of such extensions
as REPEAT(...)TIMES blocks, REPEAT...FOR-
EVER, BEGIN blocks which may be EXECUTEd
as internal subprograms, and EXIT, CYCLE,
and RESTART statements. Students are
instructed in the use of these preproces-
sors and are strongly urged to use them to
pursue GOTOless (and EXITless, etc.) pro-
gramming.

Accompanying the material on program-
ming style are discussions on file usage,
round-off error, plotting, trace featurcs
of a compiler, reading dumps, modular pro-
gramming, and other topics relevant to
Computer Science. The excellent little
paperback by Kernighan and Plauger [6],
required reading for the course and many
problems from the text are assigned. These
provoke considerable thought and debate in
class, frequently directing the instruc-
tor's lecture toward advanced or subtle
points in the language which are not well
understood by students.

is

As a result of CS111, Computer Science
freshmen and many students from other
fields as well become aware of the impor-
tance of good programming techniques and
consistently produce "beautiful" programs
throughout their career in Computer Science.


http://crossmark.crossref.org/dialog/?doi=10.1145%2F382222.382457&domain=pdf&date_stamp=1976-12-01

1.
2.

References

Mills, H. D., The new math of computer programming, Comm. ACM 18 (1975) pp. 43-48,

Ledgard, H. F., and M. Marcotty, A geology of control structures, Comm. ACM 18 (1975},
pp. 629-639.

Yourdon, E., Techniques of Program Structure and Design, Prentice-Hall, Englewocod
Cliffs, 1975.

Lowther, J. L., "MTUFP, Michigan Technological University FORTRAN Preprocessor,"
Structured FORTRAN Preprocessor Survey, UCID - 3793, University of California-Berkeley
1975, edited by Reifer and Meissner.

ke

Motteler, Z. C., "ZCMP Preprocessor,”" submitted for publication,

Kernighan, B. W., and P. J. Plauger, The Elements of Programming Style, McGraw-Hill,
New York, 1974,

11



