
I THE ARROGANT PROGRAMMER: DIJKSTRAAND]
ZEGNER CONSIDERED HA~4FUL

by
Robert J. Du Works
Stephen W. Smoliar

TECHNION
Haifa-Israel

(kid.: I Lhi~ik this article should definitely sgur further comments on the Kandel-Wegner "debate" on the
~r0per oath for Computer Science Education to follow. (Comm. of ACM, June, 1972.) This debate has led to
a great deal of discussion of many aspects of Computer Science Education. I think this is a sign that
0ethaps we are maturi~ig as a discipline. I hope this article adds more "fuel to the fire," and that many
of you wi]] r~,act to the comments in this pager. The more debate we have, the better are our chances to
sift out what we feel are the most immortant aspects of Computer Science Education. Though agreement on
these "basic pri<~ciples" might not be forthcoming for awhile, I think articles and discussions on this
topic are ccucial to our development. So please take the time to write me a letter elaborating on your
~articu.[ar philosophy.)

The first snows are beginning to fall in the winter of our discontent. Peter Wegner's ACM election
statement (ACM) stresses the current crisis of identity in the com~uting profession. A recent symptom of
this crisis has been the rising proclivity of computer professionals for great debates on such issues as
the virtues of the ~oto (Leavenworth) and, perhaos, the number of angels which may dance on the head of a
chip. Abraham Kandel's ~ bono statement in the June, 1972 CACM (Kandel) neatly summarizes the crisis --
to whose good is the current educational approach to commuter science?

Ka~de] advocates an educational emphasis on computer engineering, as opposed to computer science.
The mathematical foundations of the latter, he bemoans, have become ends in themselves; and the practical
values of the computer are in danger of being totaIly ignored. In a rebuttal statement Wegner asserts
that these practical values essentially involve "'good' ~rogramming habits" which, at the ~resent time,
we really do not know how to teach. He admits that we may be teaching "the wrong kind of theory", but
that we should be seeking out the "right kind of theory" rather than decrying the formal a~proach.

One thing is certain: science has arisen from man's quest to formulate terse generalizations of his
myriad observations. ~at is important is that observation precedes generalization--preferably by as great

a distance as ~ossible. As Suzanne (Langer) has written:

General theories should be constructed ~_ generalization from the ~rinciples of a special
field, known and understood in full detail. Where no such systematic order exists to
serve as a pattern, a general theory is more likely to consist of vague generalities than of

valid generalizations.

Now, has the 25-year history of the ACM really given us adequate time to formulate valid generalizations?

Curiously enough, if existing theories are not adequate to explain the behavior of com~uters, they
may possibly be employed to explain the behavior of comnuter professionals. Kandel and Wegner demonstrate
a standard "metasituation": each admits that "some" of the other's attitude is necessary; but each, in
the standard manners of academic ritual, remains sceptical that "some" may degenerate to "too much". Now
if we really want to fire up the available theoretical machinery, we may regard academic computer science

as three parallel processes with limited cooperation:

process]: formal mathematics, automata, formal languages, etc.

process2: applied mathematics, numerical analysis, applications program~ning

process3: software development, operating systems, compiler-writing techniques, process control, etc.

Unlike ~'cooperating sequential processes", however, these processes demonstrate two malignancies which we
may call "greed" and "interference". "Greed" arises when in theoretical terms, one ~rocess performs so

H " • i many P-operations (Dijkstra) on the crltzca areas" of computer science that the other processes are
"frozen out ~'. "Interference", on the other hand arises when, in defiance of all semaphores, several pro-
cesses jump into critical areas at the same time, turning the common data base into a nebulous inter-
disciplinary muddle. Needless to say, the road to interference is usually paved with good intentions...

but so is anoti~er famous road.

Theory is helpg~gus to better formulate our problems. Now what about solutions? Can we, ~erhaps,
harness our knowledge of, say, priority structures? Needless to say, if we try to be fair, we shall prob-
ably arrive at three hierarchies of "rings of power". In terms of the model of (Graham), we may represent

an assignment of priorities suitable to processl as follows:

-19-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F382224.382454&domain=pdf&date_stamp=1972-12-01

In other words~ the formal mathematicians tend to disnd.ss the software %}roeess }~s worthless "hackery".
process2 would prefer the following structure:

~j

Software is at least close to the heart of the applications programmer while formal mathematics tends to be
too arcane. Finally, process3 takes the following view:

The affinity with process2 is still recognized; but the priorities are, of course, reversed~

Thus, it is unlikely that we may arrive at a ~fair" ~riority strueture~ Furthermore~ whethe{: they
like it or not, all three processes must interrelate; certainly, we cannot e×r}ect any of them to !ust go
away. Thus, the trick is to attempt-To-cut do~m on ~greed ~' and such m~anifestatians as ~j~to deb~it~s~
which are essentially priority quibbles (in this particular case between proeessl and ~r~%z~s~O ~ If
"greed ~' is suitably curtailed then ~i ~ ~ , n.erferenee may possibly be converted into i~terdisci~li~ary coopera-
tion. ~ "

Actually, such priority considerations might well be avoided altogether if we remember that computer
seiente does not exist in a vacuum. Formal mathematics may, after all~ be relegated to '~formal ~ mathematics
departm~ents--probably with little hard feelings. Likewise, orocess2 ~y readily [:~se to it~ desir~d level
of priority in an applied mathematics or engineering department~ This leaves software whleh~ when all is

-20-

said and done, wou]d probably be much happier with an apprenticeship program than with an academic depart-
ment (were it not for the fact that "Professor" is a far more desirable title than "Master Programmer").
Indeed, going back to Wegner's argument, until we have more observations upon which to generalize, is there
any better way than apprenticeship to teach "'good' programming habits"? God forbid, if we don't watch out,
process2 may also find itself happier in the environment of apprenticeship, leaving Drocessl alone in
academe except for those rare (at].east nowadays) occasions when it has something tenable to offer.

Lest we have distorted our view of the situation, we should emphasize that good software techniques
require a firm grasp of formal mathematics which should not be underrated, not only for its ideas but for
its Hway of thinking '~. Indeed, any aspect of computer science above the programming level must be able to
formulate itself clearly and concisely--a task with which formal mathematics is quite familiar. Thus as
K~ndel has observed, mathematics can provide us with viable models. Our caveat is to make sure that the
modeled object does not become dominated by the model itself.

In conclusion, we may draw on the "case study" approach (which (Kandel) seems to advocate) to observe
some of the unfortunate effects of interference. ALGOL 60, for example, is a clear-cut case of interference
between proeessl and process3. The conflict between a desire for mathematical purity and a need for "'good'
progranwting habits" could only yield a rather anomalous specimen of the second-generation-programming-
language genus. Indeed, the very conflict from which ALGOL 60 emerged was but the first presage of the

controversy--a debate in which only an ALGOL programmer would dare to get involved.

On the other hand, PL/I, notwithstanding IBM's implementation or the Viennese attempt at a formal des-
cription (Rosen), provides a far superior language, complete with what (Langer) would call the "generative
ideas" of third-generation computers. The fact is that purity (i.e., mathematical "elegance") is not the
solution to the world's problems; and "formal overkill" may even cause some good ideas to be "aborted" or
"still born"~ Here, our caveat must extend to attempts at formal descriptions of opelating systems. What
we lack most of all is the demand for "system elegance", which is independent of, without necessarily ex-
cluding, mathematical "elegance". This distinction was clearly manifested at a Technion colloquium in
which (Wegner) made the comment that operating systems do not halt "nicely". We would like to believe that
operating systems will behave "nicely" in Wegner's "right kind of theory", although it is quite obvious that
they have a hard time conforming to his current notions of information structures.

As a final example, Dijkstra's "formal" foundations of parallel-process theory constitute a clear-cut
cart-before~the-horse case of observation-generalization inversion. The funny thing is that Dijkstra ap-
pears to be totally oblivious to the fact that the ENQ and DEQ system macros in (IBM) OS/360 together with
the POST and WAIT macros, constitute the essential elements of the P- and V-operations. The ENQ macro is
actually more closely related to the TSL (test and set lock) operation presented by (Lampson), who's own
approach is thoroughly geared to the real world of third-generation computers, while Dijkstra's so-called
"style" leaves him hopelessly entrenched in second-generation ALGOL.

This whole issue of style is, in fact, really too potentially dangerous to be overlooked. Dijkstra
makes a predominant issue out of the "provability", or "formal verification", of programs. This is, indeed,
a key issue in the goto controversy; and (Manna) and Vuillemin present but one piece of evidence that it is
harder to prove properties of programs with $0t° statements. However, just how applicable are these formal
verification techniques to third-generation programming systems? Once again, we find "the wrong kind of
theory" in ascendance; and, in the words of John von Neumann (Revens), "the general situation has not yet
matured sufficiently" to nurture the development of "the right kind of theory".

To recapitulate, software would probably fare best if freed from its academic shackles. Until we have
a substantial corpus of material upon which to theorize, we would do better to take a "seat of the pants"
approach. Barring this, we would support Kandel's argument for computer engineering. While the current
theories provide us with many useful tools, for now, at least, we remain "information grease monkeys" at
heart who, by our very nature, throw all sorts of "monkey wrenches" into the elegant world of mathematics,

our "reluctant parent"...but such is life.

REFERENCES

(ACM)
(Dij ks tra)

(Graham)

(IBM)

(Kandel)
(LamDson)

(Langer)
(Le avenwor th)

1972 ACM Election: Candidates, Comm. ACM 15, 4 (April, 1972), 286-292.
Dijkstra, E.W., Cooperating Sequential Processes, Programming Languages, F. Genays, ed.,
Academic Press, New York, New York, 1968, 43-112.
Graham, R.M., Protection in an Information Processing Utility, Comm. ACM ii, 5, (May, 1968),

365-369.
IBM Systems Reference Library, IBM System/360 Operating System Supervisor Services and Macro

Instructions, GC28-6646-6, 1972.
Kandel, A., Computer Science--A Vicious Circle, C_omm. ACM !5, 6, (June, 1972), 470-471.
Lampson, B.W., A Scheduling Philosophy for Multiprocessing Systems, Comm. ACM ii, 5 (May,

1968), 347-360.
Langer, S.K., Philosophy in a New Key, The New American Library, New York, New York, 1951.
Leavenworth, B.M., Programming With(out) the GOTO, Proceedings of the ACM Annual Conference,

August 1972 782-786.

-21-

