
ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol II no 5 Oct 1988 Page 53

AN APPLICATION OF PETRI NETS IN STRUCTURED ANALYSIS *

T.H. Tse and L. Pong
Centre of Computer Studies and Applications

University of Hong Kong
Hong Kong

BACKGROUND

Data flow diagrams (DFD), which originated from the popular Structured Analysis
methodology [1, 2, 3], can be used to model a system in the form of a network of components
and interfaces among them. When a system is too complex to be shown in a single diagram,
it can be partitioned into subsystems, which can be further partitioned until each component
can be described in a simple diagram made of primitive processes. Each of these successive
partitions is documented in a separate DFD, so that we have a hierarchical structure. In order
to ensure consistency, all data flows into/out of a child diagram must be represented on the
parent diagram by the same data flows into/out of the corresponding bubble. We are also free
to refine data flows into more detail on the child diagrams, so that we have a parallel
decomposition of both data and processes. A labeling convention for bubbles and diagrams
has been included to facilitate traceability between different levels of abstraction.
Furthermore, these labels can be used for tracing the correspondence between the
requirements specification and the final design.

As a tool in the requirements specification phase of a system life cycle, data flow
diagrams have the following good points: It supports the creation of a modular and
hierarchical structure to relax complexity. It is graphical and therefore enhances clarity. It
has only a few primitives and concepts that are easily understood and used. It is behavior-
oriented and provides a logical representation of the system. Parallelism is supported. Users
are prevented from dealing with details too early and hence design freedom is enhanced.
Requirements are expressed in terms of input and output data, so that they are testable. Data
flows are paths of information flow against which performance requirements can be assigned.

In spite of its popularity, however, only a couple of automated aids [4,5] have been
developed to support the use of DFD in Structured Analysis. This is because the language is
limited by the lack of a formal foundation. We must provide DFD with some formal
backbone so that its usage and analysis can be computer aided.

In order to remedy the defects of informality, an attempt is made to add a mathematical
structure to DFD. Petri net is found to be an appropriate model in this respect owing to the
following reasons:

(a) Petn net can be represented both graphically and algebraically. The graphical
representation is suitable for communications with users, whereas the algebraical
representation is ideal for processing. The graphical representation of Petri nets
resembles DFD in many ways. The algebraic foundation, especially the concepts of
tokens and markings, provide an excellent means of analyzing the behavioral properties
of information systems.

(b) Petri net supports the subnet concept, so that a hierarchical representation of a system at
various levels of abstraction can be created in a similar manner to that of DFD.
Parallelism is also supported by Petri nets and hence irrelevant processing sequences can
be suppressed, thus allowing freedom in design and implementations.

* This research was supported in part by a University of Hong Kong Research Grant.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F382298.382371&domain=pdf&date_stamp=1986-10-01

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 11 no 5 O c t 11180 Pst~; 64

(c) According to surveys such as [6], Petri net has been found to be an excellent tool for
systems design and testing, but it is not widely accepted by practitioners because it is not
user-friendly. If the user-friendliness of DFD can be added to theoretical foundations of
Petri nets, the resulting specification tool will have merits in both aspects.

F O R M A L DATA F L O W DIAGRAMS

Our proposed requirements specification language is known as Formal Data Flow
Diagrams (FDFD). It is developed for the specification of the conceptual model of a system.
The conceptual model can be regarded as the basis for other elements of a requirements
specification such as performance requirements. As a result, FDFD has been designed to
provide ease of reference, so that constraints and evaluation procedures can easily be
associated with the appropriate parts of the conceptual model.

A system is considered as a set of elements, each of which corresponds to a user-
perceived service or task of the system. These elements or tasks will be described in terms of
their input, output and processing to accomplish the tasks. These tasks are related to each
other through communications in the form of a network. Characteristics can be assigned to
the tasks to specified performance requirements.

As discussed in [7], a requirements specification language should be graphics based and
augmented by a symbolic description which is in one-to-one correspondence with the
graphics. Moreover, a symbolic description is more easily input to an automated system for
maintenance and analysis. FDFD has therefore been designed in two equivalent fo rms- -
graphic and symbolic, which have corresponding syntaxes and identical semantics. The two
forms can be converted from one to the other in a straightforward manner.

FDFD consists of two types of primitive elements---data flows and tasks--which
correspond to data flows and processes, respectively, of data flow diagrams. A task in an
FDFD can be decomposed into subtasks and specified in an FDFD of lower level of
abstraction, so that a hierarchical specification will result. The explicit definition of input and
output logic of data flows for each task is essential for an unambiguous specification. Their
presence is therefore compulsory for a requirements specification in FDFD. They will be
described by the " a n d " and " o r " operators. The and connector of DFD fits well with
Petri nets because the latter assumes an and operation on places connected to a transition.
The or problem can be solved by extending the Petri net model to include input and output
logic.

be a finite set of data flows. Suppose E
and or (such as

G = (D, T , I , O)

Let D = {d 1 ,d 2 d in} , where m _> 0,
denotes the set of all data flow expressions over the operators and
" d I and d 2 or d3") . An FDFD G is formally defined as a 4-tuple
such that:

(a) D is the set of data flows.

(b) T = {t 1, t 2 t n }, where n _> 0, is a finite set of tasks.

(c) D and T are disjoint.

(d) I: 7" ~ E and O: T ~ E are ffunctions which map tasks to data flow expressions. I
is called the input logic function and O the output logic function.

To model the behavior of a system over time, we have also incorporated the notions of
token and firing from Petfi nets into FDFD. These dynamic elements will provide a basis for
analyzing the dynamic behavior of a system directly from its requirements specification by
applying Petfi net theory. Tokens can be placed in the data flows. The presence of a token
means that input through a given data flow is ready for a task. A marking of an FDFD is

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol II no 5 Oct 11}811 Page 55

defined as a set of tokens assigned to its data flows. It indicates the state of a system
represented by the FDFD at a certain point in time. Mathematically, it is a function u: D
N from the set of data flows D of an FDFD to the set of non-negative integers N. Given
an FDFD G and a marking u, we will call the ordered couple M = (G, u) a marked
FDFD.

The marking can be changed by the execution of one or more tasks. A task is said to be
executable if a combination of data flows satisfying its input logic functions contains at least
one token each, or in other words, a combination of data satisfying the input logic is
available. A marking v is said to be reachable from another marking u if there exists a
sequence of executions that changes u into v.

The analysis of the dynamic properties of a system helps to detect problems which may
not otherwise be apparent in the static model, such as deadlocks or tasks that will never be
activated. It will also enhance the analysis of performance requirements. In addition, it can
provide valuable information such as the minimum buffer space or the maximum queue
length. Theory of symbolic execution may also be incorporated to simulate system behavior
and provide fast prototyping for better understanding by both the user and the systems
developer. However, elaborate theories on the dynamic properties of systems can be hidden
from the user to avoid unnecessary complexity.

SYSTEM REQUIREMENTS SPECIFICATION SYSTEM

To demonstrate the feasibility of the language, a automated specification system based on
FDFD has been implemented. It is known as the System Requirements Specification System
(SRSS). It consists of a set of front end processors and an information store. The front end
processors are used for the creation and validation of requirements specifications in the form
of FDFD, whereas the information store is used for the storage of the resulting specifications.
The front end processors of SRSS consists of the following components:

(a) The SRSS Editor is used for the creation and maintenance of system requirements
specification in symbolic FDFD. It is a context--oriented editor driven by single-letter
commands with or without parameters.

(b) The SRSS Syntax Analyzer performs checks on input specifications to ensure that they
conform to the syntax of symbolic FDFD. It is a top-down, recursive-descent, one-
symbol-plus--one-character lookahead, single-pass syntax analyzer.

(c) The SRSS Record Generator performs checking of several type of specification errors. If
no error is detected, the input specification of each task is transformed into a working
record in a format which can easily be accepted by the SRSS Record Storer into the
information store.

(d) The SRSS Graphics Generator generates equivalent graphics representation of the input
text specification.

(e) The SRSS Record Storer stores error-free and user-approved records into the information
store, and performs further consistency analysis.

One important area in the analysis of a requirements specification is consistency.
Consistency analysis will provide information on the completeness and correctness of a
requirements specification. Following the line of [6, 8, 9], we have incorporated three types of
consistency analyzes useful for requirements specifications. They are global consistency,
structural consistency and behavioral consistency. Global consistency analysis helps to check
whether or not the decomposition of a system into subsystems is done recursively. Structural
consistency analysis checks whether any data flow entering or leaving a parent bubble is
represented in a lower level diagram by the equivalent data flows into or out of some child

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol II no 5 Oct Ig80 Page 56

bubbles. Behavioral consistency analysis checks whether the dynamic properties of FDFD are
preserved.

A detailed specification of SRSS is given in [10], and further explanations and examples
on consiistency analysis can be found in [11].

CONCLUSION

We have applied Petri nets in the area of Structured Analysis by using it as a theoretical
foundation for data flow diagrams. We have developed a specification language known as
Formal Data Flow Diagrams (FDFD). The language preserves the comprehensibility of data
flow diagrams and, at the same time, enables systems developers to analyze the consistency
and completeness of requirements specifications.

AC KNOWLED GEMENTS

The authors are grateful to R.K. Stamper of the London School of Economics, University of
London, and S.W. Ho and C.F. Chong of the University of Hong Kong for their invaluable
comments and suggestions.

REFERENCES

[1] C. Gane and T. Sarson, Structure Systems Analysis: Tools and Techniques, Prentice-
Hall, Englewood Cliffs, New Jersey (1979).

[2] T. DeMarco, Structured Analysis and System 5pecification, Prentice-Hall, Englewood
Cliffs, New Jersey (1978).

[3] V. Weinberg, Structured Analysis, Prentice-Hall, Englewood Cliffs, New Jersey (1978).

[4] N.M. Delisle, D.E. Menicosy, and N.L. Kerth, "Tools for supporting structured
analysis", in Automated Tools for Information Systems Design, H.J. Schneider and A.I.
Wasserman (eds.), North-Holland, Amsterdam, 11-20 (1982).

[5] G.R. Kampen, "SWIFT: a requirements specification system for software", in
Requirements Engineering Environments, Y. Ohno (ed.), North-Holland, Amsterdam,
77-84 (1982).

[6] A.M. Davis and T.G. Rauscher, "Formal techniques and automatic processing to ensure
correctness in requirements specifications", Proceedings of Conference on Specification
of Reliable Software, IEEE Computer Society, Los Alamitos, California, 15-35 (1979).

[7] T.H. Tse and L. Pong, "An examination of system requirements specification
languages", Technical Report TR-A4-86, Centre of Computer Studies and Applications,
University of Hong Kong (1986).

[8] A.M. Davis, "The design of a family of application-oriented requirements languages",
IEEE Computer 15 (5), 21-28 (1982).

[9] T.J. Miller and B.J. Taylor, "A system requirements methodology", Proceedings of
ELECTRO '81, IEEE Computer Society, New York, 18.5.1-18.5.5 (1981).

[10] L. Pong, "Formal data flow diagrams (FDFD): a Petri-net based requirements
specification language", M.Phil. dissertation, University of Hong Kong (1986).

[11] T.H. Tse and L. Pong, "Towards a formal foundation for DeMarco data flow
diagrams", Technical Report TR-A6-86, Centre of Computer Studies and Applications,
University of Hong Kong (1986).

