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Abstract. Basic techniques to prove the unconditional security of quantum cryptography are
described. They are applied to a quantum key distribution protocol proposed by Bennett and
Brassard [1984]. The proof considers a practical variation on the protocol in which the channel is
noisy and photons may be lost during the transmission. Each individual signal sent into the channel
must contain a single photon or any two-dimensional system in the exact state described in the
protocol. No restriction is imposed on the detector used at the receiving side of the channel, except
that whether or not the received system is detected must be independent of the basis used to measure
this system.
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1. Introduction

This paper proves the unconditional security of quantum key distribution and
reviews basic notions and principles which apply to any quantum key distribution
protocol, and in fact to other kind of quantum protocols as well. The protocol
that we consider was proposed by Bennett and Brassard [1984], which was also
the first proposed quantum key distribution protocol. An improved variation on
the protocol was proposed later in Bennett et al. [1992]. A first version of the
proof was published in Mayers [1996]. The proof relies on techniques provided in
Mayers and Salvail [1994], Yao [1995], and Mayers [1995], but the paper is
self-contained.

At the time of writing, all other known proofs of security in quantum
cryptography consider only restricted kinds of attacks.1 Though some of these

1 See, for example, Bennett and Brassard [1984], Bennett et al. [1966; 1992], Mayers and Salvail [1994],
Ekert [1991], Bennett [1992], Deutsch et al. [1996], Biham and Mor [1996], and Biham et al. [1998].
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other proofs2 encompass all attacks that can be realized with the current
technology, it is of interest to establish a security guarantee that holds against
unlimited computational power, both classical and quantum mechanical.

In Deutsch et al. [1996], the authors discuss how security (for a different kind
of quantum key distribution protocols [Ekert 1991; Bennett et al. 1996]) against
all attacks can be obtained. However, additional work was required to obtain a
bound on the eavesdropper’s information that is valid for all attacks or to obtain
a proof that such a bound exists (see the security criteria in Section 2). A bound
was proposed recently under the assumption that the honest participants use
perfect quantum computers and quantum communication devices [Lo and Chau
1998]. The above list of references is not intended to be exhaustive. A survey of
previous works in quantum cryptography can be found in Brassard and Crépeau
[1996].

In quantum key distribution, and ideally in other applications of quantum
cryptography, a security result is expected to hold against all attacks allowed by
quantum mechanics. This is what is called an unconditional security, and this is
what we will prove. On top of an unconditional security, it is desirable to have a
security that holds when quantum computing devices (such as measuring appara-
tus, sources of photons, or quantum channels) used in the protocol are imperfect.
A fundamental aspect of security is to know where the trust is required. The
property that needs to be trusted should be reasonable and simple. Here, we will
take care of an imperfect measuring apparatus and an imperfect channel in the
protocol analyzed. However, we will assume that the source transmits a single
photon per pulse with the exact polarization angle specified in the protocol.
Putting our trust in this property is not so reasonable, but fortunately a
fundamental mechanism that can take care of this issue is already known [Mayers
and Yao 1998; Mayers 2001a].

Section 2 defines the general notion of privacy for quantum key distribution.
Section 3 contains preliminaries, basic lemmas and the general model used to
analyze the protocol. In section 4, the protocol is described. Section 5 contains
the proof of privacy. The notation used is summarized in Appendix A.

2. The Security Criteria

In this article, a security definition that applies to all quantum key distribution
protocols is provided. The goal of an ideal key distribution is to allow two
participants, Alice and Bob, who share no information initially to share a secret
key (a string of bits) at the end. A third participant, usually called Eve, should
not be able to obtain any information about the key. Also, whatever Eve does,
Alice’s and Bob’s key should be identical. It is assumed that all quantum
communication between Alice and Bob passes through Eve, and similarly for
classical communication.

2.1. THEORETICAL IMPOSSIBILITIES IN KEY DISTRIBUTION. In reality, one can-
not realize this ideal task. There are few subtle points to consider. In particular,
no quantum key distribution protocol can succeed if Eve has the power to
impersonate Alice while communicating with Bob and to impersonate Bob while

2 See, for example, Mayers and Salvail [1994], Bennett et al. [1966], Deutsch et al. [1996], Biham and
Mor [1996], and Biham et al. [1998].
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communicating with Alice. To address this problem, Alice and Bob can authen-
ticate [Wegman and Carter 1981] their classical messages so that Eve cannot
impersonate them any more. There exist unconditionally secure techniques for
authentication [Wegman and Carter 1981] that require that Alice and Bob share
a small secret key to begin with, so that the protocol implements key expansion
rather than key distribution [Bennett et al. 1992]. This approach can be used in a
scenario where Alice and Bob have met before to exchange the initial key. In a
scenario where Alice and Bob have never exchanged a secret key before, one
must assume that Alice and Bob have access to a faithful (classical) public
channel so that a third party cannot accomplish the impersonation attack without
being detected. The cheater can only add his messages to the messages which are
faithfully exchanged between Alice and Bob, but then Alice and Bob will see that
a third person is trying to cheat. This principle was previously mentioned in
Bennett et al. [1992].

Another related point is that a secret key is not always shared between Alice
and Bob because it is always possible for a third party to jam the quantum
channel. Alice and Bob must verify that some validation constraints are satisfied,
including an upper bound on the number of errors, and decide accordingly
whether or not they can share a secret key. These validation constraints
encompasses anything that Alice and Bob consider in order to decide whether or
not they can share a secret key. The event that the validation constraints are
satisfied is denoted �.

2.2. ON SECURITY PARAMETERS. We typically define the security of a proto-
col in terms of a security parameter N. In an information theoretic setting, which
is our case, a quantity fN such as the amount of Shannon’s information available
to Eve must decrease exponentially fast as N increases. Often, there are other
parameters in the protocol, for example, the tolerated error rate or the percent-
age of bits used for a test. Let �� denotes all these parameters. The value of some
of the parameters in ��, such as the error rate, depends upon the physical setting.
The other parameters are not fixed by the physical setting. Ideally, we should
optimize the protocol, that is, minimize fN, over the nonphysical parameters. In
any case, we want to prove that the quantity fN � fN(��) is exponentially small in
N for all valid values of these parameters. The implicit quantifiers are (@�� �
ValidDomain) (@N � N0(��)) fN(��) � c(��) exp(�g(��) N) where N0, c and g
are well-defined functions on �� � ValidDomain. In an information theoretic
setting, we believe that the above is the essential that one needs to know about
security parameters. The situation is more complicated in a computational
setting.

We can do the complete analysis of a protocol for fixed values of N and ��. If
these were the actual values used in a given application, such an analysis will be
enough for this particular application. Since the use of security parameters in
statements that makes sense without them will unnecessarily complicate the
notation, we will not use security parameters in our basic definitions and general
results. However, the statements about the specific protocol that we analyze will
contain security parameters. To obtain the asymptotic behavior, we will simply
make sure that the proof respects the quantifiers (@�� � ValidDomain) (@N �
N0(��)). . . , but that is an easy mathematical task. The important concepts apply
to fixed values of the parameter N and ��.
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2.3. ON RANDOM VARIABLES. Formally, a random variable x is a function on
a probabilistic space, the space of every possible outcome of a random experi-
ment. In our case, this probabilistic space corresponds to the set of every possible
outcome v̂ of the protocol. The outcome v̂ includes all data generated in the
protocol. Its probability is denoted p( v̂). So, a random variable x � x( v̂) takes a
value x which depends upon the outcome v̂. It is the standard convention for
random variables to write x � x to mean x( v̂) � x, that is, we do not explicitly
write the dependence upon the outcome of the random experiment. Usually, we
will use a boldface typesetting for a random variable, that is, the function, when
it is important to distinguish it from its value. Variables are also used to describe
protocols and procedures. These are other kind of variables, and we will use
ordinary typesetting in this case.

In this paper, an event is a random variable with outcome TRUE or FALSE, that
is, it is a property of the random outcome v̂ of the protocol. In other papers, an
event is defined as a set of outcomes. This alternative definition is equivalent.
The probability of an event � is Pr(�) �

def � v̂ �� p( v̂).
If for every element v̂ in the probability space, we have y( v̂) � f(x( v̂)) for

some deterministic function f, we say that the random variable y is a determinis-
tic function of x, and we write y�x( x) to denote the value taken by y when x � x.
We will omit the indice “�x” when the situation permits.

2.4. THE CRITERIA. To formulate our criteria, we will consider the protocol
as a random experiment that defines random variables. Let Eve’s view v be all the
classical data received or generated by Eve during the protocol. This includes
classical announcements and outcomes of measurements. Here, it is assumed
that the result of the validation test is announced to Eve at the end of the
protocol, so that the event � (TRUE when the test succeeds) is a deterministic
function of v. We often associate security of key distribution with privacy, but the
security of key distribution also includes that Alice’s and Bob’s keys must be
identical. We shall consider this other security aspect as well, but we understand
that the interesting aspect is privacy.

For privacy, it is assumed that Eve is interested about Alice’s key, which is
denoted k. The length of the key is always defined and included in Eve’s view v.
The length of the key does not have to be fixed in advance, and it may be
convenient not to fix it. For example, to use the channel at its full capacity which
may vary in time (in view of the weather, etc.), the length of the key can be made
a function of the error rate measured during the execution of the protocol. When
the test fails, the protocol sets m � 0 and k is the null string.

For any two random variables x and y, we denote by px( x) � Pr(x � x) and
px�y( x �y) � Pr(x � x �y � y). However, when the situation permits, we will use
p( x), p( x �y), etc, to mean px( x), px�y( x �y), etc.

Definition 1. Consider any number f � 0. A quantum key distribution
protocol is f-private if, for every strategy adopted by Eve,

�
m

p�m��m � Hm�k�v�� � f (1)
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where

Hm�k�v� �
def

��
v

�
k�{0,1}m

p�k, v�m�log2( p(k�v))

is the Shannon entropy of the key k conditional to Eve’s view v in the context of
a fixed length m for the key.

One would think that I(k;v) � f, where I(k;v) is the mutual information (see
Appendix B), should be the privacy criteria. To the contrary, our definition says
that the privacy criteria is simply that the key must be uniformly distributed. The
average of the quantity m � Hm(k�v), not the mutual information I(k;v),
corresponds to information that Eve has about the key. The idea is that Eve’s
attack might influence the distribution of the key k independently of her view v,
that is, Eve’s attack might even influence the a priori distribution of probability of
the key k. In an unrealistic example, Eve might attack the protocol in such a way
that the only possible keys are the keys k � 0 . . . 0 with 0 everywhere. Given
this attack, even before the protocol runs, she knows that the key will be 0 . . . 0.
A distinction between the information that is available a priori (i.e., before Eve
receives any data) and the information that is obtained a posteriori (i.e., via
Eve’s view v) seems unnecessary and artificial.

Note that in the definition of Hm(k�v) one can think that the sum runs over the
values of v such that m(v) � m because p(k, v �m) � 0 when m(v) � m. When
m(v) � m, we have p(k, v, m) � p(k, v) and p(k, v �m) � p(k, v)/p(m).
Therefore, we have

Hm�k�v� �
def

� �
v�m � m

�
k�{0,1}m

p�k, v�

p�m�
log2�p�k�v��

We obtain

�
m

p�m� Hm�k�v� � ��
k, v

p�k, v�log2p�k�v�)

where the length of the key k in the right hand side runs over all nonnegative
integers. Similarly, using p(m) � �k,v �m(v)�m p(k, v), we have

�
m

p�m�m � �
m
� �

k ,v �m�v� � m

p�k, v��m � �
k,v

p�k, v�m�v�,

where, again, the length of the key k in the right-hand side runs over all
nonnegative integers. We obtain

�
m

p�m��m � Hm�k�v�� � �
k,v

p�k, v��m�v� � log2p�k�v��, (2)

which can be used to reformulate (1). This can be used to check that, if
p(k �m(v) � m) � 2�m for every k and m, then

�
m

p�m��m � Hm�k�v�� � I�k;v�m�,
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where

I�k;v�m� � �
k,v

p�k, v�log2� p�k, v�m�v��

p�k�m�v��p�v�m�v��
�,

is the mutual information (see Appendix B) between v and k given m. To analyze
further our privacy criteria the following definitions will be useful.

Definition 2. Consider any three events A, B and C. If Pr( A ∧ B� ) � �, we
say that the event A probabilistically imply the event B except with probability �,
and we write A f� B. If we have Pr( A ∧ B� �C) � �, we write A f� �C B.

One can easily check the following proposition:

PROPOSITION 1. For any events A, B and C we have (1) A f� B and B f�� C
implies A f�	�� C, (2) if A f� B and A f�� C, then A f�	�� (B ∧ C), and (3) if
A f� B, then A ∧ C f� B. Also A f��C B is equivalent to A ∧ C f�
Pr(C) B.

Definition 3. Consider any number � � 0. Eve’s view v in a QKD protocol is
�-informative about k if �p(k �v) � 1/ 2m� � 2�m �. We denote by �� the event
which is TRUE whenever the view v is �-informative about k.

The following lemma connects Definition 3 with our definition of privacy.

LEMMA 1. For every � � 0, 	 � 0 and mmax � 0, if we have (1) (@v) m(v) �

mmax and (2) � f	 ��, then the protocol is f-private with f � mmax 	 	 �/ln 2.

PROOF. Let � � �� ∧ �. Using � f	 �� we obtain � f	 �. Using (2), we
obtain

�
m

p�m��m � Hm�k�v��

� �
k,v

p�k, v��m�v� � log2p�k�v��

� �
k,v��

p�k, v��m�v� � log2p�k�v��

� �
k,v���

p�k, v��m�v� � log2p�k�v��.

The second term vanishes because v � �� implies (1) m(v) � 0 and (2) log2

p(k �v) � log2 p(k �v) � log2 1 � 0 since there is only a single value for the null
string. (We recall that we adopted the convention that the key k is set to the null
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string when the test fails.) Therefore, we have

�
m

p�m��m � Hm�k�v��

� �
k,v��

p�k, v��m�v� � log2p�k�v��

� �
(k,v)��

p�k, v��m�v� � log2p�k�v��

� �
(k,v)��∧ ��

p�k, v��m�v� � log2p�k�v��.

We bound the first term of the last equation, the sum over (k, v) such that
�(k, v) is TRUE, via the relation

��k, v� f p�k �v� � 2�m�1 � �k,v�,

where ��k, v� � �. For the second term, the sum over (k, v) such that �(v) ∧
�� (k, v) is TRUE, we will drop the nonpositive terms p(k, v) log2 p(k �v). We get

�
m

p�m��m � Hm�k�v�� � �
(k,v)��

p�k, v�log2�1 � �k,v�

	 �
(k,v)��∧ ��

p�k, v�m�v�.

We finally obtain

�
m

p�m��m � Hm�k�v�� �
�

ln 2
� mmax	

where we used the inequality log2(1 	 x) � �x �/ln 2 for any x � �1 to obtain
the first term, and Pr(� � �� ) � 	 and m(v) � mmax to obtain the second term.
This concludes the proof. e

3. Some Useful Tools

This section provides a general model and techniques that are useful to analyze
the security of our quantum protocol.

3.1. A FICTIVE TEST LEMMA. Assume that Alice transmits some arbitrary
binary string g � {0, 1}N to Bob over a channel, quantum or classical. Let D �
{1, . . . , N } be any subset of the positions. For example, if the channel is lossy,
D could be the set of every position i at which Bob detects a bit h[i]. In general,
D is the set of positions i where Bob’s bit h[i] and Alice’s bit g[i] are presumed
identical except for a small probability of error. A typical situation in quantum
protocols is that Alice and Bob need some kind of indication that the number of
errors in some subset E � D is small and yet they cannot execute a test on E
because the bits in E must remain private. To address this problem, they pick two
random subsets T and E so that the bits in T can be used for a test while the bits
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in E remain private. Every position i � D is added in T (initially empty) with
probability pT or in E (initially empty) with probability pE or is ignored with
probability 1 � pT � pE. (In our protocol, we will deal with the case pT 	 pE �
1, but here we are slightly more general.)

The following lemma is a variation on the principle that says that the number
of errors that one detects in T is a good indication of the number of errors that
exists in E. It is unlikely that the number of errors is small in T and large in E at
the same time.

LEMMA 2. Consider a set of positions D and a string of errors e on D. (In the
above scenario, the string e is g[D] Q h[D].) Let T and E be two random subsets of
D such that every position i � D is in T with probability pT or in E with probability
PE or discarded with probability 1 � pT � pE. For X � {T, E}, let nX and dX be the
size of X and the number of errors in X (the weight of e[X]) respectively. Denote �T

the event that dT � 
pTnD where 
 is some fixed parameter that represents the
tolerated error rate. Denote �E the event that dE � (
 	 �)pEnD where � � 0 is any
positive real number. We have that

�T f�(� ,nD)�E (3)

where

���, nD� � exp���2min�pT
2 , pE

2 

2
 � �
nD �

2�2pE
2

�2
 � ��2�.

The term 2�2pE
2 /(2
 	 �)2 is independent of nD and can be ignored when nD is

large. With regard to the above scenario, the lemma only uses the fact that E and
T are random and not distinguishable until after the transmission. It provides an
upper bound �(�, nD) on Pr(�T ∧ �� E) for every variable fixed except E and T.
The upper bound still hold if we average over the other variables, except that we
will not average over nD because the upper bound �(�, nD) itself depends upon
nD. The following lemma is a variation on Chernoff’s lemma, a standard tool to
deal with large numbers (e.g., see Kearns [1989]). It is the basic tool used in the
proof of the fictive test lemma.

LEMMA 3 (CHERNOFF). Let X1, . . . , Xn be n independent Bernoulli variables
and let S � �i�1

n Xi. If Pr(Xi � 1) � p for 1 � i � n, then for all 0 � �p � 1, we
have

Pr�S � n� p � �p�� � exp��2n��p�2�, (4)

Pr�S � n� p � �p�� � exp��2n��p�2�. (5)

PROOF OF THE FICTIVE TEST LEMMA. The basic idea of the proof is the
following. The number of errors dD in D is either (1) larger or equal to  (
 	
�/ 2)nD or (2) smaller or equal to  (
 	 �/ 2)nD . In the first case, the
probability of �T is small. In the second case, the probability of �� E is small. In
both cases, the probability of �T ∧ �� E is small.

We first do the case where dD �  (
 	 �/ 2)nD . The condition �T hold only
if dT, the number of errors in T, is strictly smaller than 
pTnD. We will bound
from above the probability of dT � 
pTnD. Every i � D, in particular every
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position i with e[i] � 0, belongs to T with probability pT. That is, each of the
dD � (
 	 �/ 2)nD errors is put in T with probability pT. We may conservatively
assume that dD �  (
 	 �/ 2)nD because a larger value for dD will only
decrease the probability. Let S � dT be the number of errors in T. We want to
obtain an upper bound on Pr(dT � 
pTnD) using inequality (5). We substitute n
and p in (5) by dD and pT, respectively. We will find a value for �p such that we
have


pTnD � dD� pT � �p� , (6)

and thus dT � 
pTnD implies dT � dD( pT � �p) and (5) can be used to bound
Pr(dT � 
pTnD). Since (
 	 �/ 2)nD � dD, we obtain (6) if we have (
 	
�/ 2)nD � 
pTnD/( pT � �p). The solution for �p is �p � �pT/(2
 	 �).
Applying Chernoff’s lemma with these values, we obtain that dT is smaller than

pTnD (and thus smaller than dD( pT � �p)) with a probability smaller or equal
to

exp� �2�2pT
2

�2
 � ��2
dD�.

Now, we use the fact (
 	 �/ 2)nD � dD and obtain

Pr��T� � �T��, nD� �
def

exp���2pT
2

2
 � �
nD�.

The second case, dD �  (
 	 �/ 2)n� , is similar to the first case, except that we
use inequality (4) instead of inequality (5) and p � pE instead of p � pT. The
event �� E occurs when dE, the number of errors in E, is larger than (
 	
�) pEnD. Even though dD, the total number of errors in D, is smaller than  (
 	
�/ 2)nD , we may assume that dD �  (
 	 �/ 2)nD respectively. Now, we find
�p such that we have dD( pE 	 �p) � (
 	 �) pEnD. Since dD � (
 	
�/ 2)nD, we obtain the seeked inequality if we have (
 	 �/ 2)n� � (
 	
�) pEnD/( pE 	 �p). As in the first case, this equation has the solution �p �
�pE/(2
	�). Using (4), we get dT is larger than (
 	 �) pTnD (and thus larger
than dD( pE 	 �p)) with a probability smaller or equal to

exp� �2�2pE
2

�2
 � ��2
dD�.

Here, unlike the first case, we don’t have (
 	 �/ 2)nD � dD. We only have
(
 	 �/ 2)nD � 1 � dD. We can do as in the first case, except for an additional
positive term 2�2pE

2 /(2
 	 �)2 in the exponent. So we obtain

Pr��� E� � �E��, nD� �
def

exp���2pE
2

2
 � �
nD �

2�2pE
2

�2
 � ��2�.

We have

Pr��T ∧ �� E� � ���, nD� � max��T��, nD�, �E��, nD�.
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This concludes the proof. e

3.2. ON PRIVACY AMPLIFICATION. A standard technique for privacy amplifi-
cation is to extract a smaller key k � K • g of length m out of a nonprivate
string g � {0, 1}n where K is a m 
 n binary matrix and the matrix
multiplication use the sum modulo 2. As explained in Bennett et al. [1988] one
must pick the matrix K adequately in view of how much information did leak out
about g, including extra information that might have been announced for error
correction. However, the results obtained in Bennett et al. [1988] do not apply if
information can leak about g in view of K that, as we will see, is the case in our
protocol, and perhaps in other quantum protocols. We use a different approach.

Let us consider a typical situation where extra information s � F • g, where F
is a r 
 n binary matrix, is provided about g for error correction (see Appendix
C). Let G* be the set of linear combinations of rows in F and K, which contains
at the least one row in K, that is, G* � C�[F, K] � C�[F] where C�[F, K] is
the set of linear combinations of rows in F and K, and C�[F] is the set of linear
combinations of rows in F only (see Appendix C). We denote by dW the minimal
weight of the strings in G*. For example, if the parity check matrix F is the 2 

5 matrix with the two rows [10000] and [01000] and the privacy matrix K is the
1 
 5 binary matrix with the single row [11111], we obtain that G* � {[11111],
[01111], [10111], [00111]} so that dW � 3. It is not hard to see that if Eve
gets a bit g[i] in less than dW positions i, and nothing about the bits at other
positions, she learns nothing about the key K • g even after she receives the
syndrome s � F • g. The case where Eve learns bits at given positions and
nothing at other positions, though it is not sufficient to understand the principle
in its full generality, at the least suggests that privacy requires a large value for
dW. So, it is not surprising that in our protocol, which as we will see uses this
kind of privacy amplification technique, we will need a lower bound on dW. Note
also that dW � 0 implies that the rows of K are linearly independent which is
important for privacy. Usually, dW is much larger than 3. The following lemma
provides one way to obtain a lower bound on dW.

LEMMA 4. Consider any  � 0 and any fixed r 
 n parity check matrix F. Let
K be a randomly chosen m 
 n binary matrices. The minimal weight dW of
C�[F, K] � C�[F] is greater than H�1 (1 � (m 	 r)/n � )n with a probability
greater than 1 � � where � � 2�n.

Remark. The lemma can also be written as True f� dW � H�1 (1 � (m 	
r)/n � )n

PROOF. Consider the sphere S of radius d� � H�1(1 � [(r 	 m)/n] � )n
around the zero string 0. The minimal weight of C�[F] Q C�[K]* is smaller or
equal to d� if and only if at the least one string in C�[F] Q C�[K]* belongs to
S. Therefore, it is sufficient to show that the probability p that one string in
C�[F] Q C�[K]* belongs to S is smaller than 2�n. Let us analyze the random
process by which K is created. Let wi be the ith random row added to K. Let Ki

be the matrix which contains the rows w1, . . . , wi only. The probability that one
string in C�[F] Q C�[K]* belongs to S is smaller than the sum (over i) of the
probability pi that this happens when the string wi is added to K. Each
probability pi takes its maximum value when all the strings wj with j � i and the
rows of F are independent. When the random string wi is added, we have that
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one of 2n�r�i	1 disjoint sets C�[F] Q C�[Ki]* is being chosen perfectly at
random. (These are the cosets of C�[F] Q C�[Ki�1]). The probability pi is
larger when no two strings in S belongs to the same set C�[F] Q C�[Ki]*. In
this extreme case, the number of sets C�[F] Q C�[Ki]* which contains a string
in S reaches its maximal value, which of course is �S �. Using Lemma 8, the
number of strings in S is smaller than 2H(d�/n)n � 2n�r�m�n. Therefore, we
have

pi �
2n�r�m�n

2n�r�i	1
� 2�m � n � �i � 1�

Summing over i � 1, . . . , m, we get

p � 2�m � n �
i�0

m�1

2i � 2�ñ

This concludes the proof. e

3.3. QUANTUM PRELIMINARIES. Quantum states are denoted by Greek letters
�, �, etc. To lighten the notation, except in some occasions, we do not use the
ket notation “���” around quantum states. A linear functional on H is a linear
transformation from H to the space of complex numbers. The bra notation “���”
can be seen as the operation that sends a state � into the unique linear
functional ��� such that, for every �, the value of ��� evaluated at � is the scalar
product ����� between � and �. We often denote this unique linear functional �†

rather than ���. The tensor product of any two quantum states � and � is written
as �� or � R �.

A quantum system is more than an abstract Hilbert space. It is an actual
quantum system in the protocol. Two distinct quantum systems might have the
same abstract Hilbert space. The ordering of the states in an expression such as
�1 R �2 � H1 R H2 is important, but this ordering can be seen as an association
between the systems H1 and H2 and their respective states �1 and �2, and
therefore not always related to the respective positions of �1 and �2 in the
notation. In particular, if the association between the systems Hi and their
respective state � i is nonambiguous from the context, then �1 R �2 and �2 R �1
represent one and the same product state with the same state space association.
If E is an operator on a system H1 and � is a state that belongs to a product H1
R H2, we adopt the convention that E� � (E R IH2

)�. Similarly, for every �1 �
H1 and � � ��1 R �2 � H1 R H2, we adopt the convention that ��1��� �
��1���1���2� � H2, and this convention can be extended to nonproduct states � �
H1 R H2 by linearity. In general, every operator E on a state space H can be
written as a linear combination of basic operators ������� with ���, ���� � H.
Therefore, the previous rule can be used to define �� �E ���� when E is an
operator on H � H1 R H2 and ���, ���� belong to H1.

Consider the preparation of a state ��c� with probability p(c). As usual, if the
random value c is kept private, except for what can be learn via measurements on
the state ��c�, this preparation is conveniently represented by the density
operator � � �c�V p(c) ��c� ��c�.
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The partial trace over the system H1, denoted TrH1
, is a linear mapping from

the space of linear operators on H1 R H2 to the space of linear operators on H2

which maps any operator E on H1 R H2 into � i�� i�E �� i� where { �� i�} i�1
n is any

orthoglobal basis of H1. The (partial) trace operation over the entire system is
denoted Tr. It is a linear functional on the space of operators. The identity
TrH( A ����� �) � �� �A ���, in which A is any operator on H and ��� any state in
H, is often used.

Any physical process can be seen as a black box which receives an initial state
� of some quantum system H and returns two components: a random classical
outcome x and an associated final quantum state �x that lies in some other
quantum system H�. The POVM formalism [Peres 1993] describes this kind of
process via a mapping x � Ex where x represents the random classical outcome
of the process and Ex: H � H is a positive operator on H called the
measurement operator associated with x. Note that the POVM formalism ignores
the final system for the residual state, so H� is not in the formalism. The
mapping x � Ex is only a formal trick to compute the probability of the classical
outcomes x. If the initial density operator state is �, then the probability of x is
Tr(Ex�). The final state �x is not given by the POVM model (and this is not a
problem because we don’t need to compute any residual state in the proof). Let
y be a deterministic function of the outcome x. Note that y can also be seen as
the outcome of a measurement since the computation of y is also a physical
process. The measurement operator associated with y is

Ey � �
x �y�x� x� � y

Ex . (7)

(For a definition of y�x see the subsection about random variables in Section 2.)
We will extend a little bit the formalism to encompass the fact that a POVM on
a system H can be executed in view of some classical information y � Y which is
available before the POVM is executed. For every y, we denote by x � Ex �y or
simply Ex �y the POVM which is executed on a system H in view of y and returns
an outcome x. We say that this conditioned POVM is executed on H 
 Y. This
notation is useful when the POVM is executed in view of some classical
information y available before the POVM is executed or when some previous
POVM returned an outcome y in view of which the POVM is executed. It is well
known that, in accordance with the basic axioms of quantum mechanics, any
physical process can be described with such a formalism [Peres 1993].

The conjugate transpose E† of an operator E is obtained by first transposing
its matrix representation and then complex conjugating the entries. It can be
shown, that this definition is independent of the basis that we use to represent
the operator as a matrix. We have that (E1E2)† � E2

†E1
†.

For every POVM Ex �y on H, there exist a collapse operation Ax �y on H such
that Ex �y � Ax �y

† Ax �y. Suppose that some POVM Ey �c
1 is executed in view of some

classical information c, and next another POVM Ex �y, c
2 is executed in view of c

and the outcome y of the first POVM. Let Ay �c
1 and Ax �y, c

2 be collapse operations
associated with the first and the second POVMs, respectively. The collapse
operation associated with the overall POVM that describes the effect of both
POVMs is Ax,y �c � Ax �y,c

2 Ay �c
1 . Therefore, the overall POVM is
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Ex , y �c � Ax , y �c
† Ax , y �c

� Ay �c
1† Ax �y , c

2† Ax �y , c
2 Ay �c

1

� Ay �c
1† Ex �y , c

2† Ay �c
1 .

Note the strange fact that the overall POVM Ex, y �c cannot be expressed directly
in terms of the consecutive POVMs Ey �c

1 and Ex �y, c
2 . This is one advantage of the

collapse operation formalism over the POVM formalism.

3.4. THE BASIC MODEL. Here, we describe how to represent an attack against
a quantum protocol in terms of the standard POVM formalism [Peres 1993]. The
formalism should allow us to abstract the details and focus on the essential fact.
In the standard model for quantum protocols, Alice and Bob use a set of
registers and at every given step each register is controlled by one and only one
participant. We assume that every transmitted register is first transmitted to the
cheater. When a register is transmitted from a participant X to a participant Y,
the register that was controlled by X is now controlled by Y. Since the cheater
obtains control over the entire system that is transmitted, the details of the
transmission can be safely ignored in the model.

We recall that we denote by v̂ the overall random outcome of the protocol.
This outcome fixes the value of every possible random variable in the protocol,
including any classical announcement and any result of a quantum measurement.
A basic principle in the model is that we will define a view v in the protocol (e.g.,
the view seen by a given participant) as a function v � v( v̂) of this overall
outcome. As we will see, our model separates the overall outcome v̂ in two parts:
a classical part ĉ that corresponds to a random tape and a quantum part q̂ which
correspond to the outcome of the overall quantum measurement executed jointly
by all participants in the protocol. So a view is a function v on the overall
outcome v̂ � ( ĉ, q̂).

In a way, the separation of v̂ in two components ĉ and q̂ is artificial because it
is always possible to represent every bit in the random tape ĉ as the outcome of
a quantum measurement, a quantum cointoss. In this way, every register, classical
or quantum, could be considered as if it was a quantum register. However, in
some part of our analysis it is convenient to use methods of computation that are
naturally understood in terms of classical information, and thus we don’t want to
always think in terms of quantum information. In any case, the protocol is
described in terms of classical information as well as quantum information and at
some point in the proof one must refer to the classical part of the protocol.
Therefore, a careful understanding of the connection between the classical part
and the quantum part is required. Such a connection is not as trivial as one might
first think.

The state space for the quantum registers is denoted HQ. The quantum system
HQ contains every quantum register that could eventually be sent in the protocol
as well as any register that could be measured or transformed jointly with such a
register. Therefore, HQ is never entangled with another quantum system. We
denote by ĉ the content of classical random tapes or random registers available
at the beginning of the protocol. We denote by Ĉ the set of possible values for ĉ.
The random variable ĉ has some apriori distribution of probability p( ĉ). The
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only operation allowed on Ĉ in our context is the computation of some
deterministic function x of ĉ, but there are no constraint on the function x.

We denote by q̂ the outcome of all measurements which are executed on HQ in
view of ĉ. Without loss of generality we assume that all random values in the
protocol can be computed deterministically from v̂ �

def ( ĉ, q̂). A view v in the
protocol is any deterministic function of v̂. A view is thus a random variable. We
adopt the convention that v � v means v( v̂) � v. So, there is a global view v̂ �
( ĉ, q̂) defined by the protocol, and each participant’s view is simply a determin-
istic function v on v̂ which returns the specific information that belongs to this
participant. This function can be deterministic because the random tape, and
every thing else that is random in the view, is already included in the global view v̂.

We denote by Eq̂ � ĉ the conditioned POVM on HQ 
 Ĉ that is associated with
v̂ � ( ĉ, q̂). We recall that the notation Eq �c means that the POVM is executed
on HQ in view of c and returns an outcome q. Note that by definition of HQ such
a POVM exists. For a given value ĉ, the overall initial state of the protocol is
��( ĉ)�Q � RX��X( ĉ)�QX, a pure state jointly prepared by the participants X �
Alice, Bob, . . . at the beginning of the protocol in view of their share of the
random value ĉ. The probability of the initial state ��( ĉ)�Q with ĉ � Ĉ, is p ĉ( ĉ).
In accordance with the POVM formalism, the probability of v̂ � ( ĉ, q̂) given this
initial mixture is

p v̂�ĉ, q̂� � pĉ�ĉ�TrQ�Eq̂�ĉ���ĉ�����ĉ���. (8)

3.4.1. The Natural Separation Quantum Vs Classical. We want to provide
formula that respect the natural separation between the classical part and the
quantum part in a protocol. The idea is to take advantage of our classical
intuition whenever possible when we compute probabilities. For this purpose, it
will be convenient to consider views that can be written in the form v � (c, q)
where

C1 the deterministic function c depends on ĉ and q only, that is, it depends on q̂
only via q � q( ĉ, q̂) and

C2 the POVM Eq � ĉ on HQ defined via

Eq � ĉ �
def �

q̂�q�ĉ, q̂� � q

Eq̂�ĉ

respects Eq � ĉ � Eq �c, that is, the mapping (q, ĉ) � Eq � ĉ depends on ĉ only via
c � c( ĉ, q).

These two conditions allow us to take a point of view where in someway classical
computations and quantum measurements are done separately. Condition C1
says that given the outcome q of the POVM Eq � ĉ one can compute the classical
part c as a function of the random tape ĉ only (i.e., without having to use the
state space HQ). Condition C2 is similar, but it swaps the role of the random
tape and the state space. These two conditions are respected in the following
typical situation. First, ignoring ĉ, a part q1 of q is obtained via a measurement
on HQ, then in view of q1 some function c1 of ĉ is computed and the result c1 is
included in c, then in view of c1 another part q2 of q is obtained, and so on.
These conditions are not respected by every partial view v � (c, q). For
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example, suppose that HQ is the state space for a single photon and the random
tape ĉ contains the basis used to measure this photon. The outcome of the
measurement is q̂. If only the outcome of the measurement is announced then
we have q � q̂ and c � �, the empty string. In this example, one does not know
what basis was used to return the outcome q � q̂ so the condition C2 is not
respected. If later the basis ĉ is announced, we obtain a new view where the basis
ĉ is part of the classical part, and condition C2 is respected. In our analysis, we
will only consider views in which C1 and C2 are respected.

Definition 4. Let v � (c, q) be any view that respects C1. We define

p�c�q� �
def �

ĉ�c�ĉ,q� � c

p�ĉ�.

Note that p(c�q) is not identical to p(c �q). The following proposition is very
easy to prove, but is nevertheless useful.

PROPOSITION 2. Let v � (c, q) be any view on v̂ that respects conditions C1 and
C2. We have

p�v� � p�c�q�TrQ(Eq�c�c�q), (9)

where

�c �q �
def

p�c�q��1 �
ĉ�c�ĉ,q� � c

p�ĉ����ĉ�����ĉ�� (10)

is the renormalized density matrix on HQ associated with the constraint c( ĉ, q) � c
on Ĉ.

PROOF. The probability of the view v � (c, q) is given by

pv�c, q� � �
ĉ�c�ĉ, q� � c

�
q̂�q�ĉ, q̂� � q

pĉ�ĉ�TrQ�Eq̂�ĉ���ĉ�����ĉ���. (11)

Note that without condition C1 the sum over ĉ and the sum over q̂ in Eq. (11)
could not be separated in this way. Now, the trace operation can be taken in
evidence in front of these two sums. We obtain

pv�c, q� � TrQ� �
ĉ�c�ĉ,q� � c

pĉ�ĉ� �
q̂�q�ĉ,q̂� � q

Eq̂�ĉ���ĉ�����ĉ���.

Because of C2, the sum � q̂ �q( ĉ,q̂)�q Eq̂ � ĉ is the operator Eq � ĉ � Eq �c. The
operator Eq �c can be taken in evidence out of the sum over ĉ. We obtain

pv�c, q� � TrQ�Eq�c �
ĉ�c�ĉ,q� � c

pĉ�ĉ����ĉ�����ĉ���.

After renormalization of the density matrix one obtains the result. This con-
cludes the proof. e

Remark. We emphasize the importance of getting the intuition of what is
going on when we compute �c �q and p(c�q) which are needed in Proposition 2.
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Let cq be the function on ĉ defined via cq( ĉ) � c( ĉ, q). The density matrix �c �q
is exactly the density matrix that you obtain when you prepare �( ĉ) with the
apriori probability p ĉ( ĉ) then compute cq and only keep the states for which cq �
c. This fact is useful to write down an explicit expression for �c �q. Now, we
consider the probability p(c�q), that is, the probability that cq � c. Since we
defined cq as a function on ĉ, a formal and complicated way to compute the
probability p(c�q) would be to determine cq

�1(c) � { ĉ �cq( ĉ) � c}, the
pre-image of c, and then compute the probability of this set using the a priori
probability of ĉ. However, given q fixed, cq is a random variable that is typically
defined by the protocol in terms of only a few components of ĉ and it will be
simple to compute p(c�q).

3.4.2. Extended Operator Formalism. In a few situations it turns out to be
useful to consider classical registers as a special case of quantum registers. We
denote by � ĉ�C, ĉ � Ĉ , the associated orthogonal states. The state space for the
classical part is denoted HC. The initial random state is � ĉ�C��( ĉ)� with
probability p( ĉ) and we denote by � the associated density matrix. The POVM
that returns ( ĉ, q̂) is Ev̂ � PĉEq̂ � ĉ where Pĉ is the projection on the state � ĉ�C. In
particular, we have

p� v̂ � � Tr�Ev̂�� � p�ĉ����ĉ��Eq̂�ĉ���ĉ��,

which is consistent with (8). In our proof, we will only need the extended
operator formalism to use the simple rule Ez � �v �z(v)�z Ev which is valid for
any deterministic function z of v � (c, q). We will use this rule in a context where
Ev is not used to compute a probability. In such a context, at the least from the
author point of view, it is hard to explain this rule without the extended operator
formalism.

However, we don’t want to use the extended operator formalism at every step.
We now explain how to pass from the standard to the extended operator
formalism. The following proposition is easily obtained:

PROPOSITION 3. Let v � (c, q) be a view on v̂ that respects C1 and C2. We have
that the POVM on HC R HQ associated with v � (c, q) is Ev � E(c,q) � Pc�qEq�c
where

Pc �q � �
ĉ �c�ĉ,q� � c

Pĉ .

PROOF. Using condition C1, we obtain

Ev � E (c ,q) � �
ĉ �c�ĉ,q� � c

�
q̂�q�ĉ,q̂� � q

PĉEq̂�ĉ

� �
ĉ�c�ĉ,q� � c

Pĉ �
q̂�q�ĉ,q̂� � q

Eq̂�ĉ

Using condition C2, we obtain

Ev � �
ĉ �c�ĉ,q� � c

PĉEq�c � Pc�qEq�c .

This concludes the proof. e
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Let � and �� be any two operators on HQ. We need these operators to make our
next equation sufficiently general for our purpose. The following equation will be
useful in our proof to pass from one formalism to the other.

Tr�Ev����� � Tr�Pc�qEq�c�����

� p�c�q�TrQ�Eq�c��c�q���. (12)

The main content of this rule is in the second equality, the first equality being a
direct consequence of Proposition 3. In the particular case � � �� � IE, since
Tr(Ev�) � p(v), this rule is essentially Proposition 2. In Proposition 2, we have
that the sum over ĉ in the definition of �c �q is restricted by the condition
c( ĉ, q) � c. The basic point of formula (12) is that in the extended operator
formalism this restriction is implemented via the projection Pc �q on �, the factor
p(c�q) being added (in the nonextended formalism) to compensate for the fact
that �c �q is normalized.

PROOF OF FORMULA (12). Note that Tr � TrQTrC, that is, the trace operation
Tr corresponds to a partial trace over HC followed by a trace over HQ. The
operators Eq �c, � and �� commute with TrC and Pc �q because the former
operator on HQ whereas the latter operate on HC. Therefore, acting on the
left-hand-side, we can first execute Pc �q and TrC. If we expand � as a sum over ĉ,
we obtain that the restriction on ĉ that comes with the projection Pc �q (the same
restriction as in Proposition 2) followed by the partial trace TrC maps � into
p(c�q)�c �q. The factor p(c�q) is needed to compensate for the fact that �c �q is
renormalized. After taking p(c�q) in evidence, we are left with the right-hand
side. e

4. The Protocol

To focus on the basic procedure, we first describe the protocol without the
validation constraints. Then we describe the validation constraints on the length
of the key, etc. Next, the maximum error rate that we can tolerate in the protocol
and yet obtain a key of non-zero length is derived from the validation constraints.

4.1. THE PROTOCOL. The protocol analyzed is a variation on the well known
protocol proposed by Bennett and Brassard [1984] (see also Bennett et al.
[1992]).

Step 1. Alice’s Preparation. Alice sends N two dimensional quantum systems
to Bob prepared individually in one of the four BB84 states uniformly picked at
random. For concreteness, one can think that the BB84 states denoted �(0, 	),
�(1, 	), �(0, 
) and �(1, 
) correspond to photons polarized at 0, 90, 45, and
�45 degrees, respectively. Of course, the proof remains the same if Alice uses
any other realization of the BB84 states described in Figure 1. The state of the
photons prepared by Alice is �( g, a) �

def �( g[1], a[1]) R . . . R �( g[N],
a[N]).

For any string of bits � � {0, 1}E and string of bases � � {	, 
}E (see
Appendix C), the state ��(�, �)� is a state for the photons in E that encodes the
bits �[i] in the bases �[i] for each i � E.
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Step 2. Bob’s Measurement. Bob measures each photon using either the
rectilinear basis {�(0, 	), �(1, 	)} or the diagonal basis {�(0, 
), �(1, 
)}
uniformly chosen at random. If Bob detects a photon at position i, the associated
outcome is denoted � and we say that i is a detected position. We adopt the
following notation:

—a � {	, 
}N: Alice’s string of bases.
—g � {0, 1}N: Alice’s string of bits.
—b � {	, 
}N: Bob’s string of bases.
—�: the set of detected positions, that is, the set of positions i with h[i] � �.
—h � {0, 1, �}N: Bob’s string of outcomes.

Step 3. Choosing the Tested Bits. Bob picks at random a subset of positions
R � {1, . . . , N }: he puts every position i in the set R (initially empty) with
probability pT.

Some notations. We denote by � � � the set of positions i where a[i] �
b[i]. Normally, except for errors in the transmission, for every i � �, we should
have g[i] � h[i]. We denote by T � R � � � {i � R �a[i] � b[i]} the set of
tested positions.

Step 4. Counting the Errors. Bob announces R and b, Alice announces a and
g[R], Bob announces h[R]. Alice and Bob note the value dT � dT( g, h), the
Hamming distance between g and h on T.

Remark. The value dT will be used in validation constraints. These validation
constraints specify valid values for the number of redundant bits needed for
error-correction, the length of the key, etc.

Step 5. Error Correction. The positions in R are discarded. The set E � � �
R � {i �	 R �a[i] � b[i]} will be used to define the key. Let nE � �E �. If no
error occurred, Alice and Bob should share the string g[E] which we call the raw
key. For error correction, Alice computes and announces to Bob the syndrome
s � F • g[E] where F is a r 
 nE parity check matrix for a linear
error-correcting code [MacWilliams and Sloane 1977], and “●” is the binary
matrix multiplication modulo 2 (see also Appendix C). The syndrome s contains
r redundant bits about the raw key g[E]. The value r depends on dT (see the
validation constraints). Bob uses this information to correct the errors in h[E]
and obtain the raw key g[E]. More about error correction is provided in the next
subsection.

FIG. 1. The BB84 states.
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Step 6. Key Extraction. At this point, Alice and Bob share the string g[E]
which we call the raw key. After error correction, to define a (final) key, Alice
uses a m 
 nE binary matrix K. The value of m will depend on dT. Alice and
Bob compute the key k̂ � K • g[E]. At this stage, in practice the protocol ends.

Eve is interested about the key k̂ � K • g[E] that is a function of the string g
chosen by Alice. In another variation on this protocol [Bennett et al. 1992]. Alice
and Bob execute an interactive reconciliation procedure in which the parity
check matrix F is a function of the error positions. Such an approach where the
matrix F depends upon the error positions can certainly reduce the number of
redundant bits needed in practice, but it makes the privacy proof more compli-
cated.

4.1.1. More about Error-Correction. The normal way to use an error-correct-
ing code with a r 
 nE parity check matrix F is to encode a message x � {0, 1}k

with k � nE � r into a codeword cx where by definition a codeword is a string c
such that F • c � 0 (see Appendix C.2). The announcement of the syndrome F
• g[E] � s by Alice for error-correction is not the normal way to use an
error-correcting code with parity check matrix F but it is convenient in the proof.
In practice, Alice and Bob can use an alternative approach, which is closer to the
normal way an error-correcting code is used, but is equivalent to the announce-
ment of the syndrome s from an information theoretic point of view. Let g̃ �
g[E] be the raw key. Before error-correction, Bob’s received raw key is h̃ �
h[E]. In this alternative approach, Alice chooses a random string x � {0, 1}k and
compute the associated codeword cx via the standard encoding procedure. She
sends to Bob the redundant information ŝ � g̃ Q cx. Note that a straightforward
computation of the syndrome s � F • g̃ via matrix multiplication takes a number
of steps in O(nE

2 ), and usually the encoding procedure is more efficient.
Furthermore, in this alternative protocol, the error-correction procedure associ-
ated with the linear code can be used by Bob (together with two additions of the
redundant information ŝ) to obtain the string g̃. Bob simply computes ŝ Q h̃
which is the codeword cx modulo the errors in h̃. He does error-correction on
this string to obtain cx � ŝ Q g̃ and finally computes g̃ � cx Q ŝ.

In some cases, the encoding procedure adds the string F̃ • x to the left of a
meaningful message x � {0, 1}nE�r. In this case, one can check that F � [F̃Ir]
is a r 
 nE parity check matrix for the linear code. Let g[mess] be the first nE �
m bits in g, and g[pari] be the last m bits. The syndrome associated with F is s �
F̃ • g[mess] Q g[pari]. In this case, Alice can actually send the syndrome s and
Bob can compute w � h[E] Q ŝ with ŝ � [0s], use the standard error-correction
procedure on w and add again ŝ after error correction.

4.2. THE VALIDATION CONSTRAINTS. To complete the definition of the proto-
col, one must specify the validation constraints. In practice, it does not matter
when these constraints are verified as long as they are verified before the key is
used. However, in the proof, it will be assumed that the constraint are verified at
the very end so that all variables are defined even if the constraints fail.

The basic validation constraint is dT � 
pTn� where dT � dT( g, h) is the
number of errors in T, 
 � 0 is some fixed parameter in the protocol and n� �
�� �. We denote by �T the event that this constraint is satisfied. The tolerated
number of errors is a constant fraction pT
 of n� rather than a constant fraction
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 of nT �
def �T � because this particular choice was convenient in the proof of

Lemma 2. Let pE � 1 � pT. Let us define

�@y � 0� d	� y� �
def

 �
 � y�pEn� . (13)

Lemma 2 with D � � applies directly to our protocol. Therefore, in a way, that
is, in the sense given by Lemma 2, d	(�) is an upper bound on the number of
errors that can be obtained on E where � is a parameter in the protocol with
valid range ]0, �]. We assume that, for each value of nE � �E �, Alice and Bob
know the number of errors d� which can be corrected by their error-correction
procedure. The validation constraint �1 for error-correction is d� � d	(�).
Under the assumption that the error-correction procedure corrects up to d�
errors on E, it is not too difficult to conclude with the help of Lemma 2 that,
except with an exponentially small probability (i.e., smaller than �(�, n�)), the
cheater cannot succeed to have Alice and Bob think that they share a key when
they do not.

Now, we give additional validation constraints for privacy. We recall that an
important quantity is the minimal weight dW defined in Section 3.2. Privacy
requires a large value for dW. In our proof, we will see that the constraint
�2�dW � 2d	(�), where � is a parameter in the protocol with valid rangle ]0, �],
is sufficient for privacy. However, one needs to compute dW to check this
constraint. The matrices F and K are determined in view of nE, r and m, and
therefore dW is a function of these parameters. If dW can be computed
efficiently, we can use the validation constraint �2.

However, the evaluation of dW is in some cases a NP-complete problem [Barg
1997]. Let H( x) � �[ x log2( x) 	 (1 � x)log2(1 � x)] be the entropy function.
If we cannot find a choice for K � Km, nE

and F � Fr, nE
such that dW can be

computed efficiently, we have an alternative approach to guarantee a lower
bound on dW. We will choose the m 
 nE privacy matrix K uniformally at
random and adopt the constraint ��2 which says

H�1�1 �
r � m

nE

� �nE � 2d	���,

for some parameter  � 0. The parameter � was defined before. As for �, the
parameter  can take any positive fixed value in the protocol. We recall that,
given that the m 
 nE privacy matrix K is chosen uniformly at random, Lemma
4 tells us that, for any  � 0, we have

Truef� dW � H�1�1 �
r � m

nE

� �nE ,

where � � 2�nE. Using Proposition 1 and what we have above, one easily
obtains ��2 f� �2. Therefore, as we will see, the criteria ��2 can replace the
criteria �2. (The value � will contribute to the parameter 	 that is used in Lemma
1.)

4.2.1. The Validation Constraints: A Summary. The overall validation con-
straint is � �

def �T ∧ �1 ∧ ��2 ∧ �3 where
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�T: dT � 
pTn� where 
 is the tolerated error rate (slightly above the
expected error rate) and pT is the probability that any position i � � is tested,

�1: d� � d	(�) where pE � 1 � pT, d� is the number of errors which can be
corrected by the error correction procedure and � � 0 is any positive value
fixed in the protocol,

��2: H�1(1 � (r 	 m)/nE � )nE � 2d	(�) where � � 0 and  � 0 are any
positive values fixed in the protocol,

�3: nE � nE
min, n� � n�

min and m � mmax where each of nE
min, n�

min and mmax

are deterministic functions of all the parameters, and linear in the security
parameter N.

Note that our privacy proof still hold even if the lower bounds nE
min and n�

min are
so big that they are unlikely to be respected. In fact, large lower bounds will just
increase privacy. To avoid that the protocol fails most of the time, one must pick
reasonably small lower bounds in view of N and other parameters, but not for
privacy. It is clear that reasonable lower bounds can be linear in N. A natural
choice for mmax is the solution of ��2 for m, in which we use  � ��, for some
� � 0 (say � � 1/10), and replace d	(�), nE and r by d	

fair(�, pE), nE
fair and r fair,

some fair estimate of their value chosen in view of N and other parameters,
respectively. It is clear that these estimates can be linear in N. The solution is

mmax � nE
fair � rfair � H�2d	

fair��, pE�

nE
fair �nE

fair � �nE
fair .

4.3. THE MAXIMUM TOLERATED ERROR RATE. The maximum tolerated error
rate can be obtained as a function of the validation constraints. Only ��2 and �1
need to be considered because the other constraints do not restrict 
 from above.
More precisely, we want to find for which values of 
 � 0 these constraints have
a significant probability to be satisfied as N increases. Let us first consider ��2.
For N large, one can pick small values for � and . To compute the maximal
value for 
, we set � � 0 and  � 0 with the understanding that if we are actually
below the maximal value for 
, there will be room for positive value for these
other parameters. So, we get d	(�) � 
pEn�. For every �� � 0, in the limit of
large N, we have that �pEn�/nE � 1 � � �� occurs with large probability. So we
set �� � 0 or equivalently pEn�/nE � 1 with the same understanding as in the
case of � and . So, we get d	(�) � 
nE. Dividing by nE and applying H on both
sides of ��2, we obtain

1 �
r � m

nE

� H�2
�

and thus

m

nE

� 1 � H�2
� �
r

nE

.

Now, we must consider �1. Using the same principle as before, we set � � 0 and
use �� � 0 to obtain that d	(�) � 
pEn� � 
nE. Shannon’s bound for error
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correction says that r/nE � H(
) is sufficient to correct d� errors with d� � 
nE.
So, if we use an error-correcting code that reaches Shannon’s bound and 1 �
H(2
) � H(
) � 0, we have that, for sufficiently small value of �, � and , we
can get m/nE � 0 and satisfy �1 and ��2 with large probability in the limit of
large N. Solving for 
, we obtain that any value 
 below 7.4% will do.

5. The Privacy Proof

Privacy in the protocol is expressed by the following theorem.

THEOREM 1. Let 
 � 0 be the tolerated error rate and pT � 0 be the probability
that any given position i � � is tested, that is, 
 and pT are the parameters used in
the validation constraint �T. Let pE � 1 � pT. Let � � 0 and  � 0 be the fixed
parameters used in the validation constraint ��2. Let nE

min, n�
min be the lower bounds

and mmax be the upper bound used in the validation constraint �3. Let � be the
following function of these parameters

� � exp���2 min�pT
2 , pE

2 

2
 � �
n�

min �
2�2pE

2

�2
 � ��2�.

The same function that was defined in Lemma 2 except that here � and nD are
replaced by � and n� respectively. Let � � �1/ 2, � � 2�� 	 �, � � 2�nE

min

,
	 � � 	 � 	 � 	 2�2� and � � � 	 �2�. The protocol if f-private where f �
�/ln(2) 	 mmax 	.

This privacy result provides a bound on the amount of information that Eve
can obtain about the final key. This bound holds as long as the length of the key
is set by Alice and Bob in accordance with the validation constraints. As we
mentioned earlier, the maximum value for the tolerated error rate 
 is also
determined by these validation constraints (see previous section).

On top of a perfect source, the only additional assumption required in the
proof is, for every state of Bob’s system HB, the distribution of probability of (�,
h[R]) returned by Bob’s measurement is the same whether this measurement
uses the bases b or the bases b̃. We believe that this assumption is very
reasonable. If we had that the measurements executed by Bob at different
positions are independent (which is not too hard to obtain from an experimental
point of view), we would only need the assumption that whether or not a photon
is detected does not depend on the basis that is used to measure this photon.
One can check that this alternative assumption together with the independence
of Bob’s measurements implies our assumption. Though it is not sufficient alone
for our proof, this alternative assumption is the essential idea behind our
assumption. This alternative assumption is always true, and thus not an assump-
tion anymore, if no loss is tolerated in the transmission.

5.1. AN OVERVIEW OF THE PROOF AND SOME INTUITION. The main ingredient
in the proof of privacy is that of complementarity. In our protocol, Alice encodes
a string of bits in a certain choice of bases. From Alice’s point of view, these
bases are known and fixed at the beginning of the protocol. We call these bases
the original bases. Eve does not know which bases are used by Alice and, as far
as Eve is concerned, Alice could have used the opposite bases. The principle of
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complementarity tells that, if a measurement would give a lot of information
about Alice’s string had Alice chosen the opposite bases, the conjugate bases,
then the same measurement can only provide little information about this string
(which is encoded in the original bases).

Consider now the measurement that describes collectively the measurement
executed by Eve and Bob on Alice’s photons. The previous point implies that if
Bob gets a lot of information about Alice’s string had Alice chosen the conjugate
bases, then Eve can only get little information about Alice’s string encoded in the
original bases. This suggests that we consider a scenario in which Alice uses the
conjugate bases. However, that is not sufficient. To apply the complementary
principle to this scenario, Bob must obtain a lot of information (when Alice uses
the conjugate bases). Therefore, in this scenario, Bob must use the same bases as
Alice, the conjugate bases. Considering such a scenario will allow us to use the
complementary principle to show the security of a protocol that is slightly
different from the original protocol, a protocol in which Bob uses the wrong
bases. (Alice’s bases return back to the original bases in the conclusion of the
complementary principle.) This explains why an important aspect of our proof is
the analysis of a modified protocol in which Bob uses the wrong bases. It also
explains why the analysis of this modified protocol requires that we consider a
scenario in which Alice also uses the wrong bases.

We said that to apply the complementary principle we must have that Bob
obtains a lot of information. It is not sufficient that Bob uses the same bases as
Alice to guarantee that he obtains a lot of information. For example, Eve could
keep Alice’s photons and send other photons to Bob. It is here that the test on a
random set R and the randomness of Alice’s bases are important. As explained in
Lemma 2, it is very unlikely in the above scenario (where Alice and Bob use the
same bases) that the test on R is successful and yet Bob obtains little information
about Alice’s bits outside R. So essentially there are two cases to consider: (1)
the test fails and (2) Bob has a lot of information. We do not have to worry about
what happens when the test fails. When the test is successful we apply the
complementary principle.

Thus far, we explained how the complementary principle can be used to prove
privacy in the modified protocol. To conclude, we need to return to the original
protocol. Fortunately, as we will see, Bob’s measurement on the nontested
positions does not influence Eve’s measurement and the classical data that is
received by Eve, nor Alice’s private key. Therefore, one can swap Bob’s bases on
the nontested positions back to their original orientation in the above conclusion
without altering Alice’s private key, nor Eve’s knowledge on Alice’s private key.
However, we cannot swap Bob’s bases on the tested positions without modifying
Eve’s view and, in fact, even the test result would not be identical. To solve this
problem we will use the complementary principle as we explained above but only
on the nontested positions, that is, only the bases in the nontested positions will
be flipped in the modified protocol. Bob’s modified string of bases (flipped
outside R) will be denoted b̃. As we will see, this partial flip of bases will not be
a problem.

Formally, the proof will look as follows: First, privacy in the protocol is
reduced to privacy in the modified protocol where Bob uses the flipped bases b̃.
Second, we apply our general model to the modified protocol to obtain a POVM
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description of the attack. Third, privacy in the modified protocol is proven by
considering our scenario in which Alice also uses the flipped bases b̃.

5.2. THE MODIFIED PROTOCOL. Here, we define the modified protocol and
reduce privacy in the original protocol to privacy in the modified protocol. Note
that the modified protocol that we will define is not a QKD protocol because
Bob does not learn the final key. The modified protocol does not accomplish any
practical task, but nevertheless a key is defined and kept secret by Alice. Privacy
in this modified protocol means privacy of this key. We will show that, for every
eavesdropping strategy in the original protocol, there is a corresponding strategy
in the modified protocol so that Eve can obtain as much or more information
about the key in the modified protocol as in the original protocol. We will then
bound Eve’s information in the modified protocol.

We first define an intermediary protocol and next the modified protocol. The
intermediary protocol is identical to the original protocol except that Bob uses
the opposite basis on the untested positions i �	 R. The basic idea behind this
approach was first explained and used in Mayers [1995]. To be more precise, let

b̃�i� � 
 b�i� if i � R

b�i�� if i �	 R.

In the intermediary protocol, Bob does as before except that he executes the
measurement with the string of bases b̃ rather than b. The same string b is
announced so that the key is defined as before by Alice. This description entirely
determines the behavior of the protocol as a random experiment. The set E and
T are defined as before in terms of b, not b̃. We will now show the following
proposition.

PROPOSITION 4. If the algorithm used by Eve to cheat in the intermediary
protocol is the same as in the original protocol, the distribution of probability of
(v, k) will be identical in both protocols.

PROOF. For precision, the proof will use the POVM formalism and the
terminology of Section 3.4, but the intuition in the proof can be understood
without making use of this formalism. The idea is to follow the protocol and see
that at every step, whether Bob uses the bases b or the bases b̃ to measure the
photons, the information that Eve has about the string g is the same in both
cases. In particular, it is clear that just after the quantum transmission, before
Bob measures the photons, the two cases cannot be distinguished. Next, one can
argue that, if we assume that the pair (�, h[R]) announced by Bob has the same
distribution of probability whether b or b̃ is used, then Eve cannot see any
difference. She cannot see any difference because only the bases in {1, . . . ,
N } � R are flipped and only (�, h[R]) is announced.

The proof formalizes this idea in the POVM formalism. We first describe Eve’s
attack. The overall quantum system is HQ � HA R HB R HE where HA is the
state space for the photons, HB is Bob’s received system and HE is an extra
system used by Eve. In the honest protocol, we have HB � HA because, in our
model of communication, the control over the system HA (Alice’s photons) is
simply passed to Bob. In the dishonest case, without loss of generality, we can
consider that HA and HB are different systems. At the beginning, HA is
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controlled by Alice whereas HB and HE are controlled by Eve. During the
quantum transmission, every thing is controlled by Eve. After the quantum
transmission, Eve controls HE (and HA) and the control over HB is passed to
Bob. Without loss of generality, we assume that no information is left in HA after
the quantum transmission.

The initial random classical information in the protocol (see Section 3.4) is
ĉ � (a, b, R, g, K̂), where K̂ denotes the random bits that will be used to pick
the matrix K. The overall quantum measurement outcome (see Section 3.4) is
q̂ � (�, h, j). Eve’s view v � (c, q) is the deterministic function of v̂ � ( ĉ, q̂)
defined by

c � �a, b, R, g�R� , s, K� and q � ��, h�R�, j�,

where s � K • g[E] in which E � � � R. One must see that it is possible to
compute c given v̂. It is possible to compute E given � and ĉ. The details of the
computation of K are not given.

Now, we consider the overall sequence of operations executed in the protocol.
We will consider Eve’s view later. We denote by U the unitary transformation on
HQ executed by Eve during the quantum transmission. We denote by E�, h �b

B

Bob’s honest (but possibly defective) measurement operator on HB, which
depends on b. We denote by Ej �c, �, h[R]

E Eve’s final measurement operator on HE

executed in view of (c, �, h[R]). In accordance with the extended operator
formalism described in Section 3.4, the POVM on HC R HQ returning v̂ �
( ĉ, q̂) has the form

Ev̂ � Eĉ , q̂ � PĉE� , h , j � ĉ , (14)

where

E� , h , j � ĉ � U†Ej � ĉ , � , h[R( ĉ)]
E � E� , h �b( ĉ)

B U. (15)

To derive Eq. (15), one must use the collapse operation formalism. In accor-
dance with this formalism, the POVM Ej � ĉ, �, h[R( ĉ)]

E on HE can be written in the
form

Ej � ĉ , � , h[R( ĉ)]
E � Aj � ĉ , � , h[R( ĉ)]

E†

Aj � ĉ , � , h[R( ĉ)]
E ,

where Aj � ĉ, �, h[R( ĉ)]
E is the collapse operation on HE associated with Ej � ĉ , �, h[R].

Similarly, there is a collapse operation A�, h �b( ĉ)
B on HB associated with

Ej � ĉ, �, h �b( ĉ)
B . In accordance with Section 3.3, the overall collapse operation on the

quantum part HQ, including the initial unitary operation U, is

A� , h , j � ĉ � Aj � ĉ , � , h[R( ĉ)]
E � A� , h �b( ĉ)

B U.

So the overall POVM on HQ is

E� , h , j � ĉ � A� , h , j � ĉ
† A� , h , j � ĉ � U†Ej � ĉ , � , h[R( ĉ)]

E � E� , h �b( ĉ)
B U,

which is consistent with (15).
Now, let us consider the POVM for Eve’s view v. The only components of v̂ �

( ĉ, q̂), which is not a function of v are g[R� ], where R� � {1, . . . , N } � R, and
h[� � R], that is, we can write
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v̂ � v̂ � g�R� � , h�� � R� , v� .

Using formula (7) in Section 3.3 for the first equality and v̂ � v̂( g[R� ], h[� �
R], v) for the second equality, we obtain

Ev � �
v̂ �v�v̂� � v

Ev̂

� �
g[R� ]

�
h[��R]

Ev̂( g[R� ],h[��R],v)

We must obtain that the POVM Ev (the sum of Ev̂ over all v̂ � v̂(h[� � R],
g[R� ], v)) is the same in both protocols. We recall that the only difference
between the protocols is that b is replaced by b̃. The sum is over h[� � R] and
g[R� ], but it will be enough to consider the sum over h[� � R] only. The only
terms in Ev̂ � Eĉ, q̂, in formula (14) and (15), which depends upon h[� � R] is
E�, h �b( ĉ)

B , the operation on Bob’s system HB. This fact corresponds to our
intuition that what is going on before Bob measures the photons cannot make
any difference. Therefore, we must consider the sum

�
h[��R]

E� , h �b
B ,

and show that it is the same if we replace b by b̃. (In the above sum and from
there on, we will not write explicitly the dependence on ĉ.) To better interpret
this sum, note that h is uniquely determined by �, h[R] and h[� � R], that is,
we can replace E�, h �b

B by E�, h[R], h[��R] �b
B . Now, in accordance with formula (7),

we have that this sum is nothing else than E�, h[R] �b
B , the POVM associated with

the partial outcome (�, h[R]) given b, that is,

E� , h[R] �b
B �

def �
h[��R]

E�,h[R],h[��R]�b
B .

The operator E�, h[R] �b
B implicitly depends on R because the choice of the set R is

part of its formal definition.3 It is a fact of linear algebra that the requirement
that E�, h[R] �b

B is the same as E�, h[R] �b̃
B is equivalent to our assumption that, for

every state in HB, the distribution of probability of (�, h[R]) is the same
whether b or b̃ is used to measure the photons. We have obtained under this
assumption that Eve’s information is the same in the intermediary protocol as in
the original protocol. This concludes the proof. e

Now we use the intermediary protocol to describe the modified protocol. In
the intermediary protocol, one can assume that there is a box on Bob’s side that
computes (R, b, b̃). This box secretely unveils b̃ to Bob at the beginning so that
Bob can execute his measurements in these bases. Just before the test, this box
publicly announces R and b so that Bob can execute the test with Alice as in the
original protocol. This alternative description of the intermediary protocol makes
no difference at all for Eve since she does not care about who computes (R, b,

3 This is not the same thing as saying that the measurement itself is executed in view of R in the
protocol. The dependence on R is OK because R is in v and we are interested in Ev.
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b̃) and who makes the announcements, as long as the distribution of (R, b, b̃),
the measurements and the announcements are the same.

The modified protocol is like this intermediary protocol except that (1) Bob
publicly announces b̃ at the beginning, (2) Bob publicly announces h just before
the announcement of R by the box, (3) Alice publicly announces g[E� ] where E� �
{1, . . . , N } � E after the announcement of E (i.e., of b, R and a), and (4) Eve
can corrupt Bob, but not the box. It is not hard to see that, after each
modification, Eve can only have more information or power than she had
previously, but even so we shall bound the total information available to Eve in
the modified protocol. We gain the advantage that Eve and Bob become like a
single participant called Eve–Bob who can use any measurement s/he wants to
learn about the key. The new situation, which contains only two participants, is
much simpler. The first participant, Alice, sends photons that encode a key, and
the second participant, Eve–Bob, tries to find out what is this key via an
appropriate measurement. The constraint on Eve–Bob is that h and b̃ must be
announced before the tested positions R and the string of bases a are known.

5.3. THE MODIFIED PROTOCOL IN OUR MODEL. Essentially, in this section, we
apply the basic mechanisms of Section 3.4 to the modified protocol and then
provide basic formula that will be useful later in our proof. Let HA be Alice’s
original system. In principle, when Eve–Bob receives control over HA s/he is free
to use an extra system HB � HE. However, Eve–Bob’s system HB � HE can be
considered as an auxiliary system used by Eve–Bob to execute the most general
POVM [Peres 1993]. We already use the POVM formalism to describe Eve–
Bob’s measurement, so without loss of generality, we do not need the extra
system HB � HE. This extra system is implicit in the POVM formalism.

The overall measurement outcome is q̂ � (�, h, j). We have that ĉ � (b̃, a,
R, g, K̂) where, K̂ represents the random bits that will be used to generate K
(and possibly F if we use a random error-correcting code). The string b is a
function of R and b̃ and so is not included in ĉ (but there would be no harm to
include it). The string of classical announcements received by Eve–Bob is c � (b̃,
a, R, E, g[E� ], K, F, s). Eve–Bob’s quantum outcome is q � q̂ � (�, h, j)
where h is the outcome of the measurement executed by Eve–Bob on HA to pass
the test and j is the outcome of the measurement executed by Eve–Bob on the
residual system after the first measurement. Eve–Bob’s view is v � (c, q).

It is not hard to see that v respects conditions C1 and C2. Without loss of
generality, we conservatively consider that the operator Eq �c on HA has rank one,
that is, Eq �c � ��c, q���c, q� for some nonnormalized state ��c, q�. The initial
random state is � ĉ�C��( g, a)� with probability p( ĉ) (which probability we will
not need to compute). The corresponding density matrix is denoted �. We have
Ev � Pc �qEq �c. We denote by TrA the trace over HA.

Our first basic formula is for p(v). Using Proposition 2, we obtain

p�v� � p�c�q�TrA�Eq�c�c�q�. (16)

We compute �c �q as explained in Section 3.4 (see remark after Proposition 2).
The density matrix �c �q is the density matrix that is obtained when we prepare
��( ĉ)� uniformly at random and only keep the states with cq � c. We recall that
cq �

def c( ĉ, q). We think of ĉ as the outcome of a random experiment on which we
define the random variable cq (with parameter q). In our protocol, we have
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�( ĉ) � �( g, a) and, for given c and q, one can check that the constraint cq �
c � (b̃, a, R, . . . , s) on (g, a) corresponds to the three constraints a � a,
g[E� ] � g[E� ] and F • g[E] � s, where E� � {1, . . . , N } � E. Note that, for
given c and q, the set E and the matrix F are uniquely determined so that E and
F can be interpreted as fixed parameters in the above constraints. Let

Cs � �� � �0, 1E�F • � � s .

We obtain that �c �q is the product ��E� ���E� � R �̃s, where

��E� � � ��� g�E� � , a�E� ��� (17)

is the pure state for the photons in E� � {1, . . . , N } � E and �̃s correspond to
a uniform distribution over the states ��(�, a[E])� with � � Cs:

�̃ s � �Cs��1 �
��Cs

����, a�E�������, a�E���. (18)

The state

�̃c , q � ��E�Ç
On E�

� �c,qÇ
On�1,. . .,N 

(19)

appears naturally in the computation of p(v) because �c �q corresponds to the
pure state �E� on E� and, we recall, Eq �c � ��c, q���c, q�. The component in E� of
�c, q is used in the inner product with �E� so that �̃c, q is the residual state for the
photons in E (see Section 3.3). We obtain

TrA(Eq�c�c�q) � ��c,q��c�q��c,q�

�
��̃c,q��̃s��̃c,q�Ç

On E

. (20)

So, using (16) and (20), we obtain

p�v� � p�c�q���̃c , q� �̃ s��̃c , q� . (21)

We now prove a generalization of (20). Let � and �� be any two operators on
the state space for the photons in E. The generalization of (20) is

TrA�Eq�c��c�q��� � ��̃c,q���̃s����̃c,q�. (22)

We recall that �c �q corresponds to the pure state �E� on E� (and to �̃s on E), and
Ec �q � ��c, q���c, q�. Also, by hypothesis, � and �� are only defined on E.
Therefore, the inner product between �E� and �c, q will return the residual state
�̃c, q on E as in (21). So we have obtained (22).

It is easy to compute p(k, v) using the same technique. The only difference is
that k is added to the view. It is as if the new syndrome was (s, k) rather than s
only. We obtain

p�k, v� � p�c, k�q���̃c , q� �̃ s , k��̃c , q� . (23)
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The normalized density matrix �̃s, k is defined as �̃s via (18) except that instead of
Cs we use

Cs , k � �� � �0, 1E�F • � � s ∧ K • � � k .

In accordance with Section 3.4 (see remark after Proposition 2), p(c, k�q) in
(23) is the probability that (c, k)q � (c, k) where (c, k)q is a function of ĉ which
is defined in the protocol when q � (�, h, j) is fixed. We can take the point of
view that (c, k)q is a random variable defined on ĉ. For a given q, the value of
this random variable can be computed by first obtaining c � c( ĉ, q) and then k
using k � K • g[E]. By definition, the probability of obtaining c in this
computation is p(c�q). The probability of every k is 2�m independently of the
view v � (c, q). So, we have

p�c, k�q� � 2�mp�c�q� (24)

5.4. PRIVACY IN THE MODIFIED PROTOCOL. In this section, we prove privacy
in the modified protocol. The proof follows the work of Mayers [1995; 1996],
Mayers and Salvail [1994], and Yao [1995]. There are three important lemmas in
the proof: Lemmas 5, 6, and 7. A variation on Lemma 5 for the case r � 0 and
m � 1 and a statement close to Lemma 6 (also for the case r � 0 and m � 1)
was provided in Yao [1995] in the context of a different cryptographic applica-
tion called quantum oblivious transfer. No variation on Lemma 7 was proven
before.

In accordance with Section 2, it is sufficient to obtain that � f	 �� where
� �

def �T ∧ ��2 ∧ �3 and both 	 and � must be exponentially small. The proof
breaks the (probabilistic) implication from � f	 �� in two implications, �T f�

� and (� ∧ ��2 ∧ �3) f�	�	2�2� ��, where � is called the small sphere property
and 	 � � 	 � 	 � 	 2�2�. The small sphere property as well as �, �, � and �
will be defined later.

5.4.1. Some Intuitions. In the modified protocol, Bob’s bases are flipped. We
already explained (see Section 5.1) the intuition that in the proof we need to flip
Alice’s bases as well. Here, we provide some intuitions from the point of view of
Eve–Bob, that is, we start with the modified protocol. We will obtain the same
conclusion and more. To go into the essential of the problem we analyze the case
where Eve–Bob attacks each photon individually (see Mayers and Salvail [1994]
and reference therein for previous analysis). Consider the ith photon sent from
Alice to Eve–Bob. When Eve–Bob attacks one photon at a time, s/he wants to
maximize her information about the bit g[i] for the case where i � E (i.e., a[i]
� b̃[i]), but at the same time she wants to minimize the probability of creating
an error for the case i � T (i.e., a[i] � b̃[i]).

The problem is how to obtain a constraint for the case i � E using a constraint
that results from the case i � T. This issue becomes more important when we
consider the most general attack, but it is already not so obvious when we
consider the individual attack. In the case of the individual attack, this issue is
addressed [Mayers and Salvail 1994] by first obtaining a constraint on Eve–Bob’s
measurement operators. As a first step, the constraint will only apply to the
measurement operators associated with the outcomes h[i]. It will not apply to
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the measurement operators associated with the entire data received by Eve about
the bit g[i].

The idea used in Mayers and Salvail [1994] is that this constraint will also be
valid in the case i � E, because the measurement operators associated with the
outcomes h[i] must be defined by Eve–Bob independently of whether i belongs
to T or E. This is the case because Bob (in Eve–Bob) immediately notes the
value of h[i] when he receives the photons which happens before the announce-
ment of R and a. Therefore, this constraint applies to the case i � E despite the
fact it comes from the fictive situation i � T. However, this constraint applies to
the outcome h[i] only; it does not directly apply to Eve–Bob’s final view after
s/he made her final measurement on the photon. This issue can be addressed
using the fact that the final measurement operator is a refinement of the
incomplete measurement operator associated with h[i] [Mayers and Salvail
1994]. In the case of the most general attack, we will see that a related issue will
be addressed in a similar way.

However, one should not look for an exact correspondence between the proof
against individual attacks and the proof against all attacks. Here the main ideas
that we wanted to emphasize are (1) as in the case of the individual attacks, a
fictive test associated with flipped bases on Alice’s side will be used to obtain a
constraint on Eve–Bob’s measurement operator and (2) we need to consider a
partial view to connect the fictive test with the real situation.

In this fictive test, Alice prepares the initial random state of the photons in
Bob’s fixed bases b̃[i], rather than in the random bases a[i]. However, b̃ is only
used for the quantum preparation. The string of bases announced by Alice is a as
before, not b̃ . She uses ( g, b̃) for the photons. This fictive situation is easier to
analyze because (as in the case of the individual attack) we have that Alice and
Bob use the same bases to encode and measure the photons respectively.

We will use Lemma 2 to obtain a bound on the number of errors that would be
created on E in this fictive situation, the idea being that such a bound will give us
a constraint on Eve–Bob’s measurement operator, the small sphere property. As
in the case of individual attacks, we will have to swap from the fictive situation to
the real situation using the fact we consider only a part of Eve’s view. The main
ingredient that we will use is the fact the initial density matrices for the photons
needed to obtain the probability of the partial view z � (b̃, �, a, R, h) via
Proposition 2 are one and the same density matrix, the fully mixed density
matrix, in both situations (the fictive and the nonfictive). Note that it is sufficient
to swap the bases used in the quantum preparation because Alice’s announce-
ments for the bases are the same in the fictive as in the real situation. The bases
b̃ are only used by Alice in the quantum encoding, not in the classical
announcement.

5.4.2. The Strong Small Sphere Property. Before analyzing any statement that
involves the small sphere property �, we will prove Lemma 5, which is about a
closely related property, called the strong small sphere property. This lemma will
provide some intuition about how the small sphere property � works and it will
directly be used later in the proof of the implication � ∧ ��2 ∧ �3 f�	�	2�2� ��.
As explained before, the property is given in terms of a fictive preparation where
Alice uses Bob’s bases b̃. For any �, we denote by ��� � �(�, b̃[E]) the string
� encoded in E using Bob’s bases b̃[E].
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Definition 5. Consider any state �̃ in the state space for the photons in E
(not necessarily the state �̃c, q given by (19)). We say that �̃ has the strong small
sphere property with radius d� if whenever � � {0, 1}E does not lie strictly
inside the sphere of radius d� around h[E] (in the Hamming distance), we have
that ��̃��� � 0.

Remark. In accordance with the basic intuition that was given at the very
beginning of the proof, we want to show that Bob receives a lot of information
when Alice uses the string of conjugate bases ã[E] � b̃[E] on E. (In the
modified protocol, Bob already uses the conjugate bases b̃[E] on E). The strong
small sphere property (strong ssp) implies that Bob has a lot of information
because it puts an upper bound on dE( g, h), the number of errors in Bob’s string
h restricted at E. The strong ssp says that, given that Alice’s initial state is
encoded in the string of conjugate bases b̃, the outcome associated with ��̃���̃�
ensure that the number of errors is strictly smaller than d�, being implicit here
that ��̃���̃� is a measurement operator that returns the outcome h[E].

An Example. The goal here is to illustrate the strong small sphere property.
This example should not be considered as an illustration of the entire proof, only
the strong small sphere property is illustrated. We consider a simple kind of
attacks where Eve–Bob announced the string of bases b̃[E] � 	 	 . . . 	 	 on
E at the beginning, but Eve–Bob cheated and actually measured in the flipped
string of bases b̃*[E] � 
 
 	 . . . 	 	: the bases for the two first positions in
E have been flipped with respect to the bases b̃[E]. (Eve–Bob can obtain such a
situation with a significant probability by flipping few bases at random.) Let us
assume that the outcome on E is h[E] � 00 . . . 0. We will see that the state
�(h[E], b̃*[E]) has the strong small sphere property with radius 3. The
associated “bra” operation is

���h�E� , b̃*�E�� �

�1/2��000 · · · 0� � �010 · · · 0� � �100 · · · 0� � �110 · · · 0��.

There are only four strings � � {0, 1}E on E such that

����h�E� , b̃*�E�� ��� � � 0.

These are the four strings that label the four components of ��(h[E], b̃*[E]) �.
These four strings lie strictly inside a sphere of radius 3 around h[E]. Therefore,
the state �(h[E], b̃*[E]) has the strong small sphere property with radius 3. e

The strong small sphere property is too strong to be a property of the actual
collapse operation executed by Eve–Bob on the photons in E. This property
cannot be obtained, not even probabilistically. It corresponds to the ideal
requirement that the test on E passes with probability exactly 1 given that this
collapse operation occurred. Nevertheless, it will be useful in the proof to first
consider this ideal situation. The next lemma says that if a state ��� has the
strong small sphere property then the associated collapse operation provides no
information at all about the final key. This lemma combines together privacy
amplification and the complementary principle in an intricated manner. The
complementary principle is used in the following sense that the strong small
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sphere property on ��� says that the associated collapse operation provides
faithful information about Alice’s string g[E] if Alice uses the flipped bases b̃.
Privacy amplification is used because we directly consider the density matrix
associated with the final key. We emphasize that the approach in which one first
obtains a bound on some kind of information (such as the collision information)
about Alice’s raw key g[E] and then separately use standard privacy amplifica-
tion techniques [Bennett et al. 1988] to obtain a much smaller bound on the final
key didn’t succeed thus far in quantum cryptography.

LEMMA 5. For every key k � {0, 1}m and syndrome s � {0, 1}r, consider the
density matrix

�̃ s , k �
def

�Ck,s��1 �
��Ck, s

����, a�E�������, a�E���,

where Cs, k is the set of string � � {0, 1}D consistent with the key k and the
syndrome s , that is, for which F • g[E] � s and K • g[E] � k. Consider any state
�̃ on the state space for the photons in E (not necessarily the state �̃c, q). If �̃ has
the strong small sphere property with radius d� � dW/ 2, then ��̃ ��̃k, s��̃� is
independent of k .

Consider a fixed view v � (c, h, j). If �̃c, q given by (19) has the strong small
sphere property with radius d�, we say that the view v has the strong small sphere
property with radius d�.

COROLLARY 1. If v has the strong small sphere property with a radius d� �
dW/2, then v is 0-informative about every k, that is, p(k�v) � 2�m for every k.

PROOF OF THE COROLLARY. It will be sufficient to show that p(k �v) is
independent of k. Using (23), we obtain

p�k �v� � p�v��1p�k, v� � p�v��1p�c, k�q���̃c,q��̃s,k��̃c,q�.

Using (24), we obtain that p(c, k�q) � 2�mp(c�q) is independent of k. Using
Lemma 5, we also have that ��̃c, q��̃s, k��̃c, q� is independent of k. This concludes
the proof of the corollary. e

Unlike Lemma 5, this corollary will not be used in the proof of privacy because
a successful test does not imply that v has the strong small sphere property, not
even probabilistically. This corollary is only provided to support the intuition. It
says that something like the strong small sphere property is desired for privacy.

PROOF OF LEMMA 5. We first do the case where r � 0 (no error-correction),
m � 1 and the one-row binary matrix K is [11 . . . 11]. In this case, we have dW �
nE. Also, one can easily compute the density matrices �̃0 and �̃1, respectively,
associated with Alice’s preparation for the photons in E when the key is k � 0
and k � 1. We recall that, for every � � {0, 1}nE, we defined ��� �

def �(�,
b̃[E]). One obtains that the matrix [��̃]{���} of ��̃ �

def �̃0 � �̃1 in Bob’s basis
{���} �

def { ��� �� � {0, 1}E} is
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in which there are 0 everywhere except when indicated otherwise by the dotted
line. The indices � � {0, 1}E for the rows in the matrix are ordered in such a
way that any two indices �1, �2 � {0, 1}E that are at maximal Hamming
distance nE are always adjacent, and the same ordering is used for the indices ��
� {0, 1}E for the columns. The entries in the matrix are �����̃����, where �, ��
� {0, 1}E. We have that �����̃���� � 0 unless d(�, ��) � dW � nE. The matrix
[��̃]{ ���} � [��̃]{ ���}

(nE) can be obtained using the recurrence formula

��̃ (n) � � 1

2���̃ (n�1) � � �̃0
(1) � �̃1

(1)� ,

which can be obtained with some algebra using the formula

�̃b
(n) � � 1

2� � �̃0
(n�1) � �̃b

(1) � �̃1
(n�1) � �̃b�

(1)� .

Now, we want to show that the probability of v is the same given both density
matrices. So, we want to show that ��̃c, q���̃ ��̃c, q� � 0. We have that

��̃c , q��� ��̃c , q� � �
� ,��

��̃c , q����� ���̃ ������� ��̃c , q� .

We show, in two cases, that every term in the sum is 0.

Case 1. If d(�, ��) � dW � nE, then, because �̃c, q has the strong small
sphere property with radius dW/ 2, either ��̃c, q��� � 0 or ��� ��̃c, q� � 0.

Case 2. If d(�, ��) � nE, then ��������� � 0. This concludes the proof for
the simple case where m � 1 and r � 0.

Now we do the proof for the general case where m, r � 0. The matrix
[�̃s, k]� , �� is given by

� �̃ s , k�� ,��

�2�nE
 0 if �� � ��� �	 C��G�

��1��(�Q��)•(s,k) otherwise,

where

G � � F
K� ,

C�[G] is the code generated by G (see Appendix C) and � is the coordinate
function that when evaluated on any string � � C�[G] returns the string
coordinate �(�) such that �(�) • G � �. The computation is provided in
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Appendix D. By definition of dW, if the weight of (� Q ��), which is the same as
d(�, ��), is strictly smaller than dW, then �(� Q ��) vanishes in its K-section. We
obtain that, for (�, ��) fixed, the sign of the entry [ �̃s, k]� , �� depends only on s.
Therefore, d(�, ��) � dW implies that [��̃]� , �� � [ �̃s, k]�, �� � [ �̃s, k�]�, ��

vanishes. The remainder of the proof is identical the proof in the simple case,
and this can be easily checked by the reader. e

5.4.3. The First Implication. Here we define and discuss the small sphere
property � and prove the implication �T f� � (see Lemma 6). For any set of
positions X and any integer d� � 0, let �0[X, d�] be the projection on the span
of {�(�, b̃) �dX(�, h) � d�} where dX(�, h) is the Hamming distance between
� and h on X.

Definition 6. Let �̃s be defined as in Section 5.3. The view v has the small
sphere property � with radius d� � 0 and precision � � 0 if

p�c�q���̃c , q��0�E, d�� �̃ s�0�E, d�� ��̃c , q� � �p�v� (25)

or equivalently

��̃c , q��0�E, d�� �̃ s�0�E, d�� ��̃c , q� � ���̃c , q� �̃ s��̃c , q� . (26)

We have already given part of the intuition for the small sphere property when
we discussed the strong small sphere property. Now, we explain the connection
with this intuition. We recall that the strong small sphere property says that any
state encoded in Bob’s basis b̃[E] on or outside the small sphere is rejected by
�̃c, q. In this way the strong small sphere property says that v provides faithful
information about Alice’s string g[E] if Alice uses Bob’s basis b̃[E]. Lemma 5 is
in fact a strong version of the complementary principle because it concludes that
the view v provides no information at all about the key encoded in Alice’s
original bases. The states that are on or outside the small sphere span the space
associated with the projection �0[E, d�]. Modulo some small imprecision (that
is quantified by a small value �), if we expand the density matrix �s, we see that
the small sphere property expresses a similar requirement as the strong small
sphere property, except that this requirement is now expressed in terms of a
mixture of states �0[E, d�]�(�, a[E]), � �R Cs, obtained from Alice’s bases
a[E], not Bob’s bases. The indirect connection with Bob’s bases is provided by
the projection �0[E, d�], which is defined in Bob’s basis b̃[E]. As we will see,
this will be close enough to the strong small sphere property. The (not strong)
small sphere property has the technical advantage that it is written in terms of
Alice’s original preparation: the matrix �̃s. An alternative small sphere property
stated in terms of Bob’s bases could have been more in accord with the
complementary principle but it would have been difficult to use, and even to
obtain. It works better to only have an indirect connection with Bob’s bases via
the projection �0[E, d�].

Note that in the case r � 0 (no error-correction), �̃s is proportional to the
identity matrix and therefore, when r � 0, the small sphere property with radius
d� is equivalent to

��0�E, d���̃c , q�2 � ���̃c , q�2.
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In the exact case � � 0, the last inequality is the strong small sphere property on
v. The basic idea for the (strong) small sphere property was first published in
Yao [1995] in the context of the security of QOT. Historically, the small sphere
property � was obtained by trying to prove an implication of the form �T f� �
where � is as close as possible to the strong small sphere property on v [Mayers
1996].

Some brief recapitulation. The next lemma, Lemma 6, says how the test
probabilistically implies the small sphere property �. We just explained that this
small sphere property is the kind of hypothesis that is required to apply the
complementary principle. This complementary principle will be expressed in
Lemma 7, the small sphere property � being the required hypothesis. The proof
of Lemma 7 makes use of Lemma 5, its strong version in which the strong small
sphere property is the required hypothesis.

LEMMA 6. Let � � �(�, n�
min)1/2 where the function � is defined as in Theorem

1. We have �T f� �, where � is the small sphere property with radius d� � d	(�)
and precision �.

PROOF OF LEMMA 6. Let �E be the event that the number of errors in E is
smaller than d	(�). All the ingredients that are mentioned above suggest that in
the proof we must use the probabilistic implication

�T f�(� ,n�)�E (27)

in which Alice uses the basis {�( g, b̃) �g � {0, 1}N} rather than the basis
{�( g, a) �g � {0, 1}N}. (In this fictive test, we flip Alice’s bases when a[i] �
b̃[i]).

We first explain how Lemma 2 applies to this fictive situation. The important
ingredient in this lemma is the distribution of probability of the two sets E and T
for a fixed set D and error string g[D] Q h[D]. The fictive preparation is an
encoding in the bases b̃ which is fixed. Eve–Bob determines and executes the
measurement without knowing a and R. We fix �, � and the error string on �,
but keep a and R random. The set � will play the role of the set D in the lemma.
It will be sufficient that the distribution of probability for E � � � R and T �
� � R is as required in the lemma. This is exactly the case because every
position in � is put in R with probability pT. One might find strange that it seems
that it is not required that the bases a are chosen at random. In fact, they also
have to be chosen at random because (b̃, �, a) uniquely determines R. So we
have obtained that Lemma 2 applies with D � � and thus we have obtained
inequality (27).

Note that it is implicit in (27) that we consider the context where � is fixed
because the statement in Lemma 2, in particular the definition of �(�, nD),
assume that the set D is fixed (and � plays the role of D). We define ��� � �.
In fact, instead of (27), what we have is �T f�(� ,n�) �� �E. Note that �T f� ��
�E is equivalent to �T ∧ � f�
Pr(�) �E. Let ��T � �T ∧ �. The starting point
is in fact

��T f�(� ,n�)
Pr����E . (28)

Note that Eve–Bob’s attack is uniquely determined by the POVM Eq �c. We
must show that the probabilistic implication �T f� � hold for all POVM Eq �c
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that corresponds to an attack in the real protocol where Alice uses the basis
{�( g, a) �g � {0, 1}N} (not the basis {�( g, b̃) �g � {0, 1}N}). Let us consider
any such POVM in the real protocol (this POVM will not be further restricted so
that the proof will apply to any such POVM). The interesting point is that any
such POVM Eq �c still corresponds to an attack in the protocol even if Alice uses
the basis {�( g, b̃) �g � {0, 1}N}. In fact, if we don’t tell Eve–Bob that a
different preparation was used for the photons, then the same POVM will be
executed. Therefore, because the probabilistic implication (28) is valid against all
attacks, this probabilistic implication must apply to the POVM Eq �c. Here, we
translate (28) in terms of density matrices and projections operators. Let � b̃ be
the density matrix that corresponds to the state �( g, b̃) with probability 2�N.
This is the fully mixed density matrix 2�NI. Let �̂1 � I � �0[T, d] and �̂0 �
�[E, d	(�)]. These two projections are respectively associated with the success
of the test on T and the failure of the test on E (when Alice uses the basis
{�( g, b̃) �g � {0, 1}N}). Let z be the partial view (b̃, �, h, a, R). Note that z
contains all the necessary information to define the projections �̂0 and �̂1. We
obtain

Pr���T ∧ �� E�

� �
(b̃,a,R,�,h)��

p�b� , a, R�TrA�E�,h�a,R�̂1�̂0�b̃�̂0�̂1�

in which � is the constraint �( z) � � on z � (b̃, �, h, a, R). This last equality
can easily be verified by expanding the density matrix � b̃ as a sum over state and
noting that each term in the sum is annihilated by �̂1�̂0 if and only if the
corresponding state is not consistent with �T ∧ �� E. Formula (28), which
corresponds to the inequality Pr(�T ∧ �� E) � �(�, n�)Pr(�), becomes

�
(b̃ ,a ,R ,� ,h) ��

p�b̃, a, R�TrA�E�,h�b̃,a,R�̂1�̂0�b̃�̂0�̂1�

����, n��Pr���. (29)

Note that we have chosen the partial view z so that it contains no classical
announcement about g. This is a key ingredient which implies that the density
matrix for the photons given the classical part (b̃, a, R) in z is 2�NI. We can
replace � b̃ by �a because these two density matrices are one and the same density
matrix, the fully mixed density matrix. (Note that the string g is independent of �
so that g is still uniformly distributed in the context ��� � �.) The reader can
easily compute this density matrix because it is a product of two dimensional
density matrices, each of them corresponding to a state uniformly picked at
random in the corresponding basis. By definition a uniform mixture of state in a
given basis corresponds to the matrix �(2) � (1/2)�0��0� 	 (1/2)�1��1� in that basis.
The reader can easily check that, keeping the same representational basis for the
density matrix, but considering a uniform mixture of states in the conjugate basis
(or any other basis) one obtains the same density matrix. The density matrix �a

corresponds to Alice’s preparation in the real protocol. We have indirectly
obtained a property on the view z for most z since we have an upper bound on
the sum in (29). The idea is that it is not possible that many terms in the sum are
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large when the sum is small. However, what we need is a property on the final
view v. So, we need to replace the sum over z by a sum over v. In this way, we
will obtain a property on most v. To pass from a sum over z to a sum over v, we
need to use the extended operator formalism. We will use (12) with the view

z � ��b̃, a, R�
Ç

c

, ��, h�
Ç

q

�

in which c and q refer to the generic notions of Section 3.4, not to c and q
defined in this section. Working on the left-hand side of (29), we obtain

�
z ��

TrA�Ez�̂1�̂0�a�̂0�̂1� � ���, n��Pr���.

Now, we can use the formula Ez � �v �z�z Ev to obtain

�
v ��

TrA�Ev�̂1�̂0�a�̂0�̂1� � ���, n��Pr���. (30)

To return to the standard formalism, we apply again (12), but this time with the
complete view v � (c, q). We obtain

�
(c ,q) ��

p�c�q�TrA�Eq�c�̂1�̂0�c�q�̂0�̂1� � ���, n��Pr���.

We recall that a mixture associated with �c �q corresponds to the pure state
�( g[T], a[T]) on T. The projection �̂1, which is associated with the success of
�T, is also defined in the bases a[T] on T. Therefore, every term in the sum with
v �	 �T vanishes. For the other terms we have

TrA�Eq�c�̂1�̂0�c�q�̂0�̂1� � TrA�Eq�c�̂0�c�q�̂0�.

So we have

�
(c ,q) ���T

p�c�q�TrA�Eq�c�̂0�c�q�̂0� � ���, n��Pr���.

At this point, the following lemma must be used. It says that it is not possible
that a sum with positive terms contains many large terms when the sum is small.

PROPOSITION 5. Consider any � � 0 and let p( y) be any distribution of
probability on a set Y. Let ay, y � Y, be positive real numbers such that �y�Y ay � �.
Consider any positive number q � 0. We have that

Pr�ay � q�p� y�� �
1

q
,

that is, except with a probability smaller than 1/q, ay � q�p( y).

PROOF OF PROPOSITION 5. Let us denote

S � � y � Y �ay � q�p� y� .
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Assume to the contrary that Pr(S) � 1/q. We obtain

�
y

ay � �
y�S

ay � �
y � S

ay

� �
y�S

ay � q� �
y�S

p� y� � � 1

q� q� � �,

which contradicts the hypothesis of the lemma. e

Let � � �(�, n�)1/ 2. At this stage � depends on n�, not on n�
min, but we will

take care of this issue later. We will use Proposition 5 with q � Pr(��T)/
(�Pr(�)) � Pr(�T��)/� and p( y) � p(v)/Pr(��T), that is, p( y) is the probabil-
ity of v conditioned with the event ��T. We obtain that, conditioned with the
event ��T, except with probability �/Pr(�T��), we have

p�c�q�TrA�Eq�c�̂0�c�q�̂0� � � � p�v�. (31)

Using (22), we obtain that (31) is equivalent to

p�c�q���̃c , q��̂0�̃ s�̂0��̃c , q� � � � p�v� ,

which is the small sphere property � with radius d	(�) and precision �. We have
obtained that �/Pr(�T��) is an upper bound for the probability that the small
sphere property � fails given ��T. We obtain that

Pr��T ∧ �� ��� � Pr��� ���T�Pr��T��� � �.

Thus, we have

Pr��T ∧ �� �n� � n�� � �

or equivalently

�T f� �n� � n�
S.

The value � depends on the value n�. We can easily take care of this problem
and replace n� by n�

min using Proposition 6 in Appendix E (we must think of S as
an event-valued function, where n� in the precision �, not in the radius d	(�),
plays the role of the integer l in Proposition 6). The radius d	(�) will still
depend upon the random value n� (but we will take care of this problem in the
next lemma). This concludes the proof of �T f� �. e

5.4.4. The Second Implication. Here we prove that the small sphere property
probabilistically implies that Eve’s view v is �-informative.

LEMMA 7. Let � � 0 and  � 0 be the (nonphysical ) parameters chosen in the
validation constraint ��2. Consider any � � 0. Let � � 2�nE

min

, � � 2�� 	 � and
� � � 	 �2�. Except with probability � 	 � 	 2�2�, if we have the constraint ��2
∧ �3 and the view v has the small sphere property � with radius d	(�) and precision
�, then the view v is �-informative.
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Remark. Later, we will use this lemma with � that was defined in Lemma 6,
but the lemma hold for every � � 0. Lemma 7 corresponds to the implication � ∧
��2 ∧ �3 f�	�	2�2� ��.

PROOF OF LEMMA 7. The basic idea of the proof is simple. Consider again
formula (23):

p�v, k� � p�c, k�q���̃c , q� �̃ s , k��̃c , q� .

We insert the identity operator �0[E,  dW/ 2 ] 	 �1[E,  dW/ 2 ] on both sides
of �̃s, k, and we rewrite the expression using terms that contain only �0[E,
 dW/ 2 ] or only �1[E,  dW/ 2 ], not both projections. The term with the
projection �1[E,  dW/ 2 ] will be taken care by Lemma 5, because the state
�1[E,  dW/ 2 ] ��̃c, q� has the strong small sphere property with radius d� smaller
than dW/ 2. The other terms will be small because of the definition of the small
sphere property.

However, before we do that, we must take care of some technical issue related
to the use of ��2 in place of �2. We recall that, given that the m 
 nE privacy
matrix K is chosen uniformly at random, Lemma 4 tells us that, for any  � 0, we
have

Truef� dW � H�1�1 �
r � m

nE

� �nE , (32)

where � � 2�nE. We recall that ��2 says

H�1�1 �
r � m

nE

� � � nE � 2d	��� (33)

for some fixed  � 0 and � � 0. By transitivity, the inequalities in (32) and (33)
implies �2 which states dW � 2d	(�). Therefore, we have ��2 f� �2 and thus
(� ∧ ��2) f� (� ∧ �2). Here, the probability � is conditioned by nE, but we can
replace nE by nE

min in the definition of � using Proposition 6 in Appendix E,
adding the constraint �3 on the left-hand side. Let �� be the small sphere
property with radius  dW/ 2 and the same precision � as for �. We have that � ∧
�2 ∧ �3 f �� because the radius in �� is greater (a weaker constraint). So it will
be sufficient to show �� f�	2�2� ��, where �� is the small sphere property with
radius  dW/ 2 and precision �.

We start by finding out what can be obtained nonprobabilistically from ��,
keeping in mind that we want to bound �p(k �v) � 2�m� � p(v)�1�p(v, k) �
2�mp(v) � probabilistically. We will start by considering the quantities p(v, k)
and 2�mp(v) separately. We begin by p(v, k). Using (23), one obtains

p�v, k� � p�c, k�q���̃c , q� �̃ s , k��̃c , q� .

Now, let us define �̃0 � �0[E,  dW/ 2 ] and �̃1 � I � �̃0. The projections �̃0
and �̃1 are respectively associated with the failure and the success of the test on
E with a tolerated number of errors  dW/ 2 . If one puts the identity operator I �
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�̃0 	 �̃1 on both sides of �̃k, s, after some algebra, one obtains

p�v, k� � 2�mp�c�q�

���̃c,q��̃1�̃s,k�̃1��̃c,q� � ��̃c,q��̃0�̃s,k��̃c,q�

� ��̃c,q��̃s,k�̃0��̃c,q� � ��̃c,q��̃0�̃s,k�̃0��̃c,q��,

where we used (24) to replace p(c, k�q) by 2�mp(c�q). Note that �̃1�̃c, q is a
state that has the strong small sphere property with radius  dW/ 2 . Therefore,
using Lemma 5, one obtains that

p � 2�mp�c�q���̃c,q��̃1�̃s,k�̃1��̃c,q�

is independent of k. In particular, after a sum over k on both sides, we have

2mp � p�c�q���̃c , q��̃1�̃ s�̃1��̃c , q�

or equivalently

p � 2�mp�c�q���̃c,q��̃1�̃s�̃1��̃c,q�.

We denote �s, k � �p(v, k) � p �. Since

���̃c , q��̃0�̃ s , k��̃c , q� � � ���̃c , q� �̃ s , k�̃0��̃c , q� �,

we have

� s , k � 2�mp�c�q�

� �2���̃c,q��̃0�̃s,k��̃c,q�� � ���̃c,q��̃0�̃s,k�̃0��̃c,q���. (34)

Now we bound the first term in the square bracket. We use

���̃c , q��̃0�̃ s , k��̃c , q� � � ���̃c , q��̃0�̃ s , k
1/ 2

Ç
	

†

�̃ s , k
1/ 2��̃c , q�Ç

�

�.

Using Schwartz inequality, �	†�� � �	� 
 ���, one obtains

���̃c , q��̃0�̃ s , k��̃c , q� �

� � �̃ s , k
1/ 2�̃0��̃c , q�� ��̃ s , k

1/ 2��̃c , q��

� ��̃c , q��̃0�̃ s , k�̃0�̃c , q�
1/ 2��̃c , q� �̃ s , k��̃c , q�

1/ 2.

Therefore

� s , k � 2�mp�c�q�

�2��̃c,q��̃0�̃s,k�̃0��̃c,q�
1/ 2��̃c,q��̃s,k��̃c,q�

1/ 2

	��̃c,q��̃0�̃s,k�̃0��̃c,q�].
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Now, we define �s � �p � 2�m p(v) �. We have

�p�v, k� � 2�mp�v�� � �s � �s,k ,

so that the property �� is equivalent to �s 	 �s, k � 2�mp(v)�. Using the same
technique that we used for �s, k, we obtain

� s � 2�mp�c�q�

�2��̃c,q��̃0�̃s�̃0��̃c,q�
1/ 2��̃c,q��̃s��̃c,q�

1/ 2

	 ��̃c,q��̃0�̃s�̃0��̃c,q�.

Using (21), which states p(c�q)��̃c, q��̃s��̃c, q� � p(v), and the small sphere
property (Definition (6)), which states

p�c�q���̃c , q��̃0�̃ s�̃0��̃c , q� � �p�v� ,

we obtain

� s � 2�m�2�� � ��p�v�.

Since the expression (2�� 	 �) will appear often, we denote � � 2�� 	 �. We
obtain

� s � 2�m�p�v�. (35)

Now, to bound �s, k, it will be useful to define

a0�v, k� � 2�mp�c�q���̃c,q��̃0�̃s,k�̃0��̃c,q�

and

a1�v, k� � 2�mp�c�q���̃c,q��̃s,k��̃c,q�.

We obtain

� s , k � 2 �a1�k, v�a0�k, v� � a0�k, v� . (36)

Thus far, we have shown

�� f � s � 2�m�p�v�

∧ �s,k

� 2�a1�k, v�a0�k, v� � a0�k, v�.

In the remainder of the proof, we will define an event 	q with a parameter q �
0 so that 	q f ��	q�, and, for q � �2/�, we will show �� f�	2�2� 	q. This
will be sufficient to conclude �� f�	2�2� ��. We recall that � � � 	 �2�.
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Now, we define 	q. To obtain �� from 	q, the event 	q must provide upper
bounds for a0(k, v) and a1(k, v).4 For every q � 0, we define the events

	q
(0)�a0�k, v� � q�p�v�2�m,

and

	q
(1)�a1�k, v� � qp�v�2�m,

and 	q � 	q
(0) ∧ 	q

(1). It is not hard to see that

	q f � s , k � 2 �q�p�v�2�mqp�v�2�m � q�p�v�2�m

� qp�v�2�m�2�� � ��

� qp�v�2�m�.

Therefore,

	q f �p�v, k� � 2�mp�v�� � �s,k � �k

� �1 � q�p�v�2�m�,
(37)

which is the event ��	q�. Now, we do the probabilistic part. We will show that
�� probabilistically implies 	q. We must compute Pr(�� ∧ 	� q). We will use
Pr(�� ∧ 	� q) � Pr(��) � Pr(�� ∧ 	q). So we will compute Pr(�� ∧ 	q). For
every v fixed, let Mq

(0)(v) and Mq
(1)(v) respectively denote the set of values k

such that 	q
(0)(k, v) and 	q

(1)(k, v) are TRUE. We obtain

Mq
(0)�v� � �k �a0�k, v� � q�p�v�2�m,

and

Mq
(1)�v� � �k �a1�k, v� � qp�v�2�m.

Let Mq(v) � Mq
(0)(v) � Mq

(1)(v). We will use Proposition 5 to obtain a lower
bound on the size of these sets for every v for which �� is TRUE. It is not too hard
to see that �k 2�ma1(k, v) � p(v). For v fixed, using Proposition 5 with y �
k � {0, 1}m, ay � a1(k, v), p( y) � 2�m, and � � p(v), we obtain that
2�m�Mq

(1)(v) � � (1 � 1/q). Similarly, �k 2�ma0(k, v) � �p(v). For v fixed,
using Proposition 5 with y � k, ay � a0(k, v), p( y) � 2�m and � � �p(v) we
obtain that 2�m�Mq

(0)(v) � � (1 � 1/q). Therefore, we have

�Mq�v� � � 2m� 1 �
2

q� . (38)

Using (37) for the second inequality and (38) for the third inequality, we obtain

4 In a previous version of the proof, the bounds on a0 and a1 included a large factor 2m. For m fixed,
this factor was a constant, but it was nevertheless annoying. This large factor was taken out with the
precious help of Hitoshi Inamori.
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Pr��� ∧ 	q�

� �
v���

�
k�Mq(v)

p�k, v�

� �
v���

p�v� �
k�Mq(v)

2�m�1 � �1 � q���

� �
v���

p�v�2m�1 �
2

q�2�m�1 � �1 � q���

� �
v���

p�v��1 �
2

q
� �1 � q���

� Pr���� �
2

q
� �1 � q��.

We obtain

Pr��� ∧ 	� q� � Pr���� � Pr��� ∧ 	q� �
2

q
� �1 � q��.

If we set q � �2/�, we obtain

Pr��� ∧ 	� q� � � � 2�2�

or equivalently �� f�	2�2� 	q. Now, we recall that 	q with q � �2/� implies
the event ��. We have thus shown �� f�	2�2� ��. This concludes the proof. e

One obtains Theorem 1 by combining the two probabilistic implications (i.e.,
Lemma 6 and Lemma 7) and Lemma 1.

6. Conclusion

The techniques that we have described here, some of them taken in Yao [1995],
were proven to be efficient to analyze the security of quantum key distribution.
However, these techniques were first used in Mayers [1996] to analyze a quantum
protocol for a different application, a quantum string oblivious transfer protocol
[Bennett et al. 1992]. For some time this quantum string oblivious transfer was
ignored because it was built on top of a task called bit commitment. This was
proven to be unsecure given that the participants, potential cheaters, have
unlimited computational power [Mayers 1997]. However, recently a quantum
protocol was proposed [Dumais et al. 2000] for bit commitment under some
computational assumption and this raises the important question of the security
of the quantum string oblivious transfer protocol on top of a computationally
secure quantum bit commitment. We hope that the technique described here
would be useful to address this question.

There is also the serious issue of defective and unreliable quantum apparatus.
A more practical protocol were the encoding must still respect the exact
polarization angle specified in the protocol, but not necessarily for a single
photon, was proven secure in Inamori et al. [1999] using the techniques described
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here. The most powerful and global approach to address this problem is
proposed in Mayers and Yao [1998] and Mayers [2001a]. However, the results in
Mayers and Yao [1998] and Mayers [2001a] are general and their applicability to
a given protocol is still an open question. Again, we hope that the techniques
provided here will be useful to establish the connection.

Note added. An alternative proof for the security of the BB84 protocol was proposed
by Shor and Preskill [2000]. This last security result is weaker than the result here because
their proof requires the assumption that Bob’s measuring apparatus is perfect (or close to
perfect eventually). This assumption can certainly help to simplify the proof, but it is a
step backward with respect to the ultimate objective, which is to trust only restricted and
simple properties of the apparatus used. Here, we need to trust only a very natural
property of Bob’s measuring apparatus, and the problem of the untrusted source is taken
care in Mayers and Yao [1998] and Mayers [2001a].

Appendixes

Appendix A Notations

A.1. Integers and Integer-Valued Function

N: The number of photons sent in the protocol.
m: The length of the key.

nE: The integer �E �. The length of the raw key.
dX ( g, h): The Hamming distance between g and h on X, that is,

dX( g, h) � �{i � X �g[i] � h[i]} �.
d	( y): An integer valued function that is convenient in the proof. For

every y � 0, d	( y) �  (
 	 y) pEn� .
d: The number  
pTn� . It is the number of errors tolerated in the

test executed on T.
d�: The number d	(�). The number of errors on E that is tolerated

by the error-correction code.
dT: The number of errors that actually occur on T.
dE: The number of errors that actually occur on E.

r: The number of bits for error-correction, that is, the length of the
syndrome.

dW: The minimal weight of the strings in G*.

A.2. Real Numbers

pT: The probability that a position i � � is tested (i.e., included in
R).


: A parameter in the protocol that determines the number of errors
d tolerated in the test via the formula d � 
pTn�. Normally, 

should be slightly greater than the expected error rate in the
quantum channel.

�: A parameter in the protocol that uniquely determines d�, the
number of errors tolerated by the error-correcting code.

�: A parameter similar to � but used to determine d	(�), the
number of errors tolerated in a fictive test executed on E.
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�(�, n�): Exponentially small number that corresponds to the probability of
dE � d	(�) where dE is the number of errors in E and pE �
1 � pT is the probability that a position i is not tested.

�: The real number 2�nE. It is an exponentially small upper bound
on the probability that dW � H�1 (1 � (m 	 r)/nE � ) 
 nE.

�: The real number �(�, n�)1/ 2. It is an exponentially small number
that occurs in the proof of privacy because of Proposition 5.

�: The sum 2�� 	 �.
	 : The sum � 	 � 	 � 	 2�2�. It is an exponentially small

parameter used (together with �) to indicate the level of privacy.
�: The exponentially small number � 	 �2� used (together with 	)

to indicate the level of privacy.

A.3. Strings and String-Valued Function

a: Alice’s string of bases.
g: Alice’s string of bits.
b: Bob’s string of bases.
h: Bob’s string of bits (outcomes of measurements).
g̃: The substring g[E] of g. It is called the raw key.
s: The string F • g̃ , where g̃ � g[E]. It is called the syndrome.
k: The (final) key shared by Alice and Bob.
b̃: The string of bases used by Bob in the modified protocol. The bases used

for the positions outside R are flipped.
�: The string valued function that on any � � C�[G] returns the unique

string �(�) such that �(�) • G � (�).
K̂: The random bits in Alice’s random tape that will be used to generate the

matrix K.

A.4. Composites Values

Formally, any value can be represented by a string over some alphabet. It is
only with respect to the description of the protocol that the following values are
said to be “composite.”

ĉ: The content of the random tape initialized at the beginning of the
protocol. Each participant has a part of ĉ. In the modified protocol, ĉ �
(b̃ , a, R, g, K̂).

q̂: The outcome of the overall measurement executed jointly by all
participants in view of ĉ. In the modified protocol, q̂ � (�, h, j).

v̂: The overall classical outcome of the protocol. It includes both ĉ and q̂:
v̂ � ( ĉ, q̂).

c: The classical information received by Eve (i.e., Eve–Bob in the modified
protocol) and that is not the direct result of a quantum measurement. It is
also a function of v̂, not necessarily of ĉ alone. In the modified protocol,
c � (b̃ , a, R, g[E� ], K, s).

j: The outcome of the final measurement executed by Eve–Bob.
q: The quantum outcome received by Eve (i.e., Eve–Bob in the modified

protocol). In the modified protocol, q � (�, h, j).
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v: Eve’s view, that is, all classical data received by Eve including outcomes of
measurements: v � (c, q). It is a deterministic function of v̂. The same
notation is used in the original as in the modified protocol, but in the
modified protocol it is called Eve–Bob’s view.

z: The partial view (b̃, �, h, a, R). It is a part of Eve–Bob’s view that is
important in the proof because it contains no information about the string
g and yet contains enough information to uniquely determine �̂0 and �̂1.

A.5. Set of Strings and Binary Matrix

G*: The set of linear combinations of rows in F or K with at the least one
row in K.

Cs: The set of codewords {� � {0, 1}E�F • � � s}. It is the set of
codewords � � {0, 1}E consistent with the syndrome s.

F: A r 
 nE matrix used to define the syndrome s.
K: A m 
 nE matrix used to define the key k via k � K • g̃, where g̃ �

g[E].

A.6. Set of Positions

�: The set of positions where a photon is detected by Bob.
�: The set of positions i � � such that a[i] � b[i].
R: Random set of positions used for testing. Every i � 1, . . . , N is put in

R with probability pT.
T: The set � � R. It is the set of tested positions.
E: The set � � R. It is the set of positions used to define the raw key g̃ �

g[E].

A.7. Events

N�: The event that the view v is �-informative about the key k: �p(k �v) �
(1/ 2m) � � �/ 2m.

�T: The event dT � 
pTn�. It is the event that is TRUE when the test on T
passes.

�E: The event dE � 
pEn�. It is the event that is TRUE when the fictive
test on E passes.

�1: The validation constraint d� � d	(�) that is required by the error
correction procedure.

�2: The validation constraint dW � 2d	(�). This constraint satisfies the
hypothesis of Lemma 5, but unfortunately it is a hard problem to check
if this constraint holds.

��2: The validation constraint H�1 (1 � (r 	 m)/nE � )nE � 2d	(�),
where � � 0 and  � 0 are any positive values fixed in the protocol. It is
an alternative to �2 because dW/ 2 � H�1 (1 � (r 	 m)/nE � )nE

can be obtained probabilistically.
�3: The validation constraint nE � nE

min, n� � n�
min and m � mmax, which

is necessary so that the bound on Eve’s information is a fixed number,
not a random number.

A.8. States and Density Matrices

�( g, a): For any string of bits g and string of bases a, �( g, a) is the BB84
encoding of the string g in the bases a.
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�E� : The state �E� � �( g[E� ], a[E� ]) for the photons prepared by Alice
in E� , where E� � 1, . . . , N � E.

��v�: The state so that ��c, q� is the collapse operation on the photons
associated with the view v � (c, q). We have ��c, q� ��c, q� �

def Eq �c.
(See definition of the collapse operation Eq �c.)

�̃c, q: The state ��E� ��c, q� for the photons in E.
�a: Density matrix for the original random state �( g, a) with a fixed.

It’s the fully mixed density matrix 2�NI.
� b̃: Density matrix similar to �a except that it is for the random state

�( g, b̃). It’s also the fully mixed density matrix 2�NI.
�c �q: It is the density matrix for all the photons given that the classical

information c is known. The dependence on q is related to the fact
that the function c on the overall classical random tape ĉ used in
the protocol might itself depend on the outcome of a quantum
measurement.

�̃s: The matrix �Cs�
�1 ���Cs

��(�, E)���(�, E) �. It is the density
matrix of the photons in E given that the syndrome s is known.

�̃s, k: A density matrix for the photons in E like �̃s but given that s and k
is known.

A.9. Operators and Projections

Eq �c: It is the positive operator on the state space HQ of
the photons associated with the measurement
outcome q executed in view of c.

Pc �q: The projection operator on the classical part HC

associated with the classical announcement c in the
view v � (c, q).

Ev � E(c,q): The operator Pc �q R Eq �c associated with the view
v � (c, q). It acts on the state space HC R HQ

where HC is the classical part and HQ � HA is the
quantum part.

�0[X, d] and �1[X, d]: For any set of positions X and integer d � 0,
�0[X, d] is the projection on the span of
{�( g, b) �dX( g, h) � d}, and �1[X, d] � I �
�0[X, d].

�̂0: The projection �0[E, d	(�)].
�̂1: The projection �1[T, d].
�̃0: The projection �0[E,  dW/ 2 ].
�̃1: The projection I � �̃0.

Appendix B. Mutual Information

Privacy is often expressed in terms of mutual information or Shannon’s entropy. It
is impossible to do justice in one small subsection to the concepts of mutual
information and Shannon’s entropy. Here some simple techniques and formulas
are listed. Let X, Y, and Z be any three random variables. Let p( x, y) � Pr(X �
x ∧ Y � y), p( x) � Pr(X � x), p( y) � Pr(Y � y), p( x �y) � Pr(X � x �Y �
y), p( x, y, z) � Pr(X � x ∧ Y � y ∧ Z � z), etc.
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Definition 7. The mutual information between X and Y is given by

I�X;Y� � �
x ,y

p� x, y�log2� p�x, y�

p�x�p� y�
�.

Definition 8. The Shannon entropy of X is given by

H�X� � I�X;X� � � �
x

p� x�log2 p�x�.

Definition 9. The conditional Shannon entropy of X given Y is given by

H�X �Y� � � �
x ,y

p� x, y�log2 p�x�y�.

One can easily verify that I(X;Y) � H(X) � H(X �Y) as follows: Note that
I(X;Y) is the expected value of log2 ( p( x, y)/p( x) p( y)):

I�X;Y� � E� log2� p�x, y�

p�x�p� y�
��.

Similarly, one has

H�X� � E��log2 p�x� and H�X�Y� � E��log2 p�x�y��.

Thus, one obtains

H�X� � H�X �Y� � E��log2 p�x�� � E��log2 p�x�y��

� E��log2 p�x� � log2 p�x�y��

� E�log2

p�x, y�

�p�x�p� y�
� � I�X;Y�.

By symmetry one has also I(X;Y) � H(Y) � H(Y �X).

Definition 10. The conditional mutual information between X and Y given an
event � is

I�X;Y ��� � �
x ,y ,z

p� x, y ���log2� p�x, y���

p�x���p� y���
�.

Definition 11. The conditional mutual information between X and Y given Z
is

I�X;Y �Z� �
def �

x,y,z

p�x, y, z�log2� p�x, y�z�

p�x�z�p� y�z��
� �

z

p�z�I�X;Y�Z � z�.
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One can verify that

I�X;Y, Z� � I�X;Y �Z� � I�X;Z� . (39)

Many other formulas of the same kind can be obtained. For instance,

I�X;Y� � I�X;Y �Z� � I�X;Z� � I�Y;Z� � I�X, Y;Z� ,

because

p� x, y�

p� x� p� y�
�

p� x, y �z�

p� x �z� p� y �z�
�

p� x, z�

p� x� p� z�

�
p� y, z�

p� y� p� z�
�

p� x, y� p� z�

p� x, y, z�
.

Appendix C. Linear Codes

In this appendix, we give some minimal about binary linear codes.

C.1. Binary Strings and Matrices

A binary string x of length n is a mapping from {1, . . . , n} into {0, 1} or
alternatively an n-tuple in {0, 1}n. The length of x is denoted by �x �. The weight
of x, that is, the number of 1 in x, is denoted by #( x). We define the minimal
weight of a set A � {0, 1}nE as the minimum of #(w) over all w � A. The ith
element of x is x[i]; the sum x Q y where x, y � {0, 1}n is given by

� x � y��i� �
def

x�i� � y�i� �
def 
 0 if x�i� � y�i�

1 if x�i� � y�i�.

A sum of two or more strings is also called a linear combination. If A and B are
two sets of strings in {0, 1}n, we define A Q B � {w �w � w1 Q w2 where w1 �
A and w2 � B}. The inner product of x and y is x • y � Q j�1

n x[ j] y[ j].
For every set E � {1, . . . , n}, we denote by {0, 1}E the set of mappings

from E to {0, 1}. These mappings are also called binary strings. For every subset
E � {1, . . . , n}, we use x[E] to denote the substring of x restricted to E. The
substring x[E] is the unique mapping x̃ from E to {0, 1} such that x̃[i] � x[i] for
all i � E.

An n1 
 n2 binary matrix M is a mapping from {1, . . . , n1} 
 {1, . . . , n2}
into {0, 1}. The (i, j)th element of a matrix M is denoted as M[i, j]. A r 
 r
square matrix that contains 1 everywhere in the diagonal and 0 elsewhere is
denoted Ir. A r 
 k matrix which contains 0 everywhere is denoted 0r, k. The ith
row and the jth column of M are strings noted M[i, �] and M[ �, j] respectively.
The transpose MT of the n1 
 n2 matrix M is the n2 
 n1 matrix given by
MT[i, j] � M[ j, i]. If M is an n1 
 n2 binary matrix and x is a binary string of
length n2, the product M • x is the string of length n1 given by

M • x�i� �
def

�
j�1

n2

M�i, j�x� j�.
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We could also write M • x � Q j x[ j]M[ �, j] (i.e., as the linear combination of
the columns M[ �, j], where x[ j] � 1). If x is a string of length n1, then x • M is
the string of length n2 given by

x • M� j� �
def

�
i�1

n1

x�i�M�i, j�.

We could also write ( x • M) � Q i x[i]M[i, �] (i.e., as the linear combination of
the rows M[i, �] where x[i] � 1). Note that the string x • MT and the string
M • x are exactly the same string. The product of a k 
 n matrix G with a n 

r matrix F is the k 
 r matrix G • H given by

G • H�i, j� �
def

�
z�1

n

G�i, z�H� z, j� �
def

G�i, � � • H� � , j�.

The strings x1, . . . , xr are linearly independent if no linear combination over a
subset of these strings is the string 0. One can easily check that the rows of a r 

n binary matrix M are linearly independent if and only if, for any two distinct
strings x, y of length r, x • M � y • M. So, if the rows of M are linearly
independent, there are 2 r distinct linear combinations of this kind.

Let E � {1, 2, . . . , n}. For every pair of strings �, �� � E{0,1}, for every
subset X � E, we define dX(�, ��) � #(�[X] Q ��[X]) � �{i � X ��[i] �
��[i]} �. If X � E � {1, . . . , r}, then dX(�, ��) is the usual Hamming distance
on strings of length r. The following lemma is a useful tool.

LEMMA 8. Let Sd be the set of strings w � {0, 1}n with #(w) � d. Let p � d/n
and q � 1 � p. If d � n/2, then

2H( p)
n

�8pqn
� �Sd� � 2H( p)
n,

where H( p) � �( p log2 p 	 q log2 q).

Lemma 8 follows from the standard bounds on binomial coefficients [MacWil-
liams and Sloane 1977].

C.2. Error-Correcting Code

Let 1 � r � n and k � n � r. Consider any r 
 n binary matrix F with r
linearly independent rows. The set C[F] � {w � {0, 1}n�F • w � 0} is called
a (n, k)-linear code. There are 2k codewords in C[F]. The matrix F is called the
parity-check matrix of the (n, k)-linear code C[F]. For every linear code C and
every string w of length n, the set C Q w � {u Q w �u � C} is a coset of C. One
can easily check that, for every string s of length r, the set {w � {0, 1}n�F •
w � s} is a coset of C[F]; we denote this coset by C[F, s]. The string s � F •
w is called the syndrome of w associated with F.

For any (n, k)-linear code C, the dual of C, denoted as C�, is the set of
strings x such that (@w � C) w • x � 0. The dual C� is a (n, r)-linear code.
We denote by C�[F] � {w � {0, 1}n�w � � • F, � � {0, 1}r} the set of
linear combinations of rows F[i, �] in the r 
 n matrix F. One can easily check
that the dual of C[F] is the set of linear combinations of rows in F, that is,
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C[F]� � C�[F]. The matrix F is called a generator matrix of the (n, r)-linear
code C�[F]. So the r 
 n matrix F is both a parity-check matrix for the
(k, n)-linear code C[F] and a generator matrix for the (n, r)-linear code C�[F].
There are 2 r codewords in C�[F]. One can also construct a matrix G that is both
a parity check matrix for C�[F] and a generator matrix for C[F]; any k 
 n
matrix G that contains k independent rows in C[F] will suffice.

An (n, k)-linear error-correcting code C usually comes with an encoding
procedure Enc that maps a message x � {0, 1}k into a codeword w � Enc( x) �
C. Of course, the mapping defined by Enc must be one-to-one otherwise some
information about w would be lost. The codeword w is sent into some channel
and a string w� is obtained on the other side. Then usually an error-correcting
procedure is executed to map the string w� � {0, 1}n into a codeword in C. If
the number of errors in w� is sufficiently small then, with probability almost 1 (if
not 1), this codeword is the original codeword w. Then the codeword w is
mapped back into the original message x.

Appendix D. The Density Matrices �̃

Consider a linear code C[G] � {0, 1}n of dimension q and a coset C[G, x] of
this code (G is the parity check matrix and x is the syndrome). Here, we analyze
the general situation where a string g̃ uniformly chosen at random in the coset
C[G, x] is sent from Alice to Bob using a fixed string of bases a � {	, 
}n. We
want to find the matrix representation of the density operator

�̃x � 2�q �
g̃�C[G, x]

�̃�g̃, a��̃�g̃, a�†

in the basis {�̃(�, b) �� � {0, 1}n}, where b � a� . To apply this result to this
paper, one must use

G � � F
K� ,

x � (s, k) and q � n � r � m but the computation for the general case is the
same. A key ingredient is that if a string g belongs to a code C � C[G] for which
G is the parity check matrix then we have g � � • G� where � � {0, 1}dimC and
G� is a parity check matrix for the dual code. We will apply this principle twice,
once with the code and once with its dual. We have

�̃x �
1

�C � �
g�C[G , x]

�w��w � .

We will use the fact that in the conjugate basis we have

�w� � 2�n �
t�{0,1}n

��1�g•t�t�.

We obtain

�̃x �
2�n

�C� �
t,t�,g�C

��1�g•(tQt�)�t��t��.
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Let g0 be any string in the coset C[G, x]. We will use the fact that the sum over
g � C[G, x] can be replaced by a sum over � � {0, 1}dimC with the change of
variable g � (� • G�) Q g0. We get

�̃x �
2�n

�C� �
t,t�,��{0,1}dimC

��1�( g0Q�•G�)•(tQt�)�t��t��.

After simple algebra, we get

�̃x �
2�n

�C� �
t,t�

��1�g0•(tQt�) �
��{0,1}dimC

��1��•G�•(tQt�)

Ç
k(t,t�)

�t��t��.

Now, consider the coefficient k(t, t�). This coefficient vanishes if G� • (t Q

t�) � 0, that is, if (t Q t�) �	 C�. If (t Q t�) � C�, we have k(t, t�) � �C �. We
obtain

�̃x � 2�n �
t,t��(tQt�)�C�

��1�g0•(tQt�)�t��t��,

where we used g0 • (t Q t�) � (t Q t�) • g0. Now, we will use the fact that
(t Q t�) is a string in C�. We obtain that t Q t� � �(t Q t�) • G, where
�(t Q t�) is the unique string with this property. The exponent (t Q t�) • g0
becomes �(t Q t�) • G • g0 � �(t Q t�) • x, by definition of g0. We obtain

�̃x � 2�n �
t,t��(tQt�)�C�

��1��(tQt�)•x�t��t��.

or equivalently

�t � �̃x�t�� � 2�n
 ��1��(tQt�)•x if �t � t�� � C�

0 otherwise.

D.1. An Alternative Computation

Here is an alternative computation (the one that was used in the original proof
[Mayers 1966]). We need some definitions. For every vector � � {0, 1}n, let us
define a unitary transformation U� on the state space of the photons:

U��̃� g̃ , a� � �̃�� � g̃ , a� .

One can easily check that U� is in fact a product of unitary mappings U� � U�[1]
. . . U�[n] where U�[i] is defined on the state space for the ith photon. For every
position i where � i � 1, the transformation U�[i] maps the state �̃ [i] (0, b[i])
into itself and the state �̃ [i] (1, b[i]) into ��̃ [i] (1, b[i]). So, if there is an even
number of positions i where � i � � i � 1, one has

U��̃��, b� � �̃��, b�;
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otherwise, one has

U��̃��, b� � ��̃��, b�.

In terms of the inner product ● on the vector space {0, 1}n, one has

U��̃��, b� � 
 �̃��, b� if � • � � 0

��̃��, b� if � • � � 1.

For every � � C[G, x], one has C[G, x] � C[G, 0] Q �. Therefore, for every
� � C[G, x],

�̂x � U��̂0U� , (40)

where U�
† � U� was used. For any operator �̂ and any �, one may easily check

that, in the basis {�̃(�, b) �� � {0, 1}n},

�U��̂U��� , �� �
def

�̃��, b�†�U��̂U���̃���, b�

� ��1�(�Q��)•� � ��̂��,�� .
(41)

Therefore, in view of (40) and (41), it is sufficient to obtain the matrix
representation of the density operator �̂0 in Bob’s basis.

Let q be dimension of C[G] (in this paper q � n � r � m is the dimension of
the code C[F] � C[K]). Let {�1, . . . , �q} be q independent strings in C[G].
For every j � 1, . . . , q, let G( j) be the span of {�1, . . . , � j} and �̂( j) � 2�j

���G( j) �̃(�, a) �̃(�, a)†. Note that �̂0 � �̂(q) and C[G] � G(q). We will show
by induction on j, that for j � 0, . . . , q̃,

� �̂ ( j)�� , �� � 2�n � 
 1 if �� � ��� � G( j)�

0 otherwise.
(42)

The case j � 0 can be easily computed: G(0) � {0} and G(0)� � {0, 1}n. Let
us assume that (42) holds for j and obtain it for j 	 1. Because G( j	1) � G( j) �
(G( j) Q � j	1), one has that

�̂ ( j	1) �
1

2
� �̂ ( j) � U� j	1

�̂ ( j)U� j	1
� . (43)

Therefore, using formula (41), one obtains

� �̂ ( j	1)�� , �� �
1

2
� �̂ ( j)�� , ���1 � ��1�(�Q��)•�j	1�.

Note that ( �̂( j	1))�, �� is either 0 or 2�n. One obtains that ( �̂( j	1))� , �� � 2�n if
and only if ( �̂( j))�, �� � 0 and (� Q ��) • � j	1 � 0. So, (�̂( j	1))�, �� � 2�n if
and only if, for every � � G( j	1), (� Q ��) • � � 0. This last condition is
equivalent to (� Q ��) � G( j	1)�. This concludes the induction.

Now, using the formula for �̂0 � �̂(q) given by (42), together with formula (40)
and (41), one obtains that, for every � � C[G, x],

403Unconditional Security in Quantum Cryptography



� �̂x�� , �� � 2�n � 
 0 if �� � ��� � C��G�

��1�(�Q��)•� otherwise.

Now, because the rows in G are independent, for every � � C�[G], there is a
unique string �(�) � {0, 1}r	m such that �(�) • G � �. Let �(� Q ��) be such
that

��� � ��� • G � �� � ��� .

By definition of �, one has that G • � � x. So, one obtains

� �̂x�� , �� � 2�n � 
 0 if �� � ��� � C��G�

��1��(�Q��)•x otherwise.
(44)

Appendix E. On Probabilistic Implications

In our proof, the number nD in the fictive test lemma is itself random, whereas
we want a fixed upper bound on Eve’s information. To address this issue, we
could use the law of large number to obtain a lower bound nD

min for nD and use
this lower bound instead of nD, but, as we now explain, this approach would
somehow ignore an essential mechanism used in the protocol. If we used the law
of large numbers, it would mean that we want a bound on nD that is respected
with probability almost one. This approach would be justified if whenever this
bound is not respected, Eve receives too much information. However, this is not
the way the protocol works. In our protocol, Eve receives no information when
the bound is not respected because m is set to 0 when it happens. Note that, as
far as privacy is concerned, this mechanism works even if the lower bounds are
very large and fails most of the time. Therefore, we should not have to use the
law of large number in this particular context to prove privacy. One should use
the law of large numbers to prove that m is larger than 0 with a reasonable
probability, but this is a different issue that is not related to privacy. The
following proposition explains the basic mechanism that is used in our protocol,
as far as privacy is concerned, to address the issue of random parameters such as
nD.

For concreteness, one can think that this proposition is used with the events
�(l )� �p(k �v) � 2�m� � �(l ), l � 1, 2, . . . , where �(l ) is some nonincreasing
function of the integer l. The event �p(k �v) � 2�m� � � (for some � � 0) is
used in Lemma 1. With this particular choice for �(l ), the conclusion in
Proposition 6 is essentially the kind of hypothesis that is required in Lemma 1.

PROPOSITION 6. Consider a fixed protocol (i.e., consider that all parameters are
fixed). Let 	 � 	(l ) be a nonincreasing real valued function defined on the set of
positive integers l. Let �(1), �(2), . . . be events that are (simultaneously) defined by
the protocol. Assume furthermore that, if l� � l, we have �(l�) f �(l ). Let n be a
random integer defined in the protocol. (The letter n is often used to denote a
security parameter but here n is not a security parameter.) Consider some fixed
integer nmin � 0. Consider any event �T such that we can prove �T f	(n)�n�n �(n)
for every n � nmin (see Definition 2). Let � be the event which is TRUE when n �
nmin. We have �T ∧ � f	(nmin) �(nmin).
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Remark. We actually have a more complicated situation in our proof. We
have two probabilistic implications: (1) �T f�(n1) �n1�n1

�(n1), for every n1 and
(2) �(n1) f�(n2) �n2�n2

�(n1, n2), for every n1, n2, where �(n1) is some
intermediary event. We apply Proposition 6 on each implication separately (and
thus avoid mutual conditioning of variables) and then use Proposition 1 to obtain
the hypothesis of Lemma 1.

PROOF OF PROPOSITION 6. We first show � ∧ �T f	(nmin) �(n), in which we
do not yet consider the event �(nmin), that is, we first show Pr(�(n) ∧ � ∧
�T) � 	(nmin). The event �(n) is TRUE in a particular run of the protocol if n
takes a value n such that �(n) is TRUE. Therefore, we have

Pr���n�∧ �∧ �T�

� �
n�nmin

Pr��T∧ ��n��n � n�Pr�n � n�

� �
n�nmin

	�n�Pr�n � n�

� 	�nmin� �
n�nmin

Pr�n � n�

� 	�nmin�Pr�n � nmin� � 	�nmin�.

So, using Proposition 1, we obtain � ∧ �T f	(nmin) �(n) ∧ �. We have proven
the proposition since �(n) ∧ n � nmin f �(nmin). e
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BENNETT, C. H., BRASSARD, G., CRÉPEAU, C., AND SKUBISZEWSKA, M.-H. 1992. In Practical
Quantum Oblivious Transfer. Advances in Cryptology: CRYPTO ’91: Proceedings. Lecture Notes in
Computer Science, vol. 576. Springer-Verlag, New York, pp. 362–371.

BENNETT, C. H., BRASSARD, G., POPESCU, S., SCHUMACHER, B., SMOLIN, J., AND WOOTTERS, W. K.
1966. Phys. Rev. Lett. 76, 722–725.

BENNETT, C. H., BRASSARD, G., AND ROBERT, J.-M. 1988. Privacy amplification by public discus-
sion. SIAM J. Comput. 17, 2 (Apr.). 210 –229.

BIHAM, E., BOYER, M., BRASSARD, G., VAN DE GRAAF, J., AND MOR, T. 1998. Security of quantum
key distribution against all collective attacks. LANL archives quant-ph/9801022.

BIHAM, E., AND MOR, T. 1996. On the security of quantum cryptography against collective attacks.
Phys. Rev. Lett. 78, pp. 2256 –2259.
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