
A Practical Turing Machine Representation

Robert M . Nirenber g
Department of Computer Scienc e

CCNY

I . Abstract

A tool is presented for research work on Turing machines and other abstrac t
programming models . This tool is based on the use of the Recursive Function
Algorithmic Language (Refal), A short background of this language is presented .
Examples are given as to how this language may be useful for running simulations o f
Turing machines, and how it may be useful for the researcher into abstrac t
machines .

2, Background

Refal (the Recursive Function Algorithmic Language) was developed in the lat e
1960's in the Soviet Union, by V . F . Turchin, et al (see [11 for a bibliography of early
works) . Its use since then has been primarily in the Soviet Union, with a number of
implementations existing . Additionally, an implementation exists in the United States
for IBM System 370 type computers, and a new implementation has been recently
completed on a DEC VAX-11/780 at The City College of New York (the syntax used i n
this paper conforms to the VAX implementation -- the IBM version differs slightly) .

Refal was developed as a language for use in AI research, It is modelled by th e
"Refal Machine", an abstract computing machine with computational powe r
equivalent to a Turing Machine . Its strength lies in its excellent pattern matchin g
capabilities, the ease with which rule-based systems may be designed in it, and i n
some sense its minimality as a model for computation . In addition, Refal has the
ability to act as its own metalanguage, a feature which is useful in the specification o f
compilers and automatic programming systems . Two major applications will be
discussed in this section .

2 .1 Refal as an Algorithmic Description Language .

Refal can be used as a language for descriptions of algorithms . Although th e
allowable operations in Refal are few, it turns out that algorithms may be specifie d
concisely and with great clarity. A brief description of some features of Refal
appears in section 2 .3 . However, for purposes of illustration, a simple algorithm for
determining whether a given string is a palindrome or not is given below :

(1) PAL(
s.edge e .middle s .edge = <PAL e .middle> ;
s.left e.middle s .right = 'not a palindrome' ;
e .else = 'is a palindrome' ;
) ;

In this example, a function called PAL is defined . When PAL receives an
argument in which the first and last symbols are identical (matched by the tw o
occurrences of the variable sedge in the first sentence), then a recursive call to PA L
is issued, with the first and last symbols removed from the original argument . If this
is not the case, (i .e ., the first and last symbols are not the same), then the secon d
sentence is tested against the argument . If there are at least two symbols in th e
argument, then clearly the argument is not a palindrome, and the appropriate result
is indicated. Finally, in the case where either one symbol or no symbol is left, the
third sentence applies, and it is determined that the original argument was in fact a
palindrome .

Note that each sentence has a "screening" effect on following sentences : each
sentence has a pattern expression on the left side which defines a dug of' objec t
expressions which it may match . Since matching of patterns against objects occurs
in the order in which the sentences are written, set-differencing is obtained b y... .

	

. . .

	

:1;5

http://crossmark.crossref.org/dialog/?doi=10.1145%2F382254.382805&domain=pdf&date_stamp=1986-01-01

proper ordering of sentences within a function definition .
Of course, complex programming problems may require complex solutions .

However, Refal's functional approach lends flexibility in the specification o f
algorithms, and encourages modularity and isolation of purpose to small sets o f
functions .

2 .2 Refal in Automatic Programming - A Supercompiler

Although Refal could conceivably be used for string manipulation applications ,
perhaps its most striking use is in the design of Automatic Programming systems .
Such a system has been built, and is undergoing further development . It is called the
Refal Supercompiler system . Work is currently proceeding at the Department o f
Computer Sciences at The City College of New York, with funding from the National
Science Foundation . Recent works on the Supercompiler may be found in I1,2,31 .

In one mode, the Supercompiler acts as a producer of compilers . It takes as its
input the description of an interpreting function for some language L i, and produces

a compiler for that language in Lm, the language of the machine on which L i is to be

compiled .
In addition to this "compiler-compiler" mode, the Refal Supercompiler can act as a

general program optimizer . Coupled with an appropriate input transformer (Li -4 R)

and an appropriate output mapping (R -i Lm), where R is Refal, the Supercompiler
can perform various optimizations and transformations on programs in variou s
languages, targeted for arbitrary machines . It is advantageous to choose Refal as th e
language in which the supercompiler and its auxiliary programs are written, as this
minimizes the range of program structures on which optimizing functions mus t
work .

2 .3 Refal Concepts

In order to understand the use of Refal in simulating Turing Machines, it i s
necessary first to have a basic understanding of how Refal works . This section wil l
serve to describe the various concepts needed to understand Refal and program s
written in it .

2 .3 .1 Expressions

Expressions are the basic building blocks of Refal data and programs . Expressions
consist of strings of symbols and certain metasymbols . These metasymbols include
structure brackets (represented as properly paired parentheses), activation bracket s
(< and)), and variables . Symbols in Refal are any of the characters which may b e
typed at a terminal (surrounded by apostrophes), and compound symbols, new
symbols written as strings of characters delimited by either blanks or periods .
Compound symbols are generally used to indicate function names, integers, etc .
Examples of Refal expressions :

(2)

	

'ABC'

	

'+'34('XX')('YZ')
('THIS') ('IS') (('AN EXPRESSION') '!')

PAL, seen previously, is an example of a compound symbol, as is 34, above .

2 .3 .2 Variables and Pattern s

Variables in Refal have a different meaning than those in most othe r
programming languages . Since variables only get values in the process of pattern
recognition, and retain no value after the process of pattern replacement, they ar e
called free variables .

There are three kinds of variables in Refal . E-variables (expression variables)
are used to match arbitrary expressions . That is, in the process of patter n
recognition, an e-variable may take as its value any expression, including the empty
expression . S-variables match any single symbol, including ordinary characters an d
compound symbols . An s-variable may not take an empty value . Finally, t-variable s
may match any term, that is, one symbol, or any expression surrounded by structur e
brackets . Again, a t-variable may not take an empty value .

Variables are written as a variable type indicator followed by an index, (whic h
may be either a letter, a digit, or a compound symbol preceded by a period), e .g ., el ,
sparse, tX. The indices have significance only within the bounds of one sentence - -
multiple variables in the left side of a sentence with the same index must matc h
against the same object .

Pattern expressions are expressions which contain no activation brackets, an d
are used to define a set of objects . Pattern expressions generally appear on the lef t
sides of sentences in a Refal program . Patterns may include arbitrary instances o f
symbols, variables, and structure brackets . For example, a pattern which is to match
any expression which contains at least one symbol on the left, and an A at the right
end could be written as :

(3) sl eX'A '

A pattern which is to match any expression which starts and ends with the sam e
symbol might be written as :

(4) ssame eO s .same

Note that the symbol variables in (4) both have the same index, which insure s
that only objects which begin and end with the same symbol will be matched by thi s
pattern .

Since any Refal function takes as input exactly one expression, multipl e
arguments are obtained by using structure brackets in the data and patter n
expressions . For example :

(5) ('A' e.first) (e,second 'B') e Q

is a pattern expression which checks to see that the first pair of structur e
brackets in the argument has an A as the first element of the subexpression delimite d
by them, that the second pair of structure brackets has a B at the right end of th e
subexpression they surround, and that anything else may follow, including nothing .

2 .3 .3 Sentences

Sentences in Refal consist of a left side and a right side, separated by an equa l
sign $. The left side of a sentence consists of a pattern expression . The right side of a
sentence may consist of any Refal expression, with the restriction that any variabl e
appearing in the right side must also appear in the left side .

A sentence then is used to describe the action to be taken if the pattern in the left
side matches against the object expression which the function receives as it s
argument, If a match occurs, then the active expression (i .e ., the one in which the

J . ,Y-	 ! %

function, and consequently, the sentence is called) is replaced by the right side, wit h
the values that the variables received in the process of pattern recognition replacin g
each occurrence of those variables in the right side . For example, suppose that
function PAL is called with the argument RADAR, thus : <PAL RADAR> . When this
expression is activated, sedge in the first sentence will get the value R, and e .middl e
will get the the value ADA . Then, the original active expression will be replaced by :
<PAL ADA>, that is, the right side of the sentence which matched, with e .middl e
replaced by the value it received in the pattern matching process .

2 .3 .4 Function s

Refal function definitions are comprised of a function name, followed by a
number of sentences, which are separated by semicolons, and surrounded by braces .
As was seen previously, the ordering of the sentences has an impact on the action
taken by a function . A number of functions taken together comprise a program .

Refal programs are purely functional . As seen in (5), even the process of
splitting an argument into separate subarguments must be specified . In addition, in
the strictest version of Refal, there are no global variables as suc h

Some of the more common functions expected in a programming language, suc h
as I/O, arithmetic, etc ., are added to the language through external functions :
functions not written in Refal, but rather in the language of the underlyin g
machine . For example, in order to cause an expression to be written to an externa l
device, such as a terminal, one might use function PRINT :

(6) <PRINT SOME VALUE' >

This function call, when activated, will cause SOME VALUE to be printed, and th e
argument, SOME VALUE, will be left in place of the call .

2 .3 .5 The Refal Machin e

Finally, we arrive at the concept of a Refal Machine . This is a model of an abstract
machine which executes Refal programs on Refal data . The Refal Machine consists o f
three parts :

(7)

Data
view -

Field 1 Progra m

contro l

Uni t

The memory field contains a fixed Refal program . The view field contains an
object (data) on which the Refal machine is to operate .

To start the Refal Machine, an active expression (i .e ., one containing activatio n
brackets) is inserted into the view field, and the control unit is started . The contro l
unit finds the leading (leftmost, innermost) pair of activation brackets in the objec t
(view field) . Having found them, and the name of the function indicated followin g
the left activation bracket, it locates the function definition in the memory field. The
pattern in the first sentence is applied to the object expression, and if a match i s
found (according to a strict matching process described in Ill), the active expression

is replaced by the right side of the sentence, after replacing any variables with their
values . If no match is found, the control unit applies the next sentence and so on . As
soon as a match is found, the replacement is made, and the control unit locates th e
next leading activation bracket pair . If no match is found, the control unit stops ,
indicating an abnormal termination .

The efficiency of programs run in this fashion is on the same order as that o f
programs written and run in LISP . Greater efficiency, of course, may be achieved b y
using the supercompiler as an optimizer : in this mode, efficiencies approachin g
those of well-written assembler language programs have been achieved 131 .

To illustrate the step-by-step execution of a Refal program, let us return to th e
definition of function PAL in (1) . Suppose that the starting configuration of the vie w
field is: <PAL RADAR>, as above, and the view field contains the definition of PAL as
in (1) . Then the contents of the view field would be modified, step-by-step, as follows :

(8) <PAL RADAR >
<PAL ADA >

	

by the first sentence
<PAL D >

	

by the first sentence
is a palindrome

	

by the third sentenc e

At this point, the Refal Machine comes to a halt, as there are no activatio n
brackets remaining in the view field : the work is completed . By using the
interactive debugging system, it is possible to have the Refal system print out th e
result of each step .

A Turing machine Al may be represented in the following manner (see 141) :

(9) M=(Q,r,s,(t0,B,F)

where

Q is the finite set of state s
is the finite set of allowable tape symbol s

B, an element of t, is the blan k
2, a proper subset of I' not including B, is the set of input symbol s
b is the next move function, which maps Q x t to Q x F x (L, R), and may

be undefined for some values of Q x I '
q0, an element of Q, is the start state
F, a subset of 0, is the set of final states .

As an example of this representation, suppose we wish to design a Turing Machine
which will accept a string of the form O n ln . One way of doing this is as follows :

(10) Q = (q0, il l, q2, q3, q4),

	

_ (0, 1), I' = (0, 1, X, Y, B), and F = (q4) .

The machine will be programmed in such a way that as it scans left-to-righ t
through the input string, each 0 will be changed to an X . Upon changing a 0 to an X,
the machine will scan to the right until it finds the first 1, changing it to a Y, and wil l
return to the left looking for the next 0 . When no more 0's are found, the machine
scans to the right to check that no more l's are to be found, If none are, the machin e
accepts the string and stops .

The definition of S, the transition function, is usually given as a table :

(11)

State Symbol

0 1 X Y B

q0 (ql, %, R) (q3, Y, R)

ql (g1 , 0, R) (g2, Y, L) (g1, Y, R)

q2 (g2, 0, L) (q0, %, R) (q2, Y, L)

q3 (q3, Y, R) (q4, B, R)

q4

In table (11) above, function 6 is described as a number of triples, each consistin g
of the next state, the symbol to be written, and the direction in which the tape head
moves .

There are a number of ways of representing this Turing Machine (TM) in Refal .
As a first attempt, let us describe the format of the TM as follows :

(12) <TM1 S .STATE (E .LEFT) S .HEAD E .RIGHT >, where :

E .LEFT represents the string of tape symbols to the left of the read/write head ,

S .HEAD represents the symbol at which the tape head has stopped ,

E.RIGHT represents the string of symbols to the right of S .HEAD ,

S .STATE is the current state ,

and the right structure bracket (parenthesis) is positioned just to the left of th e
symbol being read . Upper case letters are used here to indicate metasymbols whic h
will represent elements of the modelled TM configuration .

In this example, one sentence is written for each element of 0 x r which has a
value, and the collection of all the sentences into one Refal function represents the
entire TM. Then we can define TM1 as :

(13 .0) TM1 (

	

(13 .1)

	

qO (e .left) 0 e .right = <TM1 qi (e .left%) e .right > ;

	

(13 .2)

	

qO (e,left) Y e .right = <TM1 q3 ((Meft Y) e .right > ;

	

(13 .3)

	

q1 (e .left) 0 e .right = <TM1 ql (e.left 0) e .right > ;

	

(13 .4)

	

qi (cleft sa) 1 e.right = <TM1 ql (cleft 0) e .right > ;

	

(13 .5)

	

ql (e .left) Y e .right = <TM1 ql (e .left Y) e .right > ;
17-7,, .41)

	

(13 .6)

	

q2 (e .left sa) 0 e .right = <TM1 q2 (e .left) sa 0 e.right > ;

	

(13 .7)

	

q2 (e .left) X e .right > = <TM1 qO (e .left X) e .right > ;

	

(13 .8)

	

q2 (e .left sa) Y e .right > = <TM1 q2 (e .left) sa Y e .right > ;

	

(13 .9)

	

q3 Weft) Y e .right > = <TM1 q3 (e,left Y) e .right > ;

	

(13 .10)

	

q3 (e .left) B e.right > = <TM1 q4 (e .leftB) e.right > ;

	

(13 .11)

	

q4 (e .left B) e .right > = 'ACCEPT '

	

(13 .12)

	

) ;

Notice that for each state in which the TM must move its head left (e .g ., 13 .4, 13 .6 ,
and 13 .8), an extra symbol variable, sa, is inserted, to represent that symbol which i s
just to the left of the tape head . This is necessary because TM1 is written in such a
way that in general only the tape head symbol is shown explicitly, and e-variable s
are used to represent the left and right ends of the tape . Since on moving left, a
symbol must be moved out of the structure brackets, an extra s-variable must be use d
in these cases . It is, of course, possible to always specify both symbols adjoining the
tape head symbol explicitly, but this simply complicates the writing of the definition
of TM1 .

Suppose that we wish to determine whether 0011 is in the set of strings defined by
0n ln . In the version described in (13), the TM is started by loading the definition o f
TM1 into the memory field of the Refal machine, and insertin g

(14) el'M1gO() 0011B >

into the view field . Note that here the B is the TM blank symbol . Of course it is
possible to rewrite TM1 so that the empty string delimits the right end of th e
semi-infinite TM tape, and in Refal programming this is a general method . However ,
for purposes of illustration, let us assume that the B represents an infinite number of
blanks to the right of the TM tape .

Upon startup, the Refal machine will simulate this TM in the following steps, eac h
step representing one configuration of the TM :

(15) <TMI qO ()

	

00 1 1 B >
<TM1 ql (X)

	

0 1 1B >
<TM1 gl (X0)

	

1 1 B >
<TM1 g2 (X)

	

O Y 1 B >
<TM1q2 () XOY1B >
<TM1 qO (X)

	

OY1B >
<TMl q1 (XX) Y 1 B >
<TM1 ql (XXY) 1B >
<TM1 g2 (XX) YYB >
<TM1 q2 (X) XYYB >
<TM1 qO (XX) YYB >
<TM1 q3 (XXY) YB >
<TM1 q3 (X X Y Y) B >
<TM1 q4 (XXYYB) >
'ACCEPT'

Notice that by reading the step-by-step execution of the Refal machine, it is

1 7-3 . 4 :1.

possible to determine what each move, and the corresponding configuration, of th e
TM was . For example, in making the third step, the TM goes from state q1 to q2, moves

the tape head one symbol to the left, and writes a Y where a 1 was previously . Again,
the right structure bracket is interpreted to be just to the left of the current symbol .

Of course, if it is only necessary to check set membership of 0011 in 0 n 1n, for
non-negative n, without a trace of each step, then a much more straightforwar d
Refal function can be written . For example :

(16) TM2(
0 el 1 e2 - <TM2 el e2 > ;

'ACCEPT' ;
ex - 'REJECT' ;
) ;

TM2 works for the following reason . Note that two e-variables, el and e2 exist on
the same level in the first sentence . In this case, since either one may take an
arbitrary expression as its value, the leftmost e-variable, el, is initially given an
empty value . Then, the pattern recognition process proceeds left-to-right thus : the
argument is checked to see if it begins with a 0 . If it does, el is given an empty value ,
and the next symbol in the argument is checked to see if it is a 1 . If it is, then e l
retains its empty value, and e2 gets the remainder of the argument as its value . If the
next symbol is =la 1, then el is lengthened by one symbol, and the check for th e
next symbol being a 1 is repeated . This lengthening process continues until either a
I is found, or the end of the argument is reached . In the latter case, the first
sentence fails. As a result, the first sentence in the definition of TM2 matches it s
argument only if the first symbol in the argument is a 0, and there is a 1 to its right .
When this happens, one 0 and one 1 are deleted, and TM2 is called again recursively .

The second sentence comes into play only when the argument string is empty ,
and so it may be implied that the original string was in fact a member of the desire d
set. Finally, the third sentence was added to take care of the case where either th e
original string contained something other than a 0 or 1, or the string was not i n
Onl n , Such a final sentence could have been added to the definition of TM2, in orde r
to exclude strings which fail for these reasons .

Returning to the earlier version, it is apparent that by tracing the execution o f
the Refal machine, it is possible to "see" each step that the modelled TM takes . This
feature itself should prove Refal to be invaluable as an aid to the investigator into th e
behaviour of finite state machines .

For a third method, suppose we decide to design the TM in the style of a finite state
machine, so that one Refal function represents one state of the machine, and on e
sentence is written in each function to represent each transition out of that state . Let
us assume that the format of the Refal representation of this machine will be :

(17) <F .STATENAME (E .LEFT) S .HEAD E .RIGHT', where :

F.STATENAME is the name of the state-function, an d

E,LEFT, S .HEAD, and E.RIGHT are as in (12) above .

Then, the writing of the new representation of the TM progresses in a

straightforward manner : for each state in S (table 11, above), we create a Refal
function, with one sentence for each allowable transition . For each state in F, the set
of final states, we create a Refal sentence, similar to sentence (13 .11) in TM1 . In this
example, let us assume that the TM tape is bounded on the right, allowing us to delete

the blank symbol B as used in TM1 . Then, accepting states will have the empty
expression on the right, to indicate the remaining infinite tape .

This new representation then will consist of the following Refal program :

(18)

STATEO ((e .left) 0 e .right = <STATE1 (e.left X) e .right > ;

(e.left) Y e .right = <STATE3 (e.leftY) e .right>;) ;

STATE!((e .left) 0 e .right = <STATE! (e .left 0) e .right >;

(e.left sa) 1 e .right = <STATE2 (e .left) sa Y e .right > ;

(e.left) Y e .right = <STATE! (e .left Y) e .right > ;) ;

STATE2 ((e .left sa) 0 e .right = <STATE2 (e .left) sa 0 e .right >;

(e .left) X e .right = <STATEO (e.left X) e .right > ;

(e .left sa) Y e .right = <STATE2 (e.left) sa Y e .right >;) ;

STATE3(Weft) Y e .right = <STATE3 (e.left Y) e .right > ;

Weft) = <STATE4 (e .left) >;) ;

STATE4((e Sinai) = `ACCEPT` ;) ;

This last example should indicate the ease with which lexical analyzers an d
parsers may be written in Refal -- a state transition table is designed, and then on e
sentence for each transition is written . If it is necessary to debug the scanner or
parser, an indication may be made to the Refal interpreter to show the step-by-step
transitions leading to the bug .

4 . Conclusions

The language Refal has been presented for use as a tool for investigating th e
operation of abstract machines . In this application, the simplicity of its design helps
make such operation quite clear . A brief history of the language has been given ,
along with a description of methods of programming which may shed light o n
problems in the study of finite state machines . Examples of these methods have bee n
given .

Implementations of Refal exist now on IBM 370 type machines, as well as on DEC
VAX-11 type machines . The most recent version, completed in the summer of 1985, i s
written mostly in C, so as to allow for portability . Work is progressing currently o n
transporting the new implementation to both the IBM PC, and the Apple Macintos h
computers .

5 . References

[1] Turchin, V .F ., The Language Refal, The Theory of Compilation, an d
Metasystem Analysis., Courant Institute Technical Report No . 18, New York, Jan . 1980 .

[21 Turchin, V.F., Nirenberg, R.M., Turchin, D.V ., Experiments witha
Supercompiler, Proceedings of the 1982 ACM Symposium on LISP and Functiona l
Programming, Pittsburgh, Aug . 1982

[3) Nirenberg, R .M ., The Mapping of the RefalMachineonto a Von Neumann
Machine, Ph .D. dissertation, City University of New York, New York, 198 3

[4l Hoperoft, John E ., and Ullman, Jeffrey D ., Introduction to Automata Theory ,
Languages, and Computation, Addison-Wesley, 1979 .

1'7-3,, 44

