
A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S Vol 10 N o $ O c t 1985 P a g e 37

Evolution of Configuration Management

R.udy Bazelmans

A B S T R A C T

The practice of documenting the components of a product, identifying the components of a product, controlling
changes to the product and tracking those changes are part of a task called configuration management. This
paper discusses the origins and evolution of the term and surveys the software tools which have evolved to support
that need.

1. I n t r o d u c t i o n
Configuration Management (CM) is the organization, documentation and tracking of system configurations.
Systems can be thought of as any item which consists of multiple parts. These systems include mechanical
systems with sub-assemblies, electrical systems with PC boards and software systems with modules.

The definition of configuration management (for any of the systems types mentioned above) has not changed
much in the past two decades. The changes which have occurred have primarily involved their application and
the automated support provided. One of the best (and earliest) definitions of configuration management can be
found a the DoD Military Standard published in 1968 [MIL 68]. This standard defines CM as a management
procedure which includes the following components:

Identification: The identification of the components which comprise a particular version of a system.

Control: All changes to the system must be controlled and identified.

Status: The status of all changes to the system must be recorded and reported.

Audit: The system must be checked for compliance with the configuration documentation.

My interest in configuration management in the software industry prompted me to collect books and papers on
the topic. Of the publications I found, most dealt with CM on the UNIX Operating System. Because the
literature is dominated by discussions centered around UNIX and because of UNIX's popularity within academia
and industry alike, I will primarily discuss the evolution of CM within that environment and my impressions of
that evolution.

2. Orig ins of CM
The discipline of CM seems to have evolved out of the need to control the production and maintenance of
complicated products. The first use of the term CM was in Industrial Management. There are numerous articles
on the topic dating back to the mid-60s. [JUA 79] The concept was apparently invented by Henry Ford in the
early 1900's in order to organize the production of the first automobile I. As products began to use electronics, the
use of CM was expanded to include electronics and eventually software. Most of the work in the area of CM
seems to have been done by large corporations and government. This is most likely due to the fact they had
control over the larger, more complicated systems.

llnrormation on the origin of CM in with Henry Ford came from a manager o f an engineering department. Although it makes
sense, ! have been unable to prove or disprove this statement.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F382288.382769&domain=pdf&date_stamp=1985-10-01

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S Vol 10 No 5 O c t 1985 P a g e 38

The Department of Defense (DoD) is an organization which is heavily involved in the development of standards.
Military Standard (MIL-STD) 480 [MIL 68] was published in 1968 and defines CM. This standard was later
revised to include the topic of software and re-issued in 1970 as MIL-STD-483 [MIL 701. This document prescribes
the use of CM techniques in the production of systems for the military. The standard (which was paraphrased in
the introduction) defines what CM is but doesn't specify the method which is used to accomplish it.

The IEEE produced a standard for configuration management in 1983 [STD 83] which outlines the structure which
should be used to develop a CM plan. The definition of CM which is used within that document is broken" down
into the same categories as the definition used by the DoD in 1970; namely, configuration identification, control,
status and audits.

Hardware and software companies have a wide spectrum of support for CM. Some of the smaller companies have
completely ignored the issue and assume the current employees will stay with the company forever. As the
companies and the products increase in size, the hardware aspects of the products usually come under CM control.
This is done using completely manual systems in some companies to completely automated systems in others.
The software a~,pects of the products also seem to be controlled as a function of the size and complexity of the
product and the company. Many software engineers seem to view CM as an unnecessary evil (similar to the way
they view documentation) and as a result the quality of the tools seem to be low in most corporations.

3. E v o l u t i o n of C M Too l s W i t h i n the S o f t w a r e Fie ld
Over the years, the software industry has viewed the area of CM as a set of independent development controls.
This is evidenced by the evolution of software tools to aid CM. The aspects of CM as it relates to software seems
to have encompassed the following major topics:

• Source Code Modification Control and Tracking
• System Building
• Bug repor~Ling and Tracking
• Product Version Identification

One early (but well known) tool developed by Rochkind in the early 70's was the source code control system
(SCCS) [ROC 75]. This set of programs was first available on the IBM 370 running under OS. By 1975, the
programs were available on the UNIX operating system on a DEC PDP-11.

SCCS is a set of programs which allow developers to track the modification of text files (source code,
documentation, test cases etc). The system provides the ability to retrieve any version of a source program and
allows the developer to produce new versions of programs while supporting the older versions. The key features of
the SCCS system are:

Storage: The use of disc storage was minimized by only recording the modifications made to the systems
rather than maintaining separate copies of each version of a file. Studies have found these
savings to be significant [ROC 75].

Protection: Access to files is controlled by SCCS and modifications to particular files (and particular
versions of those files) may be restricted to certain individuals.

Identification: Each file can be stamped with information identifying the author, version and the date and
time of modification. This information can be propagated to the object files produced from
these files.

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S Vol 10 N o $ Oct 1985 P a g e 39

Documentation: The system prompts the user for a reason for all modifications and records who made the
change, what was changed and when it was changed. This information can later be retrieved
and used to report modifications of programs.

By 1977 SCCS had undergone nine major releases (five on the IBM OS and four on UNIX) [GLA 78]. Among the
major improvements since the inception of SCCS are the following:

Statistics: The system was used to collect statistics on the production of software. These statistics were
used to further improve the existing tools and helped justify new tools.

Propagation: The system automatically propagated bug fixes from previous versions into the newer versions.
This caused problems when developers discovered new characteristics in programs that hadn't
been modified. This feature was eventually replaced by a system to partially automate the
integration of bug fixes.

Bug Reminders: As automatic modification propagation was eliminated, a function was added which sent a
message to the developer whenever a module was retrieved which hadn't been upgraded with an
existing fix. This characteristic of the system proved annoying and since it was usually
prematurely defeated my the users of the system, it was later eliminated.

File Identification:SCCS was enhanced to provide a standard marker in source files to allow a program to
automatically retrieve the version identification from files.

Efficiency: The efficiency of the system was improved as the usage increased. Attempts to increase
efficiency by using binary (versus readabld ASCII) data files proved ineffective and inhibited the
manipulation of the data files. The database files were returned to pure readable ASCII.

By 1978, it was recognized (in the UNIX community) that there was a need for a tool which would automate the
construction of large systems of programs. Feldman produced a program called Make [FEL 781 which could build
systems using a script (or database) called a make file. This file defined the components of a system and show the
time ordered dependencies of the components. Make was intelligent enough to only rebuild those components of
the system (or the system itself) if the components (or their dependencies) had been modified. This was done by
comparing the date and time of last modification for all the components of the systems as defined in the Make
script. This saved considerable processing time but more importantly, it assured that the system was being
correctly built and up to date.

At about the same time as the Make program was being developed, the authors of SCCS realized a need for many
individuals to work in concert in the development and maintenance of software systems [GUY 80]. To solve this
problem, a higher level interface program was developed to handle the use of a common set of programs by a
group of developers. This program (called inter) may have been the predecessor of a much larger system
developed by Bell Labs called ~fESA which is described below.

Several years after the development of Make, a need was seen for improved cohesion between the system building
capabilities of Make and the source control capabilities of SCCS. An augmented version of Make was developed
to support this need [BRA ??]. This new version of Make could automatically retrieve files from SCCS control as
required to build a system. The new version also had more innate knowledge so that users didn't have to know as
much about Make programming.

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S Vol 10 No 5 O c t 1985 P a g e 40

3.1. C h a n g e M a n a g e m e n t
Beginning in 1978, a concern over bug tracking and change tracking seemed to develop. In 1979 a Change
Management TJracking System (CMTS) was developed which provided the following features [BOE 79]:

• A Modification Request (MR) tracking system
• A Personal (modification) Tracking system
• A flexible report generator for both systems
• A set of programs to manage and use the system

This system wa~ built to be easy to use and customize. It even supported use by multiple projects on the same
machine. This :system is still being used today at Bell Labs.

3.2. T h e Rev i s ion Contro l S y s t e m
Walter Tichy at Purdue University produced a new source control system called the Revision Control System
(RCS). This project was intended to improve some of the deficiencies of SCCS as it was being released by AT&T
with UNDC Among the improvements made are the following [TIC 82]:

User Interface: Users could now specify their file names when manipulating files rather than referring to the
SCCS database file names. The commands were also more mnemonic.

Named Versions: Program versions can be named instead of being restricted to numbers as in SCCS.

Performance: By using a different algorithm for storing modifications of files, access time for the more recent
versions of files was significantly reduced. Infrequently used features of the system had also
been eliminated.

Flexibility: The system was more flexible in it's ability to support the group production of software.

3.3. App ly ing S C C S to a Large P r o j e c t
During 1977, Bell laboratories was beginning to work on the Electronic Switching System (ESS). This system
would be considered large by anyone's standards; 100,000-100,000,000 lines of code, 100-1,000 developers,
1,000-10,000 modules. The system had several complex components and a number of major subsystems. Yourdon
claimed at the time that the task was "nearly impossible" [BAU ??]. Besides being huge, the task would undergo
incremental development and continuous support.

It was decided that SCCS would not be appropriate for the project because it assumes that there is one view of
the product, namely that all changes which are made today will be included in tomorrow's release. Instead, a
system called the Change Control System (CCS) was developed. This system had all the capabilities of SCCS but
also supported:

Multiple Views: The system could support multiple views of the same product. This allowed multiple versions
of the same product to be going on simultaneously without interference.

Object Code: Because of the complexities of the project and the amount of parallel development, it was
impractical to require that object code be reproduced continuously. CCS had an algorithm for
computing the minimum difference between object modules and remembering those differences.

Change Model: The system used a finite state machine (FSM) to help track the numerous views of the system.
This FSM was capable of providing status on the progress of changes as well as other
information concerning the project.

ESS underwent over 4,000 modifications during it's first year of operation and CCS was considered a success.
This system is one of the propriety tools used by Bell Labs.

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S V o l 10 N o 5 O c t 1985 P a g e 41

3.4. O t h e r E ve nt s o f t h e ErA
At about the time that MAKE, SCCS and RCS were being used with UNIX, DEC developed a set of programs
with similar capabilities (CMS/MMS}. MMS is similar to Make and added nothing significant to the technology.
CMS is an enhanced version of SCCS. One of the nicest features was that version numbering and retrieval of files
was part of the operating system. The fact that the manufacturer of the most popular UNIX hardware (DEC) had
recognized the need for these tools in their VAX VMS operating system helped bless their use [DEC 82].

3.5. Bell Labs "Standard" C M T o o l s
Although the CCS system was used on the ESS project at Bell Labs, little has been published concerning it's use.
Internal training at Bell Labs promotes the use of two other tools. These tools provide higher level interfaces to
the SCCS and Make programs. Both tools were developed prior to 1982.

Instead of SCCS, users interact with a program called the Management Environment for Software Administration
(MESA). As discussed previously, SCCS (and similarly RCS} have difficulty managing projects with parallel
subsystem development and continuous enhancement. MESA provides the following features over SCCS:

Hierarchy Support:

MESA supports a three level hierarchy for projects: Project, Subsystem and Book. This
hierarchy is an immense help in the product/on of large projects.

User Interface: The commands have been cleaned up. For example, the user can now specify the name of the
file which he wants to retrieve from the source management system rather than specifying the
name used by the source management system (as is done in SCCS but not in RCS).

SCCS Isolation: The user is now isolated from the SCCS (MESA) data files because they are placed in a
separate directory system called the MESA/SCCS Pool.

Another program which is in common use at Bell Labs is the Object Generation System (OGS). In essence, OGS
is to Make what MESA is to SCCS. OGS is a layer of software between the user and Make which provides the
following capabilities:

User Interface: The user is isolated from the low level details of makefiles (scripts used by Make) because
generic Makefiles are provided. These files are also stored in a common directory.

Multiple Targets: The user can easily produce products targeted for different machines. The files are stored in
the same workspace using a directory hierarchy.

Workspaces: It is possible for a user to do development with a workspace which is only partially populated
with files. This avoids the clutter, disc space and danger of having all the source files for a
system within the current directory structure.

The current development methodology used at Bell Labs involves the use of MESA, OGS, CMTS and ATK. The
Administrator's Tool Kit {ATK) is a set of programs used to aid in the use of the other CM tools. For example,
ATK can set up a filesystem hierarchy to mirror another in preparation for the use of MESA. These tools are
proprietary and are not available outside of Bell Labs.

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S Vol l0 No 5 O c t 1985 P a g e 42

3 .6 . O t h e r In t e re s t ing C M T o o l s
One interesting tool which is available from Human Computing Resources Corporation is called CoCo
(Configuration Control). This tool provides a means to manage change requests. A user submits a standard
change request to the CoCo program. CoCo sends the request to all project members and solicits comments
(using the UNIX mail program). The comments are collected and mailed to a change review board who decides on
the change. The decision is then distributed to the project members and logged in a history database. This tool
can be used in combination with all the other tools mentioned so far.

There are two other tools available which offer some advantages over SCCS and RCS. The Change and
Configuration Control (CCC) system from Softool Corporation provides a partially integrated environment which
controls object code as well source code, allows named versions, supports encryption and compression, on-line help
and complete error recovery [CCC 84]. The Aide-De-Camp (ADC) system from Software Maintenance and
Development Systems Inc. provides an integrated environment which includes named versions, support for
families of products, correlation of changes involving multiple files, on-line help and reporting capabilities [ADC
84].

3.7. Ye t A n o t h e r Bell Labs C M Too l
There is yet ano~Lher CM tool which is used within Bell Labs [ERI 84]. This tool (called Build) is used to generate
software and extend the capabilities of the Make program. It supports the ability to maintain separate views of a
product in orden" to develop various versions of the system simultaneously. Basically the procedure used to
develop the software is as follows:

I. The developer builds a directory structure under his own directory which matches the directory
structure used to build the program.

'2. This directory structure is populated with only the files being changed.
3. The shell environment variable VPATII is set to the root of the directory which holds the master

software.
4. When the developer BUILDs the system, all unresolved file references in the makefile are resolved by

linking the file from the directory structure specified in the VPATH variable into the correct location
the user's file structure.

,5. After the new version of the system is built, the files which were linked into the current filesystem are
removed.

Using the Build program allows users to test their changes independently of others working on the same set of
programs. It also avoids clutter in the directory and saves directory space over the conventional Make methods.

Another benefit offered by the Build program is that it assures the developer that the makefile is correct since any
file which is not correctly specified within the makefile will not be retrieved from the filesystem specified by the
VPATH variable. This configuration audit function isnot provided through the OGS program.

4. S t a t e o f t h e A r t
The most powerful CM tool which I have seen is the Domain Software Engineering Environment (DSEE)
developed by Apollo [LEB 84]. DSEE provides an integrated set of tools which support the functions of SCCS,
Make and more. DSEE consists of several major components called managers. There is a History Manager, a
Configuration Manager, a Task Manager, an Advice Manager and a Monitor Manager.

A C M SIGSOFT S O F T W A R E E N G I N E E R I N G N O T E S Vol 10 No 5 Oct 1085 P a g e 43

4.1. History Manager
The History Manager provides source code control similar to SCCS and RCS. The history manager also provides
numerous other capabilities. It provides an interactive, multi-window merge capability to aid in the merging of
code changes. It supports the use of conditional compilation by passing flags to the compiler based on the system
configuration being developed. The history manager also compresses leading blanks from source files; this saves
approximately 20% of disc space utilization.

4.2. Configuration Manager
The Configuration Manager uses a system model which contains the dependencies of each of the components of a
system (similar to the makefiles used by Make). Language-based dependencies (such as %inchde in C) are
automatically detected and do not have to be explicitly stated as they must in Make. Using this database, DSEE
supports two modes of development; a dynamic mode in which all changes made by one developer are immediately
integrated into the environments of the other developers (Make operates in this fashion) and a cautious mode in
which developers are protected from the changes of the other developers until the changes are explicitly requested.

The Configuration Manager remembers which versions should be used of each of the system components. This
information is used to produce a configuration description showing which version of each component was used to
produce the system. A build log is also maintained which shows what was built, who built it, when and why it
was built.

The Configuration Manager also manages the various versions of the object files which are produced using a
derived object pool. Object files in the pool are automatically deleted if they haven't been used in a long time.
These facilities make it quite easy to switch development efforts between several versions of the system.

4.3. Task Manager
The Task Manager allows developers to describe changes to modules. These descriptions are linked not only to
the modules that are changed (as is done with SCCS) but they can be linked together so changes which are related
to the same enhancement (or bug fix) can be recorded as a group. This feature provides a great history for future
reference. There is also a way to describe tasks which ale related to a particular enhancement but have not yet
been completed. These tasks will become part of an active "To Do" list which appears in a window on the screen.
When these tasks are completed, they are recorded in a transcript file. These tasks are not restricted to
programming tasks.

4.4. Advice Manager
The Advice Manager allows developers to document the procedure they used to perform a particular task (like
adding a new option to a program). The task list is then available to others on the project who are interested in
doing the same thing.

4.5. Mon i to r M a n a g e r
The Monitor Manager allows developers to place monitors (alarms) on particular modules so that whenever
someone modifies that module a message is displayed. This message could be a warning concerning the dangers of
modification or possibly a reminder to modify a related function in another module. The monitor also states who
set it. If these monitors indicate that additional tasks need to be done, the tasks are added to the task list which
appears on the user's screen.

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S Vol 10 No 5 O c t 1985 P a g e 44

4 .0 . Final C o m m e n t s on D S E E
Future enhancements to the DSEE system will include syntax directed editors, interpretive debuggers and
graphical progr:~m representations. The system seems well integrated and well designed. Unfortunately, it runs
only on the Apollo Domain system running AUX.

5. W h a t S h o u l d the F u t u r e Bring?
The CM system of the future should be highly-integrated into the development" environment. It should at least
have the integration and features of DSEE, the change request handling capabilities of CoCo, and the modification
request support abilities of CMTS. It should also be available on a variety of operating systems (or at least many
flavors of the same operating system in the case of UNIX). The system should not require graphics support.

Beyond all these capabilities, the ideal configuration management system should have a complete development
method described in sufficient detail to allow a manager to develop a product using the tools provided. Although
no development method will suit all situations, any model would be helpful. The lack of a well defined method for
project use of SCCS and Make has hindered the use of these tools in many installations.

6. Final C o m m e n t s
I have mixed emotions on the topic of configuration management. On the one hand I am amazed at the amount
of published material on the topic (it's more than I expected); on the other hand, I am disappointed that a topic
which is considered essential in hardware engineering and has been well defined in the software engineering for 25
years, is largely ignored in practice. As the practice of software engineering becomes more mature (scientific?),
this is bound to change.

7. A c k n o w l e d g e m e n t s
This paper was written for a class at the Wang Institute which was taught by Drs. Susan Gerhart and Alan
Thompson. I would like to thank Gary Van Camp for the time he spent discussing configuration management as
it applies to hardware engineering and also Manny Jasus, who explained the development method used at Bell
Laboratories and gave me valuable feedback on the paper.

8. A b o u t the A u t h o r
The author is currently a member of a tools group at Wang Laboratories. Previously, he was the supervisor of the
corporate tools group at Sykes Datatronics.

The author holds a Bachelors degree in System Software from the Rochester Institute of Technology and is
pursuing a Masters degree in Software Engineering at the Wang Institute of Graduate Studies. He has published
three other papers on software tools and techniques.

You can contact the author at Wang Laboratories, One Industrial Avenue, M/S 1989, Lowell Massachusetts,
01851, by phone at (617) 967-2609 or on UUCP at deevax!wanginst!wang!bazelmans.

ACM SIGSOFT S O F T W A R E E N G I N E E R I N G N O T E S Vol 10 No 5 Oct 1985 P a g e 45

[ADC 841

[BAU ??l

[BER 79]

[BER 841

IBOE 791

IBM ::1

[ccc 841

[DEA 81]

[DEC 82]

IDOL

[ERI 84]

[FEL 78]

IGLA 781

IGuv 801

References

Software Maintenance and Development Systems, Inc.
Comparison, The ADC System and SCCS.
Advertising literature.
1984

Bauer, H. A. and Burchall, R. H.
Managing Large-Stale Software Development with an Automated Change Control System.
IEEE , November,.

Bersoff, Edward H., Henderson, Vila D. and Siegel, Start G.
Software Configuration Management: A Tutorial.
Computer :6.-14, January, 1979.

Bersoff, Edward H.
Elements of Software Configuration Management.
IEEE Transactions on Software Engineering, June, 1984.

Boehm, E.W., and Storm, N.E.
Change Management Tracking System Overview.
August, 1979.

Bradford, E.G.
An Augmented Version of MAKE.

Softool Corporation.
CCC vs SCCS.
Advertising literature.
April, 1984

Dean, William A.
Why Worry About Configuration Management.
In Bryan, William, Chadbourne, Christopher, and Siegel, Stan (editors), Tutorial: Software

Configuration Management. Computer Society PRESS, 1981.

CMS/MMS Code/Module Management System Manual
Digital Equipment Corporation, 1982.

Dolotta, T.A., and Mashey, J.R.
An Introduction to the Programmer's Workbench.
In end International Conf on Software Engineerin#. IEEE, October, 1976.

Erickson, V.B., and Pelligrin J.F.
Build - A Software Construction Tool.
ATECT Bell Laboratories Technical Journal 63(6):1049-1059, August, 1984.

Feldman, S.I.
Make - A Program for Maintaining Computer Programs.
ATSfT UNIX related articles, August, 1978.

Glasser, Alan L.
The Evolution of the Source Code Control System.
ACM Software Engineering Notes, November, 1978.

Guyton, A.
Function and Use of an SCCS Interface Program.
April, 1980.
Update of Bonanni, March 1,1978.

ACM SIGSOF'r S O F T W A R E E N G I N E E R I N G N O T E S Vol l 0 No 5 Oct 1985 p a g e 46

[HUF 811

[INC 84]

Huff, Karen E.
A Database Model for Effective Configuration Management in the Programming Environment.
In International Conference on Software Engineering, pages 54-61. IEEE, IEEE Computer

Society, 1981.

Ince, D.C.
A Source Code Control System Based on Semantic Nets.
Software - Practice and Ezperience 14(12):1159-1168, December, 1984.

[,rUA 791

Iv.as 8 -1

[KNU 76]

ILEB 84]

[MCC 811

[MIL 68]

[MIL 70]

[ROC 75]

ISTD 831

[TIC 82]

[WET 821

Juanran, Joseph, J.
Quality Control Handbook.
McGraw Hill, 1979.

Kasinskas, Joan W.
MESA - Management Environment for Software Administration.
April, 1982.

Knudsen, D.B., Barofsky, A., and Satz, L.R.
A Modification Request Control System.
In ~2nd International Conf on Software Engineering. IEEE, October, 1976.

Leblang, David B. and Chase, Robert P., Jr.
Computer-Aided Software Engineering in a Distributed Workstation Environment.
In SIGPLAN/SIGSOFT Symposium on Practical Software Development Environments. ACM,

April, 1984.

McCarthy, Rita.
Applying the Technique of Configuration Management.
In Bryan, William, Chadbourne, Christopher, and Siegel, Stan (editors), Tutorial: Software

Configuration Management. Computer Society PRESS, 1981.

Configuration Control - Engineering Changes, Deviations, and Waivers
Department of Defense, 1968.

Configuration Management Practices for Systems, Equipment, Munitions and Computer
Programs
Department of Defense, 1970.

Rochkind, Marc J.
The Source Code Control System.
IEEE Transactions on Software Engineering, December, 1975.

IEEE Standard for Software Configuration Management Plans
IEEE, 1983.

Tichy, Walter F.
Design, Implementation, Evaluation of a Revision Control System.
In 6th International Conf on Software Engineering, pages 58-67. IEEE, September, 1982.

Wetmore, Tom, and Paceley, Susan.
The Object Generation System.
March, 1982.

