
A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 10 no 5 O c t l g 8 6 P a g e 8g

SOFTWARE MAINTENANCE:

PENNY WISE, PROGRAM FOOLISH

By Girish Parikh

U.S. RKo~rammers shave days off software development time while

sguanderin~.weeks on ad-libbed software maintenance. Soviet and Japanese

~[m~anies have a jump_ on develo[i__~, rigorous methods.

Computer professionals still ignore software maintenance. For software

development, there are at least some methodologies, even if U.S. companies are

drifting from them. But for software maintenance, there are no systematic

methods in place yet.

The ideal way to systematize software maintenance would be to build

techniques into the software development methodologies. Today most development

facilities avoid dealing with the maintenance phase, and in this respect, they

are incomplete. Judging from the alarming software maintenance statistics --

50% of DP budgets allocated to maintenance, more than 50% of programmer time

consumed by ongoing maintenance, and more than $30 billion spent on

maintenance annually worldwide -- the omission is critical.

The pervasive lack of attention to the subject persists on a national

level. The much-touted race between Japan and the U.S. on developing fifth-

generation computers receives wide publicity. But the one-sided competition in

software maintenance, which may affect the eventual outcome of the fifth-

generation race, simply is not addressed by most computer professionals in the

U.S.

Software maintenance consumes substantial resources. By streamlining and

automating this work, the saved resources can be diverted elsewhere -- toward

developing applications for fifth-generation computers. Japan seems to

Copyright CW Communications, Inc. Reprinted by permission

http://crossmark.crossref.org/dialog/?doi=10.1145%2F382288.382774&domain=pdf&date_stamp=1985-10-01

ACM SIGSOFT SOFTWARE ENGINEERING NOTES wol 10 no 5 Oct 1985 P&ge 90

understand the software maintenance problems and is making moves to solve

them, as evidenced by the Software Maintenance Engineering Facility project

under development by the Joint System Development of Japan.

The U.S. is perhaps more aware of the Soviet Union's threat to American

technological supremacy regarding software. The fear seems to be: "The

Russians are coming! The Russians are coming!'' It seems to me that almost any

country, even a developing one, can surpass the U.S. in the software field

simply by making software reliable and modifiable and by developing

modification techniques that can be taught.

On a company level, what is the effect of lack of attention to software

maintenance for a data processing manager? The impact may or may not be

immediately visible; however, the long-range effect can be devastating. When

management considers maintenance a low-priority activity, the staff doing

maintenance gets the message immediately.

In most companies, development programmers also handle maintenance.

Instead of using systematic maintenance processes and updating documentation,

they rush through the work by patching the programs so they can get back to

development work quickly. Overtime, the programs become almost impossible to

modify, and documentation deteriorates.

Cleaning up the maintenance mess will be much more difficult and

expensive than preventing it in the first place. By instilling ''positive

maintenance attitude,'' by encouraging the use of software maintenance

techniques and tools and by providing maintenance train£ng, many problems can

be avoided.

Weak foundations

Copyright CW Communications, Inc. Reprinted by permission

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol I0 no 5 O c t 1985 P a g e g l

I have been through the software maintenance trenches for several years

and observed the weak foundations of many applications systems. At the moment,

U.S. software consists of precarious skyscrapers of unstructured and

disorganized code on the verge of collapsing under severe maintenance

problems. A better balance cannot be attained unless these basic problems --

not just the symptoms -- are promptly solved, and new software is developed

with a methodology that includes teachable modification techniques.

You cannot avoid software maintenance: It is intrinsic to software. Why

not do maintenance right and avoid the problems?

To be complete, software methodologies must offer exact guidelines for

maintaining the software developed with those methods. That way, the original

structures are preserved, and maintenance operations can continue effectively,

efficiently and economically. A methodology that can help solve the

maintenance problems of unstructured software, as well as provide guidelines

for maintaining structured software, would be even more useful.

Further, a country can develop national standards for software

development and modification. There is already at least one technology

eminently suitable for such standardization: Jean Dominique Warnier's logical

methodology. The French systems scientist's technique of designing programs,

called logical construction of programs (LCP), is such that any LCP programmer

can maintain almost any LCP program anywhere.

To my knowledge, Warnier's methodology is the only one that provides

precise guidelines for modifying programs; even more important, the

modification techniques can be taught. Imagine how much maintenance saving can

be achieved by such national standardization and education.

Copyright CW Communications, Inc. Reprinted by permission

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 10 no 5 O c t lgSS P a g e 92

In searching for the root of the problems, some have named Fortran and

Cobol as the culprits responsible for the development and maintenance

problems. I do not think this is the case.

Although the trite phrase ''It's the fault of the computer!'' is a

popular one, we have all learned that the program can also be at fault. In

fact, in almost all cases the program is at fault; all things considered, it

is relatively rare that a computer malfunctions. So we changed our strategy

and started blaming the ''bug'' in the program. But from where did the bug

come?

Whodunit

Of' course, a high-level language or any language that helps develop clear

structures can help prevent or eliminate bugs. However, to a large extent it

is the program design that makes the difference. So if the program is poor,

it's generally the fault of the program design or rather the fault of the

programmer who did a poor job of designing. Or, in an all-too-familiar

scenario, it is the fault of the programmer who did not even care to outline

the program before starting to write code.

In a worst-case sense, this is like rushing to start building a house

before preparing a blueprint. It will be a miracle if the house is built at

all, and if it is built, it may not be functionally sound or even safe. And

such a house, if it gets finished at all, would cost a fortune to build, not

to mention its subsequent maintenance. How many times would it be torn apart

and construction started all over?

Applying this same principle to coding without preparing a design

outline, we see that maintenance for these programs is even more awkward than

Copyright CW Communications, Inc. Reprinted by permission

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 10 no 6 O c t 1985 P a g e 93

usual. The difficulty is intensified because typically there is no adequate

documentation to support the maintenance effort.

Again I must point out that Warnier's LCP technique can help design

optimal (efficient in memory usage and execution speed), clearly structured,

well-documented, reliable and easily modifiable programs. Programmers can code

in Fortran, Cobol or almost any other programming language using LCP, because

the design technique is independent of programming language and hardware.

LCP programs can save a bundle in the long maintenance cycle, starting in

the initial development stage. The technique saves in testing time during

development and maintenance, as programs work on first or second effective

test. Since, in the traditional development cycles, testing takes about 50% of

resources and time, LCP techniques can save a bundle in initial testing alone,

not to mention the continuing saving in the maintenance cycle. In addition,

program modification techniques can be taught.

Learning on the fly

One observation illustrates how deep the maintenance problems reach. It

may sound ridiculous to non-DP executives, but it is a fact that in many large

companies it takes about six months for a programmer to be productive in

maintenance work. In the end, such work usually amounts to more than half of a

programmer's responsibilities.

Without formed methodologies, many of these programming professionals

lack formal training in software maintenance, and they are forced to learn on

their own. This pickup, on-the-job training does allow them to complete the

assigned work.

Copyright CW Communications, Inc. Reprinted by permission

A C M SIG:SOFT S O F T W A R E E N G I N E E R I N G N O T E S vol I 0 no 5 O c t 1985 P a s e 94

But maintenance skills learned the hard -- and expensive -- way, if they

are learned at all, are generally not of much use when programmers hop Jobs.

Statistics quickly reveal the implications: Programmers change jobs every one-

and-a-half years on the average. In all likelihood, they then spend another

six months learning how to use the nonstandard maintenance techniques of their

new posts.

Ironically, the frustrating maintenance work itself contributes to the

high programmer turnover. What a colossal waste of programming resources! It

is easy to see why backlogs for new systems now amount to years in length.

Most companies contribute to this wasteful cycle by failing to take

software methodologies seriously. Just look at the DP job section in the

Sunday newspaper of your city. How many companies look for designers and

programmers with experience in a certain methodology? Most advertisements

specify skills in programming languages (usually Cobol and even Bal) and some

software packages such as CICS and IMS, but not in software maintenance

techniques.

We may be seeing a symptom of a deeper phenomenon. The concern of many DP

managers seems to be to get the development job up and running, to get a pat

on the back and maybe a promotion and a raise. If the system doesn't work out

or if a time comes for them to modify or maintain their brainchildren, there

is almost always another job to go to instead.

The concern of the U.S. still seems to be focused on the front-end work

of development, even though software maintenance is estimated at 67% of the

software life cycle. There are an estimated one million programmers in the

U.S. alone, most of whom are spending more than half of their time on ongoing

maintenance. But most training programs address only development issues. How

Copyright CW Communications, Inc. Reprinted by permission

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol I0 no 5 Oct 198S Psge 95

much programmer time ,and resources are wasted doing trial~and-error

maintenance, not to mention losses incurred because of incorrect changes?

Creati~new methods

Though maintenance work is influenced by the development method used,

(typically ad hoe method -- that is, no method at all) we need to address

maintenance problems on their own terms also. For a given development method,

we should create maintenance techniques drawn from that method.

The task of creating maintenance techniques for unstructured software,

developed without using any method, will be a challenge. But if we want to

close the software maintenance gap, we must deal with these problems by

treating the causes, not just removing the symptoms.

There are several options available for dealing with unstructured code,

such as redeveloping, replacing with an off-the-shelf package and

restructuring. In addition to techniques for maintaining software treated with

the former options, techniques are also needed to handle maintenance work on

the unstructured software as it Is.

Understanding software becomes one of the keys to making correct changes.

With unstructured software, maintenance programmers spend about half their

time just understanding the programs. If the tools and training are developed

to expedite standing of unstructured software, companies will realize a

significant saving.

Recently a debate has started about the validity of current terminology.

An excerpt from Dr. Edsger W. Dijkstra's privately published newsletter

''EWD'' in May 1983 pointed out that ''maintenance'' itself is a misnomer:

''To begin with, a program is not subject to wear and tear and requires no

Copyright CW Communications, Inc. Reprinted by permission

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 10 no 5 O c t 1985 P a g e 98

maintenance.'' DiJkstra coined the term ''structured programming'' but has not

coined a new term for maintenance; he simply laments over the established one.

Yet the term ''program maintenance'' has been in practice since electronic

computing began over 30 years ago.

My question to those who have started debating over the term now is,

where were you all this time? Of course, most of us were preoccupied with

other computer topics -- especially development. Though maintenance work was

and is being done by programmers around the world since the dawn of electronic

computing, no one seems to have paid much attention to it or even to its name.

Was it laziness? Or did we have a misconception that by developing

methodologies for the front-end development, software maintenance would

naturally fall in place? Did we simply not have the foresight to worry about

the future, to see what was going on below the surface in the real world?

Perhaps the reason lies in programmers' general dislike for software

maintenance. Some even hate the work. They want to remain high on the

excitement of new development. It is a challenge to solve a problem by

developing a new program. But once the program is installed, the excitement

abates; programmers start seeking new pastures to satisfy their appetite.

Unfortunately, they have to work on existing programs. After all, these

programs were their (or their fellow professionals') brainchildren, and they

cannot abandon them. There are heavy investments in existing software, and

management wants to make the most of it. So programmers grudgingly carry on,

correcting errors, modifying code, adding new requirements, adapting to new

software environments and so on.

Instead of changing the label, why not develop a generally accepted

definition of the term and go on -- identifying the variety of topics and

subtopics on and related to the subject. In other words, develop a taxonomy,

Copyright CW Communications, Inc. Reprinted by permission

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 10 no 6 O c t 1885 P a g e g7

define the terminology for the subject and then get on to the more important

work of developing software maintenance methodologies, both technical as well

as mana-

g e r i a l . With a generally accepted terminology, we will be able to

communicate with the world at large.

Time to act

In 1981 the National Science Foundation commissioned a group of

industrialists, scientists and teachers, known as the Computer Science and

Engineering Research Study. Their study yielded a report that aptly predicted

the threat to U.S. dominance in the software field:

''If software practices continue to drift, in 20 years the U.S. will have

a national inventory of unstructured, hard-to-malntain, imposslble-to-replace

programs written in Fortran and Cobol as the basis of its industrial and

government activities. Conversely, the Soviets may very well have a set of

well-structured, easily maintained and modifiable programs in more modern

languages because, in fact, they plan to leapfrog Fortran and Cobol.

''In this case, the competitive process of selecting efficient industrial

processes among feasible alternatives will be impaired in the U.S. but

facilitated in the USSR. We could then face a software gap more serious than

the missile gap of some years ago.''

Since then, it seems that fear has acted as catalyst for the U.S.

Department of Defense to start the Software Engineering Institute centered at

Carnegie-Mellon University in Pittsburgh. The institute plans to hire some 250

engineers to conduct a study of software methods and their applicability to

Copyright CW Communications, Inc. Reprinted by permission

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol I 0 no 5 O c t 1985 P&ge 08

defense systems. But it remains to be seen how the Software Engineering

Institute tames the giant of software maintenance.

It seems that even in 1985, not much attention is being paid to software

maintenance. It is naive to believe that by working on front-end development

methodologies, the software maintenance problems will go away. In fact, if

development is the front side of the coin, software maintenance is the other

side, which stays much longer in view.

We are more than 30 years behind when it comes to software maintenance.

We have awakened late. The giant subject of software maintenance may prove to

be even larger than development and harder to tame. We have created enough

mess with the existing software. Now instead of skirmishing around with the

term, let's get started on the real work -- honing the subject into an

engineering discipline, developing software maintenance tools and producing

educational and training courses and materials.

Copyright CW Communications, Inc. Reprinted by permission

