
A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 11 no 1 Jan 1980 page 04

Test Plan Methodology
Reza Pazirandeh

Principle [sic!] Member of Technical Staff
Citicorp TTI, 3100 Ocean Park, Santa Monica CA 90405

i. Introduction

Although a software development staff may spend a substan-
tial amount of time testing software, there is still a lack
of planning and rigour that is required if the task of test-
ing is to be taken seriously enough. Usually, the testing
that is performed on a piece of software is made up of ran-
domly selected test cases which are obvious and the test
data (data base and transaction) used for these cases are
not well thought out and devised. There is a tendency to
think that volume testing will uncover most of the errors
which is not true. And, of course, the ever famous state-
ment "all known bugs have been resolved" is often used to
indicate the completion of the unit testing.

Part of the reason for not treating the task of testing with
more rigour is that testing software is not an easy task.
And part of the difficulty is due to the fact that it is not
easy to define a "how to" for testing.

In light of the previous paragraphs, this paper provides a
non-arbitrary and practical approach to testing and test
case defintion. Of course, the task of testing must begin
at system definition phase and must continue thru the design
phase. Therefore, this paper assumes that the document
against which the test plan is developed is itself reliable
(i.e., tested).

Let us also be aware that to assure software reliability in
any software shop, in addition to a rigorous test methodol-
ogy, there has to also exist an implicit or explicit state-
ment of policy regarding the organiztion's goal in testing.
The test goal defines the degree of software reliability
that developers must strive for and it is a function of the
criticality of the software being tested.

~. Basic Approach To Testing

This section will first define what rigorous and systematic
testing involves and then it will provide some rather
straightforward steps on how to achieve it. The reader
should note that the techniques presented here can be ap-
plied at any level of testing. As such, a program (i.e.,
code) and program specification are tgb" be viewed inter-
changeably in this context. The ex~amples that are pro-
vided, although COBOL-like, should also be viewed as a piece
of logic or specification.

2.1 Path Testing

http://crossmark.crossref.org/dialog/?doi=10.1145%2F382300.382314&domain=pdf&date_stamp=1986-01-01

A G M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 11 no 1 J an 1988 P a g e 85

The test of a piece of software in general consists of test-
ing all of the conditions contained in that piece of soft-
ware. Each of these conditions requires a specific set of
data to test.

However, it is quite impractical and inefficient to test
each condition separately since the number of test runs
would be huge and each test run would be executing some of
the already tested conditions redundantly. In other words,
the test of many conditions in a program can be performed
thru a single test (run). It turns out that such a set of
conditions constitute a "path" in a program. So, the task
of testing boils down to testing all the logic or processing
paths in a piece of software. Upon careful consideration it
becomes apparent that many paths in a program are redundant
(non unique): That is, they do not test any part of the
program which has not been tested before. In fact, the num-
ber of test runs that completely test the logic in a piece
of software is equal to the number of the unique paths con-
tained therein.

As mentioned above, the concept of processing paths is a
valid one whether one is dealing with a piece of code, some
specifications written in ps~do code, or even a narrative
form of specification.

The next subsection describes why some paths are unique
while others are not.

2.2 Dependent VS. Independent Condition

The uniqueness or non-uniqueness of processing paths in a
program is determined by dependent and independent condi-
tions:

Two conditions are dependent if the result or the execution
of one condition depends on the other.

Conversely, two conditions are independent if the result or
the execution of one does not depend on the other.

For example, consider the following two pieces of logic and
their condition chart:

I) INPUT VAR-i.

IF VAR-i = 1
SET COLOR TO WHITE

ELSE
IF VAR-i = 2

SET COLOR TO BLUE
ELSE
IF VAR-i = 3

Test Plan Methodology

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 11 no 1 J an 1986 P a g e 68

SET COLOR TO RED.

2) INPUT VAR-1, VAR-2, VAR-3.

IF VAR-i = 1
SET COLOR TO WHITE.

IF VAR-2 = 1
SET SEX TO MALE.

IF VAR-3 = 1
SET STATUS TO MARRIED.

The first example illustrates dependent conditions; it requires
four test runs to be fully tested:

first test : VAR-i = 1
second test: VAR-i = 2
third test : VAR-i = 3
fourth test: VAR-i = not 1,2, or 3

The second example illustrates independent conditions; it requires
two test runs to be fully tested:

first test : VAR-i = i, VAR-2 = 1 VAR-3 = 1
second test: VAR-i = NOT i, VAR-2 = NOT l, VAR-3 = NOT 1

The following is another form of dependent conditions.
four test runs are needed to fully test the logic.

3) INPUT VAR-i, VAR-2. ~ ~

IF VAR-i = 1
SET VAR-2 TO i. ~SW'~

t___-~---|
IF VAR-2 = 1 ~.

SET COLOR TO BLACK.

Here,

First test : VAR-I = i, VAR-2 = 1
Second test : VAR-i = not i, VAR-2 = not 1
Third test : VAR-i = i, VAR-2 = not 1
Fourth test : VAR-i = not I, VAR-2 = 1

The conclusion is that dependent conditions can not be
tested together (i.e., they can not share the same path)
whereas the independent conditions can be tested together.

Test Plan Methodology 3

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 11 no 1 J an 1988 P a g e 67

Understanding these two types of conditions is essential
the identification of paths in a program.

in

Let us now proceed with the identification of the unique
paths in a program. The following sections spell out how
this can be done.

2.3 Determining Unique Paths

This section will provide a cookbook-like series of steps
that will identify the unique paths.

2.3.1 Identify And Number Conditions

Walk thru the program to be tested, underlining and number-
ing each condition. Conditions in a program include all
IF's, all ELSE's (whether or not they are explicitly coded),
and all loop variables. See the example in figure 2-4.

IF Cond-i
MOVE
MOVE
COMPUTE

ELSE
MOVE
COMPUTE

® IF Cond-2
MOVE-
PERFORM
IF Cond-3

MOVE
PERFORM

ELSE
NEXT SENTENSE

ELSE
IF Cond-4

COMPUTE
PERFORM .

Figure 2-4

The numbering should be done according to the physical
occurance of conditions and not according to the flow of the
program. The reason for this is to make sure the numbers
are physically in sequence and can be easily located later
on.

2.3.2 Draw A Condition Graph

The easiest method of identifying the paths in a program is
to draw a condition flow chart of the program.

Test Plan Methodology 4

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol II no 1 Jan 1986 Page 68

A condition flow chart is basically like a traditional flow
chart; figure 2-5 serves as an example. Diamond shape boxes
are used to indicate decision points and rectangular boxes
show the processing. In this type of chart, we are prima-
rily interested in showing the decision points. So, even if
the processing boxes are not drawn, the chart will be just
as effective. The processing boxes can be used, where
needed, to serve as markers to indicate what logic is being
performed.

AS you draw the chart, you can also put the condition num-
bers on the appropriate branches of the diagram. See figure
2-6.

The diagram may be hand-drawn with a pencil on a computer
output. It should be good enough to identify the paths. Do
not spend any more time than necessary drawing this diagram.

It is worthwhile to know that the task of drawing the condi-
tion chart by itself serves as a good review and walkthru of
the material to be tested.

Once the diagram is completed,
identifying/marking the paths begins.

the task of

<_5
IF Cond-i

MOVE
MOVE
MOVE
COMPUTE

ELSE
MOVE
COMPUTE

<.~J[~.~ I.F Cond,~
MOVE
PERFORM
IF Cond-3

MOVE
,.--... PERFORM
'~ 1 ELSE

NEXT SENTENSE
.~.~. ELSE

~-~ IF Cond-4
C) COMPUTE

PERFORM ---.

q

ENTER
I

I I
I I
I I
I I

I
I
I

3
<>

, /

<> +
I
I
I
I

+
I
I
I
I

EXIT

7

I
I
I

<>

I

I
!
!

Figure 2-5

Test Plan Methodology 5

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 11 no 1 J a n 1986 P a g e 69

2.3.3 Identify (Mark) The Independent Paths

Although not essential, begin traversing the most commonly used
paths first, marking each section (branch) of the path with a
letter. This letter will help keep track of which path has been
tranversed and it will also serve to identify a test case. As
you see in figure 2-6 first path A and then path B are traversed
and marked.

i. Path A is marked

ENTER
I
I
I A 1 ! 2

+ <> +

I I
I I
I l
l i

-.F } .I-

A 3
+
I
I
I A 4 ! 5

-I <> +
! I
I I
I I
I !

!

I
I
I
<> +

I
I
I 7 , 8 A
<> + -f

I I I
I I I
I ! I
I i !

2. Path B is marked

ENTER
I
I

AB 1 ' , 2
+ <>
J i
I I
I I
l I
+ ~ +

[

I

AB 3 : 6
+ <>
I
f

4 ' , 5 B 7
<> + 4

I I
J I
t I
I I

I I
I I

EXIT EXIT

I
I
I
, 8
<>

Figure 2-6

If you run out of letters, you may use A', B', and so on.
However, if a module test plan is being developed, you
should also question the size of a single module which re-
quires more than 26 test cases to test.

In order To traverse only the unique paths, do not traverse
a path whose branches have ALL been marked. Bear in mind,
however, that dependent conditions can not share the same
path.

As an example, in figure 2-7 path C will not traverse paths
A, or B. In other words, once all branches of a condition
have been tested, they need not be tested again.

Test Plan Methodology 6

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 11 no 1 Jan 1986 P a g e 70

ENTER
I
I

AB , C
+ <>

I
I

!

<>
l I
I I

A ' , B C ,

<> ~ 4 <>
I l I I
i I I I
l I I t
I l i l

BA C

I
I

EXIT

Figure 2-7

The recognition of dependent conditions (particularly, the
type illustrated by example 3 in section 2.2) in a program
is very important and is one area in this approach that re-
quires the programmer/test plan writer to use some analysis
to make certain that no path is left untested. See section
2.2 for more explanation on independent vs. dependent condi-
tions.

2.4 Preparing The Required Test Data

Once logic paths are identified, determining
data to test the paths is not too difficult.

the required

First of all, the programmer (tester) must have the contents
(dump) of the relevant area(s) or record(s) of the data
base. If there are no data base records already defined or
the data base is inadequate, then this task will also in-
clude defining records to be loaded into the data base.

Follow each path, tracing the conditions involved in the
path. Remember that the conditions are numbered and easy to
find. You now have to document the required input (trans-
action) data and the test data base data.

The required input and the expected results are recorded in
the Test Plan form. The required data base data should be
documented as appropriate for your organization.

3. Function/System Testing

Let us define the purpose of function or system testing as
follows:

i. To validate the system behavior from the point of view of the us
2. To validate the interfaces between modules and programs.

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 11 no 1 J an 1988 P a g e 71

The difference between these two purposes is a matter of de-
gree of testing. That is, to satisfy the second purpose,
the tester needs to identify and test the functions that
test the interfaces whereas the first purpose will be satis-
fied only if all functions are identified and tested.

3.1 Determznig Test Cases For Function Testing

In order to test the "functions" of a system, we must first
define what a function is. This definition is important
since our test philosophy and strategy will depend on how
accurately and rigorously we define this term.

Let us define the functions performed by a system to be the
set of all the variations of all the transactions performed
by that system. The variations of a transaction result from
the various business or processing rules or options operat-
ing on that transaction. Hence, a function is a particular
variation of a transaction. The following examples will
help clarify this concept.

Suppose a piece of software (i.e., a module or a program)
translates a Gregorian date to a Julian date. Loosely
speaking, the function performed by this piece of software
is the stated date conversion. But, in terms of testing,
the functions performed by this piece of software consist of
all variations of this function which include incorrect
gregorian dates, dates with leap year, and so on and so
forth.

Upon closer scrutiny it becomes evident that each variation
(of a transaction) is in fact a processing path that starts
from an entery point and ends at an exit point in the sys-
tem. These paths may be totally contained within one module
or they may expand a module limit. So, to identify the set
of all functions performed by a system, we must identify all
processing paths in the system. We can for the moment ig-
nore the processing paths that end in system type failures
(data base fatal errors, bad data transmission, etc.). Al-
though, the user would want to verify the system behaviour
in the case of a system failure as well.

Identifying functions can be done once the requirements or
the functional specifications are defined. For organiza-
tions using the structured approach it would be either at
the end of the logical or physical model. Naturally, for
the purposes of development (testing being part of it), a
large system is normally broken down into subsystems. So,
the function testing will initially take place at a subsys-
tem level.

As stated before, the steps in defining the test cases or
paths for function testing are exactly those used for unit
testing.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol II no 1 Jan 1988 Page 72

4. Reasonable Testing

As stated in the introduction, the goal of testing dictates
how well a piece of software has to be tested. That
notwithstanding, considering the complexity and size of some
(application) programs, the number of paths or test cases
would be huge and maybe unmanageable. The alternative would
be to make sure that a program is "reasonably" tested. The
question is how to define a reasonably tested program. It
is fair to state that to reasonably test a program, at least
the following must be tested:

a) all business conditions (rules)
This would include all validations, editting, and so on.

b) all architectural rules
This would include duplicate detection, recovery, replay,
automatic reversals, and so on.

c) data base return codes (statuses)
This is the case where, due to the uniformity of some return
codes, not all instances of the same return code has to be
tested.

It is also reasonable to state that the paths that are more
likely to be executed in a program ought to be tested first.
Hence, the paths that make up the normal processing in a program
should be tested before the ones ending in an exception or error
condition.

5. Required Test Tools

For a rigorous (unit) test, as a minimum, the following test
tools are essential:

i. Drivers and stubs;

. A tool to get the formatted dump of specific records on
the data base so that the required test data base is
created; this tool is also used to verify the changes to
the data base after testing;

3. A tool to generate the input data to the driver;

. A tool to simulate some data base return codes so that data
base error conditions are tested;

6. Summary

The task of testing software is a difficult and an important one.
it is all too often performed in a non-rigorous and arbitrary manne
This paper offers a method by which the task is made somewhat
less difficult and certainly less arbitrary and quite rigorous. Th
methodology has been applied and proven to be quite practical. The
steps, presented in this document, to define test cases may be
modified as users see fit. The rigour of the basic approach, bower
should not be altered.

