
-71- 

A Proposal for Implementing 
the Concurrent Mechanisms of Ada 

Xiaolin Zang 

Abstract--This paper proposes a scheme for implementing the 
communication and synchronization mechanisms of Ada. A minimum 
operating system kernel is assumed first. Then the primitives and 
data structures used to interpret the concurrent activities are 
described. Ada concurrent statements are translated into the calls to 
certain primitives. By properly explaining some details in it, the 
proposal can be implemented on various computer systems and supporting 
environments. 

Introduction 

Ada provides entry call, accept statement and select statement to 
support the synchronized intertask message communication. The 
proposal for implementing these mechanisms is also based on the 
message communication. Our attempt is to make the proposal as 
independent as possible on the particular computer system and on the 
special support by operating system. Byproperly explaining some 
details in the scheme, it can be implemented with various buffered or 
non-buffered message mechanisms on singal processor, multi-processor 
or distributed systems. 

In this paper, we will first assume a minimum operating system 
kernel which supports the most basic activities of tasks. Then we 
write out in Ada the main data structures and some primitives which 
interpret the communication and synchronization activities. The 
concurrent statements are translated into sequential statements and 
primitive calls. 

The support by operatinq system kernel 

We assume that the target operating system provides the following 
three kernel routines at least. 

SUSPEND; --suspend the caller 
ACTIVATE(T:TASK_NAME); --resume task T to be runnable 
ALARM(ALARM_AT: TIME; EXPIRED: out BOOLEAN); 
--suspend the caller until some other task resumes the caller or the 
--time ALARM_AT is due. EXPIRED indicates whether the time is due or 
--the caller is resumed by other task. 

Main data structures 

The compiler establishes a rum-time package for each task in an 
Ada source program, which maintains the data structures used in task 
activation, termination and communication. We consider only those 

SIGPLAN Notices, V21 #8, August 1986 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F382278.382396&domain=pdf&date_stamp=1986-08-01


-72- 

which are related to entries. 
An entry descriptor is set up for each entry in a task, which 

of the following type 
is 

type ENTRY_DESCRIPTOR is 
record 

ACCWAITING: BOOLEAN:= FALSE; --accepting task is waiting for 
--entry call 

SUCCESSFUL: BOOLEAN:= FALSE; --successful rendezvous 
EMPTY: BOOLEAN:= TRUE; --empty entry queue 
QUEUE: QUEUE_POINTER:= null; --entry queue 

end record; 

Type QUEUEPOINTER describes entry queue. An object of type 
QUEUE ELEM is dynamically generated when an entry call is issued. 

ty_p_e QUEUE_POINTER is access QUEUEELEM; 
type QUEUE_ELEM is 

record 
NEXTELEM: QUEUE_POINTER:= ~ul!_; 
ELEM: CALLER_DESCRIPTOR; 

end record; 

Type CALLERDESCRIPTOR is defined as following. 

type CALL_KIND !~ (NORMAL, CONDITIONAL, TIMED); 
type CALLERDESCRIPTOR(KIND: CALL_KIND) i_s 

record 
CALLER: TASK_NAME; --name of calling task 
LOCATION: MESSAGE; --location of parameters of entry call 
case KIND is 

when TIMED => ALARM AT: TIME; --duration of timed entry call 
when others => null; 

end case; 
end record; 

The location of actual parameters is closely related to the particular 
operating system environment. 

Entry call 

The interpretation of entry call, accept and select statements is 
preformed by four primitives. The execution of the primitives must be 
protected. At least, primitive executing about the same entry should 
be mutually exclusive. 

An entry call is trans],ated ~ito a call to primitive EN'['RV CAI,L 
which queues the calling information in specified entry queue arid 
r~sumes the accepting task if which is waiting for the corresponding 
entry cat1. Ther, the (:all~ng task suspends until the rendezvous is 
completed or the duratioon is expired in the case of timed entry call. 

procedure ENTRY_CALL(ACCEPTOR : TASKNAME; --accepting task 
EMTRY: in out ENTRY_DESCRIPTOR; 



-73- 

--entry descriptor 
CALLER: CALLERDESCRIPTOR; 

--calling information 
SUCCESSFUL: out BOOLEAN) is 

--successful rendezvous? 
TEMP: CALLERDESCRIPTOR; 
EXPIRED: BOOLEAN; 

if CALLER.KIND = CONDITIONAL and 
not (ENTR¥.ACCWAITING and ENTRY.EMPTY) then 

SUCCESSFUL:= FALSE; 
return; 

end if; --if accepting task is not waiting for the current entry 
--call, the conditional entry call fails to rendezvous. 

TEMP:= CALLER; 
if CALLER.KIND = TEMED then 

TEMP.ALARM_AT:= CLOCK() + TEMPJkLARMAT; 
end if; --convert duration into time limit 
INSERT(ENTRY, TEMP); 
--queue calling task in entry queue and set ENTRY.EMPTY to be false 

if ENTRY.ACC~AITING then ACTIVATE(ACCEPTOR); end if; 
-resume accepting task 
if CALLER.KIND = TIMED then 
ALARM(TEMP.ALARMAT, EXPIRED); 
- watt for time ]~m~t or being resumed by accepting task 

![ EXPIRED then --duration expired 
SUCCESSFUL:= FALSE; 
return; 

end if; 
end if; 
SUSPEND; --wait for termination of rendezvous 
SUCCESSFUL:= ENTRY.SUCCESSFUL; --successful? 
ENTRY.SUCCESSFUL:= FALSE; 

end ENTRY_CALL; 

ENTRY.SUCCESSFUL is set at the end of accept statement. The cause of 
unsuccessful rendezvous is usually that an accept alternative to 
rendezvous a conditional entry call is not selected in the selective 
wait of accepting task. 

An entry call is translated into statement sequence 

<Parameter pre-processing> 
ENTRY_CALL(...); 
<Parameter post-processing) 

Parameter processing is closely related to particular implementation. 

A conditional entry call is translated into 

<Parameter pre-processing> 
ENTRY_CALL( ....... , .... SUCCESSFUL); 
if SUCCESSFUL then 

<Parameter post-proccessing> 
<Sequence of statements following entry call> 



-74- 

else 
<Parameter storage releasing> 
<Else part> 

en__d if; 

Timed entry call corresponds to the following objective sequence. 

if <Delay expression> > 0 then 
<Parameter pre-processing> 
ENTRY_CALL(..., ..., ..., SUCCESSFUL); 
if SUCCEESSFUL then 

<Parameter post-processing> 
<Sequence of statements following entry call> 
qoto TAIL; 

end if; 
<Parameter storage releasing> 

end if; 
<Sequence of statements following delay> 

<<TAIL>> 
<Subsequent statements of timed call> 

~cgept statement 

An accept statement, which is not the first statement of 
accept alternative, is translated into following statement sequence. 

an 

ACC_ENTER(...); 
<Accept body> 
ACC LEAVE(...); 

ACCENTER and ACC_LEAVE are a pair of primitives. ACC_ENTER 
removes the expired timed entry calls from the corresponding entry 
queue. The rendezvous begins if there is some entry call waiting in 
the queue. Otherwise, the accepting task suspends until a 
corresponding entry call occurs. 

procedure ACC_ENTER(ENTRY: in out ENTRY_DESCRIPTOR) is 

beqin 
REMOVEEXPIRED(ENTRY); --remove expired entry calls 
if ENTRY.EMPTY then 

ENTRY.ACCWAITING:= TRUE; 
SUSPEND; -wait for an entry call 

end i I; 
if ENTRY. QUEUE. ELEM. KIND = TIMED then 

ACTIVATE ( ENTRY. QUEUE. E[.EM. CALLER ) ; 
~d ~f; - resume the task issuing the timed entry call 
ENTRY.ACCWAITING:= FALSE; 
FEED(ENTRY); .... fetch calling parameters 

9nd ACC ENTER; 

If the entry call to rendezvous Js a timed entry call, the 
calling task which is waiting with the kernel routine ALARM shcn~]d be 
resumed, then it will wait for the termination of rendezvous in 
primitive ENTRY_CALL. Were the calling task resumed after rendezvous, 



-75- 

the calling task would think that no rendezvous happened 
duration was expired during the rendezvous by chance. 

if the 

Procedure REMOVE_EXPIRED removes the expired timed entry calls 
(At this timer the calling tasks have been resumed.) from the entry 
queue and ENTRY.EMPTY is set to be true when the queue is empty. 

Procedure FEED transfers the calling parameters to the accepting 
task stack, so that accepting task uses the parameters in accepting 
statement just as in a procedure. 

Primitive ACC_LFAVE sends the parameters back to the calling task 
and resumes the calling task. 

procedure ACC_LEAVE(ENTRY: in out ENTRY_DESCRIPTOR) is 
begin 

FEEDBACK(ENTRY); 
ENTRY.SUCCESSFUL:= TRUE; 
ACTIVATE(ENTRY.QUEUE.ELEM.CALLER); 
REM0VE(ENTRY); 

end ACC_LEAVE; 

Procedure FEEDBACK performs the inverse action of FEED. This 
pair of procedures is closerly dependent on particular environment. 

Procedure REMOVE unqueues the first term from the entry queue and 
ENTRY.EMPTY is set to be true when the queue becomes empty. 

Selective wait 

Since the discussion of task termination is beyond this paper, we 
only consider the selective waits which do not contain terminate 
alternatives. Primitive SELECTIVE performs the selective policies. 
The information interface of the primitive is designed as 

procedure SELECTIVE(SEL: 0PEN_ACC_~TERS; 
M, ELSE_0RDER, ORDER: INTEGER; 
SHORTEST: DURATION; 
SELECTED: out INTEGER ); 

where SEL is an array which records all the open accept altenatives 
and M is the number of such alternatives. Each alternative, including 
else part, is given an ordinal, according to its static order in the 
selective wait. If there are some open delay alternatives, ORDER and 
SHORTEST are the ordinal and duration of the delay alternative with 
the shortest duration respectively. ELSE_0RDER is the ordinal of else 
part, which is zero if there is no else part. SELECTED is the ordinal 
of selected alternative. 

Suppose there are M open accept alternatives in a selective wait, 

array SEL is of type 

type 0PEN_ACC_ALTERS is array (i..M) of ACC_ALTER; 
SEL: 0PEN ACC3~LTERS; 



-76- 

SEL is local to a particular seletive wait. 

Type ACC_LATER describes an open accpt alternative. 

type ACCALTER is 
record 

ORDER: INTEGER; --ordinal 
ENTRY: ENTR¥ DESCRIPTOR; --corresponding entry descriptor 

99__~ record; 

A selective wait with N alternatives is translated into following 
statement sequence. 

ORDER:= 0; --initialize to record the ordinal of the shortest delay 
SHORTEST:= DURATION'LAST; --to record the shortest duration 
M:= 0; --to count all open accept alternatives 

<ist when-alternative> --the first select alternative 
<2nd when-alternative> 

<Nth when-alternative> 
<Else part> --possible else part with ordinal N+I 

<<H >> 
SELECTIVE(SEL, M, N+i, ORDER, SHORTEST, I); --make selection 
case I o_f --I is the ordinal of selected alternative 

when 1 => got o L ; --the first alternative is selected 
when 2 => qoto L ; 

when N => goto L ; 
when N+I => goto L ; --else part is selected 

end case; 
<<TAIL>> 

<Subsequent statements of selective wait > 

The delay alternatives and else part should be mutually exclusive 
by the language manual. We assume that it has been checked. 

In the case of accept alternative, <Ith when-alternative> 
corresonding to following statement sequence. 

is 

<<H >> 
if <Ith condition> then --condition always true if no "when clause" 

M:= M41; 
SEL(M).0RDER:= I; 
SEL(M).ENTR¥:= <Descriptor of the entry>; 

end if; .... record an open accept alternative 
~oto H ; --go to next alternative 

<<L >> 
<Accept body> 
ACC_LEAVE (...); 
<Subsequent statements> 



-77- 

~oto TAIL; 

In the case of delay alternative, 

<<H >> 
~f <Ith condition> then 

if SHORTEST > <Delay expression> then 
SHORTEST:= <Delay expression>; 
ORDER:= I; 

end if; 
end if; 
g0t0 H ; 

<<L >> 
<Subsequent statements> 
gQto TAIL; 

Else part is 

<<L >> 
<Else part> 
qoto TAIL; 

Primitive SELECTIVE selects a rendezvousable open accept 
alternative. If there ~s no rendezvousable one at present, the 
shortest duration delay is performed to wait one of the open accept 
alternatives becomes rendezvousable, or the else part is executed. If 
there is no open accept alternative, an open delay alternative or else 
part is selected. 

proc.edure SELECTIVE(SEL: 0PEN_ACCALTERS; 
M, ELSE ORDER, ORDER: INTEGER; 
SHORTEST: DURATION; 
SELECTED: out INTEGER) is 

RENDEZVOUSABLE, EXPIRED: BOOLEAN; 
b e q i n  

i f  M = 0 t h e n  - - n o  o p e n  a c c e p t  a l t e r n a t i v e s  
if ORDER <> then --there are some open delay alternatives 

ALARM(CLOCK() + SHORTEST, EXPIRED); 
--delay, to elapse the shortest duration 

SELECTED:= ORDER; 
--to execute the subsequent statements after delay 

elsif ELSE_0RDER <> 0 then --there is an else part 
SELECTED:= ELSE_0RDER; --to execute else part 

else 
raise PROGRAM_~ROR; --cause exception when neither open 

--alternatives nor else part exists 
end if; 
return; 

end if; --process for the case of no open accept alternatives 
loop 

RENDEZVOUSABLE:= FALSE; 
for I in I..M loop --for M open accept alternatives 

RFEMOVEEXPIRED(SEL(I).ENTRY); 
--remove expired timed entry call 

RENDEZVOUSABLE:= RENDEZVOUSABLE or not SEL(I).ENTRY.EMPTY; 



-78- 

end loop; 
i_f RENDEZVOUSABLE then --there are some rendezvousable ones 

ARBITRARY_SEL(SEL, M, SELECTED); 
--select one and send its ordinal back 

for I i_D_ 1.oM !_qP_R 
SEL(I).ENTRY.ACC WAITING:= FALSE; 
if SEL(I)°0RDER = SELECTED then 

FEED(SEL(I).ENTRY); --transfer parameters for the selected 
elsif not SEL(I).FENTRY.EMPTY then 

if SEL(I).FENTRY.QUEUE.ELEM.KIND = CONDITIONAL then 
ACTIVATE(SEL(I)~ENTRY.QUEUE.ELEM.CALLER); 
REMOVE(SEL(I).ENTRY); 

end if; --for every unselected one, remove the conditional 
--entry call and resume the calling task 

en¢ if; 
end loop; 
return; 

e Dd ![; --a rendezvousable accept alternative has been selected 
if ELSE-0RDER <> 0 then --there an else part 

SELECTED:= ELSE_0RDER; 
return; 

end if; 
for I in I..M looR 

SEL(I).ENTR¥.ACC~AITING:= TRUE; 
end loop; --set all open accept alternatives to be waiting status 
i_f_ ORDER = 0 then --neither open delay nor else part exists 

SUSPEND; 
else 

ALARM(CLOCK() + SHORTEST, EXPIRED); 
--delay, until duration is elapsed or some entry call occurs 

if ENPIRED then --duration expired 
SELECTED:= ORDER; 

--to execute the statement sequence after delay 
for I i_D_ i..M loop 

SEL(I).ENTRY.ACCWAITING:= FALSE; 
end loop; 
return; 

end if; --some entry call wakes up the accepting task waiting 
--with SUSPEND or ALARM. The rendezvousable alternative 
--will be selected in the next iteration. 

end if; 
end lo0p; 

end SELECTIVE; 

Procedure ARBITRARY_SEL selects one of the rendezvousable accept 
alternatives arbitrarily. 

Summary 

This paper describes some primitives to support Ada intertask 
communication and synchronization. The primitives are based on a 
minimum operatingsystem kernel. The final implementation depends on 
the particular computer system and supporting environment. But the 
dependence is limited and is concentrated on the transfer of entrycall 



-79- 

parameters and on the protection of the primitives. 

The key data structure in our scheme is entry descriptor. The 
operations on it must be mutually exclusive. The problem should be 
carefully solved in the final implementation. 

Reference 

Ada Reference Manual, United States Department of l)efcnce. 


