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This article presents an analysis of five days of workload data from a large Web-based
shopping system. The multitier environment of this Web-based shopping system includes Web
servers, application servers, database servers, and an assortment of load-balancing and
firewall appliances. We characterize user requests and sessions and determine their impact on
system performance and scalability. The purpose of our study is to assess scalability and
support capacity planning exercises for the multitier system. We find that horizontal scalabil-
ity is not always an adequate mechanism for supporting increased workloads and that
personalization and robots can have a significant impact on system scalability.
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and Software—Performance evaluation (efficiency and effectiveness); H.3.5 [Information
Storage and Retrieval]: On-line Information Services—Web-based services; D.4.8 [Operat-
ing Systems]: Performance—Operational analysis; D.2.8 [Software Engineering]: Met-
rics—Performance measures; K.6.2 [Management of Computing and Information Sys-
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Systems Organization]: Performance of Systems—Measurement techniques; Modeling tech-
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1. INTRODUCTION
Over the past several years interest in e-commerce (i.e., the use of the
Internet to buy and sell goods and services) has grown substantially. While
e-commerce itself is relatively new, the underlying business principles for
its success are not. In order to be successful, a business must not only
attract new customers but retain existing ones, as profits rise with ex-
tended customer relationships [Reichheld and Sasser 1990]. In fact, retaining
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just 5% more customers has been shown to increase profits by up to 100%
[Reichheld and Sasser 1990]. This result suggests that businesses should
do whatever they can to retain their customers.

The fundamental motivation for this work is the need to ensure a
profitable business. Reichheld and Sasser state that quality is the most
profitable way to run a business, and that in order to improve quality it
must first be measured [Reichheld and Sasser 1990]. Unfortunately there
are many aspects of a business that must be evaluated in order to measure
quality. For example, a business must market itself effectively to attract
(and retain) customers. A business must ensure that it has the products or
services that its customers are looking for at acceptable prices and in
sufficient quantities [Lee and Podlaseck 2000]. A business must find ways
to “know” who its customers are in order to provide them with better (i.e.,
personalized) service [Reichheld and Sasser 1990]. To retain customers a
business must also provide a pleasurable shopping experience (e.g., no long
delays to make a purchase, ease and promptness in finding goods or
services, etc.). In this article we are primarily concerned with the last of
these issues, that is, providing a pleasurable shopping experience. The
others, while vital business practices, are (mostly) beyond the scope of this
article.

Our purpose is to investigate the issues affecting the performance and
scalability of a large Web-based shopping system. Workload data was
obtained from an e-commerce site. Workload characterization and cluster-
ing techniques are used to determine the impact of user requests and
sessions on system performance, to assess system scalability, and to
support capacity planning exercises for the multitier system.

Our research has identified several key results. First, there are tradeoffs
among business issues that must be considered. In particular, providing
personalized service to customers can severely impact the shopping experi-
ence, as personalization may reduce the performance and scalability of the
system. Thus it may be necessary for the system to adapt to its workload,
providing more personalization when relatively few customers are using
the system and less (or no) personalization when the system is supporting
many concurrent customers. Second, we confirm that, as in other studies
[Almeida et al. 2001; Menascé et al. 2000], a nonnegligible fraction of
requests are issued by robots (i.e., nonhuman users). We find that robots
can have a significant impact on system performance. Steps should be
taken to positively identify robots so that their presence does not degrade
the service provided to customers. Finally, caching is vital for ensuring the
scalability of large Web-based shopping systems, even though much of the
workload may appear to be inherently uncacheable.

The remainder of this article is organized as follows. Section 2 provides
additional background information and introduces related work. Section 3
describes the system under study, while Section 4 presents the measure-
ment data used in our work. Section 5 discusses the results of our
(HTTP-level) workload characterization. Classes of requests are character-
ized in Section 6, which also explores the impact of workload changes and
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personalization on system scalability. Section 7 characterizes classes of
user (i.e., human customers) and robot sessions for the purpose of capacity
planning. A summary of performance and scalability issues is given in
Section 8. Concluding remarks are in Section 9.

2. BACKGROUND INFORMATION AND RELATED WORK

In the previous section we identified a number of issues (e.g., personalized
service, a pleasurable shopping experience) that must be addressed to
ensure a successful (i.e., profitable) business. Unfortunately, tradeoffs
among many of these issues must be considered. For example, successful
promotions can cause dramatic increases in the number of customers that
visit a site. If system capacity is inadequate, system performance can
degrade substantially, leading to a loss of customers. Poor site responsive-
ness (i.e., long response times) can also result in a loss of customers and
revenue to competitor sites. The performance and scalability of a site are
therefore vitally important issues that must be carefully managed to avoid
blunders that risk a business’s success.

Capacity management for Web-based shopping systems is governed by
the notion of horizontal scalability. That is, as the number of concurrent
users that the system must support increases, more servers are added.
Such scaling must be cost-effective, otherwise it will not be possible for a
system to support the large number of users that can be attracted by a
successful promotion. In order to improve the performance and scalability
of e-commerce systems, a thorough understanding of the system workload
is required. Numerous characterization studies of Web server workloads
have been conducted, including Arlitt and Jin [2000]; Arlitt and Williamson
[1997]; and more recently, Padmanabhan and Qui [2000]. Due to the
limited availability of data, few characterization studies of e-commerce
workloads have been done—Menascé et al. [2000] performed one of the
first. Our work builds on the characterization studies of Web server
workloads and extends the current knowledge of e-commerce workloads.

E-commerce provides businesses with a great opportunity to quantify the
quality they provide their customers, since the underlying use of computer
systems enables businesses to collect the data necessary for analysis. Lee
and Podlaseck [2000] utilized data from online shopping systems to develop
tools for improving Web marketing and merchandising. Many Web-based
shopping sites today are interested in personalizing online shopping as a
means of differentiating themselves from their competitors. VanderMeer et
al. [2000] propose a method for improving the scalability of personalization
systems. Our work is complementary. Challenger et al. [1999] developed an
approach for consistently caching dynamic Web data that became a critical
component of the 1998 Olympic Winter Games Web site.

3. THE SYSTEM UNDER STUDY

The Web-based shopping system under study has a multitier architecture
typical of e-commerce sites—the tiers are illustrated in Figure 1. All
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customer requests access the system via the Internet. Load balancers
divide incoming requests across a tier of Web servers. The Web servers
serve all requests for nondynamic resources and propagate requests for
dynamic resources to application servers. A dynamic resource is one that is
typically created by executing a program or script each time the resource is
requested. Application servers make use of database servers to support
information retrieval, personalization, and transactional order manage-
ment. The application servers prepare responses in HTML format for
rendering on users’ browsers. These responses are then propagated to the
customer via the Web server tier. Networking equipment such as routers
and firewalls are not shown in Figure 1.

The system under study handles only the requests for the HTML portions
of each Web page. All requests for the embedded graphics in each page are
provided by a separate “graphics” system. No workload data on this
graphics system is available; hence this system is not analyzed here.
Application servers can either generate HTML responses for users dynam-
ically or serve responses from an application server request cache (each
application server has its own request cache, as shown in Figure 1).

Internet

Customers

1
...

N3

c N1c

R
eq

ue
st

s R
esponses

Load Balancers

... lbN2lb1

... wsws1

Web Servers

as1 N4

Application Servers

as Cache
Request

...

... db1 N5db

Database Servers

Fig. 1. Logical diagram of the system under study.
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Dynamically generating responses creates the opportunity for personaliza-
tion, but can use significantly greater processing resources than serving
responses from a request cache. We explore the performance and scalability
impact of application server request caching in this article.

A number of our analyses in Section 7 characterize user sessions. We
define a session as a sequence of requests made by a single “source” during
a visit to the site [Menascé et al. 1999]. For the system under study each
session is associated with a unique identifier in order to maintain state
(e.g., shopping cart contents) between requests. The first request of a
session does not have a session identifier—we define it as a session id-less
request. A Web server that receives a session id-less request uses a
load-balancing algorithm to choose an application server. It then forwards
the request to the application server, which assigns a session identifier.
Subsequent requests in the session may go to any Web server, but are
always directed back towards the application server that issued the session
identifier.

In this article we consider initial session id-less requests to be part of
their sessions. However, it is not possible to positively identify the access
log entry of the initial request of all distinct sessions. Although the Web
access logs do contain the IP address for the client that issued each request,
there are a significant number of proxies present that may represent any
number of users.

When characterizing session lengths, we compensate for the initial
session id-less request by simply adding one to all reported session lengths.
We assume that the time between this initial request and the second
request in the session (i.e., the initial “inter-request” time) is equal to the
mean inter-request time across all sessions. An analysis determined that
these start of session requests accounted for most of the session id-less
requests.

Finally, to conserve system resources, application servers time-out ses-
sions (and reclaim their resources) after 15 minutes of inactivity. All
requests associated with an expired session identifier receive a “time-out”
response. At this point, the user may return to the home page to obtain a
new session identifier, or they may choose to depart.

4. MEASUREMENT DATA

The measurement data for this study was collected from four different
sources. Three were part of the site under study. The primary source of
workload data were the access logs collected from each of the Web servers
in the site. Additional workload information was provided by the access
logs of each of the application servers. Supplemental performance data for
servers was available from MeasureWare1 logs. These logs were available
for all of the servers in the site.

1MeasureWare is also known as the Vantage Point Performance Agent:
http://www.openview.hp.com/products/vpperformance/.
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The fourth source of data was a test environment that was a replica of
the actual site, albeit on a much smaller scale. This test environment
enabled us to further characterize the performance of various requests. For
example, it was possible to obtain estimates for the mean CPU demands of
important requests using exercisers (i.e., minibenchmarks). Unless explic-
itly stated, we did not use this data when reporting how the actual site was
used.

Measurement data was collected from the actual site on two separate
occasions: the first on March 9th, 2000 (the March data set); the second
period lasted from midnight on July 21st, 2000 until midnight July 25th,
2000 (the July data set). There were no significant changes to either the
software or hardware configurations of the system under study between the
two measurement periods.

The Web server access logs contain a single line of information for each
HTTP request issued to the site. The recorded information includes the IP
address of the client who issued the request; the time the request was
received (1 second resolution); the method (e.g., GET) to be applied to the
resource; the name of the resource (i.e., the URL); a session identifier (for
sessions already in progress); the HTTP protocol version; and the HTTP
response code. The Web server logs are used in the (HTTP-level) workload
characterization described in Section 5 and the characterization of sessions
in Section 7.

The application server access logs contain a single line of information for
each request handled by the application server. This information includes:
the timestamp of the response completion; the elapsed time for completing
the response; a flag to indicate if the response was served from the
application-level cache; and the (application-level) resource name. These
logs are used to calculate CPU demands in Section 6.

The MeasureWare logs provide a wide range of data on server perfor-
mance. For this study, we primarily utilized “global” metrics (aggregated
over five minute intervals). The data we used includes: a timestamp for the
start of the measurement interval; the mean CPU utilization over all server
CPUs; the peak disk utilization across all disks; the physical memory
utilization; and the number of packets sent and received on all network
interfaces. Information from these logs is used in Section 6 to compute CPU
demands.

Despite the vast amount of data collected, a lot of interesting information
is still missing. For example, the Web server logs do not contain any
information on the size of request or response headers or bodies, nor do
they include a measure of the time required to complete a response. In
addition, the timestamps for request arrivals have only a one-second
timestamp resolution, which limits the accuracy of several of our analyses.
The application server access logs do not include a session identifier that
would allow us to match the requests in the Web server access logs to those
in the application server access logs.

The collected data contains information that can be used to evaluate the
site’s effectiveness from many different perspectives. In this article our
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focus is on the performance and scalability of the site. Other important
perspectives, such as marketing and merchandising [Lee and Podlaseck
2000], are orthogonal to the issues that we pursue here. In addition, we do
not report any absolute values (e.g., the number of requests during the
measurement period) that could be used to derive information on the site’s
effectiveness in terms of marketing and merchandising (e.g., the number of
customers visiting the site or the number of purchases made during the
measurement period).

5. WORKLOAD CHARACTERIZATION

This section presents the results of our (HTTP-level) workload character-
ization. In our effort to identify methods for improving scalability, we focus
on the most significant characteristics. Section 5.1 discusses the distribu-
tion of requests by resource type. Section 5.2 analyzes the usage of the site
during measurement periods. Section 5.3 looks at the resource referencing
patterns. Section 5.4 describes client request behaviors.

5.1 Resource Types

Table I provides the breakdown of requests by resource type. Two ap-
proaches are utilized to determine the resource type. One approach exam-
ines the extension of the resource. For example, resources ending in ‘.jpg ’
or ‘.gif ’ are placed in the Image category. The second approach searches
for the presence of a parameter list (e.g., /example.html?parameter_
list ). All requests containing a parameter list are placed in the dynamic
category.

Table I reveals that almost all requests (over 95% in both data sets) were
for dynamic resources. Even after accounting for the absence of graphics,
this represents a significant difference between this e-commerce workload
and ‘traditional’ Web server workloads. As we will see in Section 6, the
on-demand creation of dynamic resources can have a significant impact on
system scalability. In the remainder of the article, when analyzing the
system workload, we consider requests for dynamic resources only.

5.2 Usage Analysis

Our next analysis examines the usage of the site during each of the two
measurement periods. Understanding site usage is important for numerous

Table I. Breakdown of Requests by Resource Type

Resource Type March 2000 (%) July 2000 (%)

Dynamic 96.58 95.73
HTML 2.58 3.67
Image 0.37 0.16
Text 0.03 0.01
Other 0.44 0.43
Total 100.00 100.00
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reasons, including administrating the site (e.g., scheduling backups or
upgrades so that there is minimum impact on the customer experience).
Monitoring site usage over time is important for planning capacity.

Figure 2 shows the usage of the site during each of the two measurement
periods. The curve in each graph represents the request rate to the site
during each minute of the measurement period. The request rate has been
normalized by the mean request rate of the measurement period. Figure
2(a) shows site usage for a single day in March. This figure indicates that
the workload follows a typical time-of-day pattern; i.e., the site is busiest
during the day and least busy during the early morning. The peak request
rate during this measurement period is twice the mean request rate, and
almost nine times the lightest load, which occurred between 3am and 6am.
During this measurement period there were a number of occasions when
the request rate appears to decrease rapidly for a short period of time. All
these occurrences were followed by a sudden increase in the request rate.
We do not know if this behavior was due to a problem with the system or
with collection of the workload data.

Figure 2(b) shows the usage of the site during the July measurement
period. It reveals that in addition to the time-of-day factors, the day of the
week also affects the request rate to the site. For example, the site is busier
on weekdays than on weekends. On weekdays the workload is busier
during the day than the evening, which is still significantly busier than the
early morning. On Saturday the request rate is quite consistent throughout
the day and evening hours. On Sunday the evening hours are busier than
the day-time hours. In all cases, the lightest loads occur in the early
morning hours. In Figure 2(b) the peak request rate is more than twice the
mean request rate and nine times the minimum request rate. While both of
our data sets are quite consistent in terms of the peak to mean ratios, it is
important to note that there were no special events during either of these
periods that would have caused a “flash crowd” (i.e., a sudden and signifi-
cant increase in the number of user arrivals). Examples of flash crowds can
be seen in the 1998 World Cup Web site workload [Arlitt and Jin 2000]. The
flash crowds in that data set were due to user interest in several of the key
football (i.e., soccer) matches. Examples of special events that can affect
e-commerce workloads are new advertising campaigns, special promotions
(e.g., issuing coupons), or the approach of holidays such as Valentine’s Day,
Easter, Mother’s Day, Father’s Day, and Christmas.

As we have already described, the request rate during the two measure-
ment periods varied by up to a factor of nine—indicating that at times the
system has excess capacity. This suggests that the system could be en-
hanced to provide more personalized service to the smaller number of
customers visiting the site during these periods. The additional customer
service could be a feature for improving customer loyalty, and ultimately
increasing profits.
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5.3 Resource Referencing Behavior

In this section we analyze referencing behavior to unique resources (i.e.,
the distinct URLs, including the name of the resource and any parameters)
requested during a given measurement period. In particular, we examine
the popularity of resources for this site.

In several studies, the popularity of resources on the Web has been
characterized by a Zipf-like distribution [Arlitt and Williamson 1997;
Barford et al. 1999; Breslau et al. 1999; Cunha et al. 1995]. A distribution
is considered to be Zipf-like if the relative probability of a request for the ith

most popular resource is proportional to 1 / ib [Breslau et al. 1999]. The
more concentrated the references to a set of popular resources, the greater
the value of b. To test if a distribution is Zipf-like, a log-transformed plot of
the number of references for each resource as a function of the rank of the
resource is created. The most frequently referenced resource is assigned a
rank of 1; the N th most frequently referenced resource is assigned a rank of
N. If the distribution is Zipf-like, the plot should appear linear with a slope
near 2b [Barford et al. 1999].

Figures 3(a) and (b) show the relative popularity of the most referenced
resources in the March and July data sets respectively. These plots indicate
that the most popular files do follow a Zipf-like distribution. The estimates
of the slope are b 5 1.06 for the March data set (Figure 3(a)) and b 5
1.04 for the July data set (Figure 3(b)). In both cases the coefficient of
determination ~R2! is 0.99, which indicates a very good fit between the
empirical and synthetic distributions.

These results suggest that even a small cache could significantly improve
system performance, as a small number of resources account for a signifi-
cant fraction of all requests. In the case where a small cache is utilized, an
intelligent replacement policy should be used to maximize performance.
Such a replacement policy would need to exploit workload characteristics
such as resource popularity in order to achieve the best possible perfor-
mance. For reasons explained in Section 8, we discuss utilizing a cache
large enough to store all of a site’s responses; a side effect of this approach
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Fig. 2. Traffic volume: (a) March 2000; (b) July 2000.
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is that it negates the need for a replacement policy. As a result, we do not
investigate other resource referencing characteristics (such as temporal
locality) that could be useful in designing/selecting good replacement
policies.

5.4 Client Request Behavior

In this section we analyze the requests (or references) by the client IP
address, rather than by the name of the requested resource. Figure 4
indicates the relative popularity of the clients based on the number of
requests issued by each unique client. The results show that the popularity
of clients also follows a Zipf-like distribution. In the March data set the
slope is estimated at b 5 0.66 (Figure 4(a)); in the July data set (Figure
4(b)) the slope is estimated at b 5 0.78.

These results reveal that some clients issue significantly more requests
than others. Many of the more popular clients are actually proxy servers
that forward requests on behalf of a number of customers. This verifies that
caching at a small number of locations within the Internet would be an
effective enhancement for improving the scalability of this system. We
discuss this issue in more depth in Section 8. A second group of popular
clients are robots. We discuss robots and their impact on the system in
more detail in Section 7.

6. CLASSES OF REQUESTS

In this section we characterize classes of requests based on the impact of
their performance on the system. We then discuss the impact of these
request classes on system scalability. For the system under study, nearly
all requests are for dynamic resources (not HTML files) and pass from the
Web server tier to the application tier for processing. Application servers in
the system under study support many kinds of requests. However, there
are essentially three classes of requests, distinguished by their significantly
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different resource demands. We partition the requests into these classes to
better support reasoning about the scalability of the system.

The three classes of requests are cacheable, noncacheable, and search. As
examples, cacheable requests return responses that describe products for
sale. Noncacheable requests include such functions as adding an item to a
shopping cart and preparing order details. Search requests let users search
for products by keyword. Noncacheable and search requests always cause
dynamic page generations.2 Cacheable requests, as the name implies, can
have their responses stored in an application server request cache. Subse-
quent requests for the same response can be served from the cache.

A drawback of a cached response is that it must not contain any
personalized information. As discussed in the Introduction, personalization
is desirable to boost repeat visits and increase revenue [Reichheld and
Sasser 1990]. Hence personalization is desirable for Web-based shopping
sites. Requests for cacheable documents that are not in the cache or that
are personalized cause the dynamic generation of responses. We define
these as request cache misses. They are different from uncacheable requests
(e.g., requests in the noncacheable and search classes) which are never
cached.

Table II lists the request classes and gives the relative mean CPU
demand for each. CPU demand does not include the time spent waiting for
input-output operations or any other remote access; it is time spent
consuming CPU resources alone. These demand values are estimated based
on the use of exercisers and MeasureWare CPU demand reports from
within the testbed environment. The reported values were verified with
respect to elapsed time measurements for the system under study during
low load conditions.

For the system under study, the application server CPUs presented a
system bottleneck. The wide range of ratios shown in Table II suggest that

2The caching of search responses is not uncommon in these environments, but it was not
exploited during this study.
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the request mix has a significant impact on the average application server
CPU demand per request. For the system under study, generating a
cacheable response dynamically requires approximately 500 times the
application server CPU demand over serving a response from the request
cache. This is due to the use of interpreted scripts, and illustrates the
performance cost of personalization and other request cache misses. Mech-
anisms that integrate fragments of cached pages during personalization are
also possible and may have lower costs; but they were not exploited by the
system under study [Challenger et al. 1999].

The remainder of this section characterizes the request classes for our
data sets and demonstrates the sensitivity of system scalability to request
class mix and request cache hit rate. Request class mix defines the fraction
of total requests, over some time interval, that belong to each class. Table
III gives a breakdown of requests by request class for the March and July
data. The table shows that the request class mix remained relatively stable
over the five-month period.

A simple utilization analysis demonstrates the sensitivity of application
server capacity to the mix of requests for the three classes. Utilization
analysis exploits the utilization law [Jain 1991] that states:

U 5 XD (1)

where U is the utilization of a resource, X is the number of completions per
time unit, and D is the demand in time units per completion. Since U has a
maximum value of 1 per resource, the maximum value for X is determined
by D. As D increases, the maximum number of completions per time unit
decreases. Conversely, as D decreases, the maximum number of comple-
tions per time unit increases. Calculating the ratio of demand for different
planning scenarios quantifies the change in system capacity:

Change in capacity 5 Dold /Dnew (2)

As an example, suppose the system has the request class mix for the July
data in Table III. Based on the product of this mix (weights) and the ratios
of average application server CPU demands ~D! of Table II, the weighted
average CPU demand D per request is 23.4 times that of a cacheable
request. If the percentage of cacheable requests varies by 65% with the
differences applied equally to noncacheable and search, then the average
CPU demand per request for the workload varies from 20.0 to 26.9 times

Table II. Relative Mean CPU Demands for Request Classes

Request Class Name Ratio of CPU Demand

Cacheable (response can be cached) 1 (cache hit)
Cacheable (response can be cached) 500 (cache miss)
Noncacheable (response cannot be cached) 100
Search 40
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that of a cacheable request. Therefore, depending on the perturbation in
request class mix, the capacity of each application server varies by a factor
of 1.17 to 0.87.

Next suppose that the request cache is not large enough to cache all
possible responses or that the frequent personalization of responses is
required. Suppose again we have the workload mix of the July data from
Table III. We perturb the workload mix of Table III by considering a 1%,
4%, and 8% increase in response cache misses to reflect increased person-
alization. The weighted average CPU demand D per request for these
perturbation cases are, respectively, 28.4, 43.4, and 63.3 times that of the
average CPU demand of a request satisfied by the cache. For these cases,
the relative capacity per server decreases from 1 (for no misses), to 0.82,
0.54, and 0.37, respectively.

For large numbers of users an 8% request cache miss rate combined with
a 5% decrease in cacheable requests leads to very high demand. Approxi-
mately 2.7 times as many servers are required compared to the scenario of
no request cache misses. This is a concern when exploiting horizontal
scalability. Even small changes in the cache hit rate or the workload mix
can have a significant effect on the number of servers needed for horizontal
scalability under high load conditions.

7. SESSION ANALYSIS

The previous section contained an analysis of individual requests. This
section presents a session-level characterization of the system under study.
Section 7.1 introduces issues that pertain to the two kinds of sources that
make use of the system, namely users and robots. Section 7.2 discusses the
session-level characteristics for the March and July data sets. Section 7.3
applies clustering techniques to categorize the individual sessions based on
their performance impact on the system to support the evaluation of system
scalability. The resulting clusters are used to create workload classes
appropriate for multiclass queuing models.

7.1 Users and Robots

The primary source of requests for large Web-based systems (such as the
one under study) are users. Robots are another source of requests. Common
uses of robots include determining a site’s liveliness, measuring a site’s
responsiveness, and collecting a site’s pricing information. It is important
to distinguish these sources of requests from those of users when reporting
on user behavior and assessing scalability.

Table III. Request Class Mix

Request Class Name March 2000 (%) July 2000 (%)

Cacheable (response can be cached) 73.30 70.53
Noncacheable (response cannot be cached) 15.89 17.94
Search 10.81 11.94
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It is difficult to positively distinguish between robots and consumer
sessions. While proper “netiquette” requires robots to access the resource
‘/robots.txt’ to identify themselves to the site (and to learn about the site
rules for robots) [Koster 1994], our results suggest that most robots do not
access this file. While some robot implementors/users may be unaware of
this expected behavior, we speculate that many choose not to access this
resource because numerous sites refuse (further) service to positively
identified robots. A few robots can be identified by the user-agent informa-
tion they provide, while others can be identified from their fully qualified
domain names. Unfortunately, these methods do not allow us to identify
many of the (suspected) robots. Thus, for this work, we utilize the overly-
simple assumption that robot sessions issue significantly more requests
than do typical human users. Sessions consisting of more than 30 requests
are deemed to be generated by a robot; shorter sessions are deemed to be
human users. A detailed analysis found that 9% of those sessions charac-
terized as robots performed checkout operations. This offers a lower bound
on false positives for our simple approach.

7.2 Descriptive Statistics for Sessions

In this section we analyze two characteristics for both user and robot
sessions using the March and July data sets. Section 7.2.1 examines the
inter-request time distribution, while Section 7.2.2 analyzes the number of
requests per session. These characteristics are measures of workload
intensity.

As mentioned in Section 4, the Web server (typically) records a unique
session identifier for each request handled by the server. We utilize this
unique identifier to reconstruct and analyze the distinct sessions. Sessions
seen in the first or last hour of the (aggregated) Web server access log are
discarded from our analyses to reduce the impact of end effects.

We assume a session time-out length of 15 minutes in our analyses. This
is the same value that is used by the system under study. We used a
time-out value in our analyses in order to prevent a few, long inter-request
times from skewing our results (e.g., the mean inter-request time). Many of
these long inter-request times are caused by robots that restart their
“crawl” of the site. There are a number of sessions that get fragmented as a
result of using this time-out value in our analyses. Typically, the frag-
mented portion of the session consists of only a single request because the
application server issues a response requesting that users restart their
sessions (by clicking on a link to the home page, thereby acquiring a new
session identifier). Hence we ignore sessions of length one.

7.2.1 Inter-Request Times Within Sessions. In this section we analyze
the session inter-request times (i.e., the time between subsequent request
arrivals within a session). The inter-request times for each unique session
are measured, and the results are then aggregated for all user and all robot
sessions, respectively.
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Figure 5 shows the inter-request time distribution for both users and
robots in March (Figure 5(a)) and July (Figure 5(b)). The x axis in Figure 5
uses a log scale in order to show the full range of values for the inter-
request times. In both measurement periods the results are quite similar.
For example, in March the mean inter-request time for users was 53.9
seconds and the median (i.e., the 50 th percentile) was 28 seconds. In July
the values were slightly lower, with a mean of 48.2 seconds and a median of
26 seconds. The inter-request times for robots were typically shorter than
for users. In March the mean inter-request time for robots was 38.9
seconds, while the median was 22 seconds. In July the results were almost
identical, with a mean of 40.4 seconds and a median of 22 seconds. In all
cases the maximum inter-request time was limited to 900 seconds.

7.2.2 Number of Requests Per Session. Figure 6 shows the distribution
of the number of requests per session for both users and robots. In both
Figure 6(a) (March data set) and Figure 6(b) (July data set), the x-axis uses
a log scale in order to show the full range of values. The maximum number
of requests in a user session is limited to 30 due to how we chose to
distinguish between users and robots.

Figure 6 reveals that there are a few robot sessions with fewer than 30
requests, for the following reasons. We began our analysis by dividing all of
the unique sessions into two sets (users and robots) based on the number of
requests that contained each distinct session identifier. Sessions with more
than 30 requests were assigned to the set of robot sessions. We then
analyzed the characteristics of all sessions in a particular set, this time
utilizing the 900 second limitation on time between subsequent requests in
a session. As a result of this approach, a single session can become
fragmented. With a well-behaved client the fragment will always be of
length one, as the response will direct the client to restart the session and
obtain a new identifier. However, some robots are not well behaved, and
instead continue to reuse an expired session identifier, even though the
application server continually informs the client to restart the session and
acquire a new session identifier. This is an example of a robot consuming
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Fig. 5. Cumulative distribution of session inter-request times: (a) March 2000; (b) July 2000.
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resources at the site while not performing any useful service for the robot
operator, as the response simply contains information on how to acquire a
new session identifier.

Figure 6 shows that the number of requests per session for both users
and robots is quite consistent across the March and July measurement
periods. In March, the average number of requests for a user session was
8.0 and the median 6.0, while in July the mean was 7.14 and the median
6.0. For robot sessions, the mean number of requests per session was 51.0
in March and 52.6 in July, while the median in both data sets was 42.0. In
March, the maximum number of requests in a robot session was 473; in
July it was 3,312 (recall that the measurement period in July was four
times longer than in March).

7.3 Classes of Users and Robots

The previous section characterized user and robot sessions as a whole. In
this section we use clustering techniques to describe classes of users and
robots. The analyses in this section employ the general approach described
in Menascé and Almeida [2000]. For our study we are primarily interested
in scalability. Thus we partition the sessions based on their performance
impact on the system. For example, those sessions that cause more non-
cacheable requests are distinguished from those that issue cacheable
requests only, since they have much higher application server resource
demands. Clustering techniques [Hartigan 1975; Kaufman and Rousseeuw
1990] are used to determine a set of workload classes. Characterizing
workload mix based on classes of users and robots enables precise capacity
planning and scalability analysis exercises.

Clustering [Kaufman and Rousseeuw 1990] is a well-known technique. A
basic clustering algorithm systematically merges clusters that begin with
one observation each into other clusters, until only a small number of
clusters remain. The merging decision is based on a distance metric that
establishes the closeness between cluster pairs. The choice of distance

0

10

20

30

40

50

60

70

80

90

100

1 4 16 64 256 1024 4096

P
er

ce
nt

ag
e

Requests Per Session

users robots

0

10

20

30

40

50

60

70

80

90

100

1 4 16 64 256 1024 4096

P
er

ce
nt

ag
e

Requests Per Session

users robots

(a) (b)

Fig. 6. Cumulative distribution of the number of requests per session: (a) March 2000; (b)
July 2000.

Scalability of a Large Web-Based Shopping System • 59

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.



metric and method for choosing a representative observation from a cluster
for use with the distance metric are decided based on the problem at hand.
The space and computation complexity are O~N 2! where N is the number
of observations. For our study, sessions are observations and resulting
clusters are workload classes.

The k-means clustering algorithm [Hartigan 1975] is more efficient than
the basic clustering algorithm. The k-means algorithm is practical for
dealing with the large numbers of sessions (observations) typical of e-com-
merce systems. It is an iterative method that creates k clusters (workload
classes), and has a space complexity of O~N ! and a per-iteration time
complexity of O~kN !. For a cluster to truly represent its members, an
appropriate value for k must be chosen. Observations within a cluster
should indeed be similar to one another, while the clusters identified are as
dissimilar as possible. bcv is a measure of quality for a clustering exercise
[Menascé and Almeida 2000]. It is defined as the ratio of the coefficient of
variation of the mean intracluster distance divided by the coefficient of
variation of the mean intercluster distance. The variation in the mean
intracluster distance should be small and the variation in the mean
intercluster distance should be large. In general, we look for a small
number of clusters (k 5 2 or more) with a small bcv. When reporting
results we provide the bcv value for the chosen value of k and the minimum
value when considering k from three to twelve.

To apply the clustering algorithm, a distance metric must also be chosen.
Each session is mapped onto a vector that describes its use of system
features. We use a Euclidean distance measure to determine the closeness
between cluster pairs. A first approach towards defining a vector is to
consider all different kinds of requests as entries in the vector. The number
of requests for each kind gives the value of its corresponding entry in the
vector. However, for the system under study, there were many kinds of
requests. With such a broad characterization of sessions it is very difficult
to assess similarity. Another way to simplify the problem is to treat groups
of requests as being similar. Menascé and Almeida [2000] group requests
based on their functional purpose. Requests are categorized as either
browse, search, shopping cart, order, select, or home requests. A transition
matrix gives the transition counts from one group to another. With six
groups there are 36 attributes to distinguish the clusters. In this way the
transition matrix characterizes session length, navigational behavior, and
request mix within sessions. A Euclidean distance metric is used to
compute the distance between matrices for the clustering algorithm. The
distance metric is as follows:

d 5 ÎO
i51

n O
j51

n

~a~i, j! 2 b~i, j!!
2 (3)
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where n 5 6 is the number of groups and a and b are matrices. A weighted
average of matrices is used to form new clusters with the number of
observations per cluster giving the weights.

The purpose of our study differs from that of Menascé and Almeida
[2000]. Our purpose is primarily to characterize the impact of a request
class mix on system performance and scalability. As a result, the classes of
requests in Section 6, cacheable, noncacheable, and search, are chosen as
groups to support clustering exercises. They help distinguish workload
classes with respect to the use of system features that have significantly
different resource demands. Furthermore, for our analysis, in Eq. (3) the
use of counts in the distance metric and the use of a matrix have two
undesirable effects. These distinguish classes based on session length and
navigational behavior, as well as on workload mix. They were desirable for
Menascé and Almeida [2000] but are not for our study. For large systems,
the characterized differences in session length and navigational behavior
are not likely to have a significant impact on overall system performance.

As a result, we use the following vector for describing each session:

a 5 Ka1

n
,

a2

n
,

a3

n
L (4)

The vector a has three attributes. It describes the fraction (normalized
counts) of requests in the session that belong to each of the three request
classes; a1 is the number of cacheable requests; a2 is the number of
noncacheable requests; a3 is the number of search requests; and n is the
total number of requests in the session, i.e., the sum of a1, a2, and a3. The
distance measure is as follows:

d 5 ÎO
i51

n

~ai 2 bi!
2 (5)

where a and b are vectors.
We consider two clustering exercises. Section 7.3.1 and Section 7.3.2

provide a multiclass characterization of user and robot sessions, respec-
tively. Based on the characterization, Section 7.3.3 gives parameters for a
multiclass capacity planning model. The model can be used to assess the
scalability of the system based on workload intensity and mix.

7.3.1 Characterizing User Sessions. This section characterizes user ses-
sions from the July data set. We perform a clustering analysis using
request class mix (with three attributes) and give two examples of cluster-
ing with respect to a single attribute. The single attribute cases consider
the ratio of cacheable request counts to total request counts and search
request counts to total request counts. The results of the clustering
exercises are shown in Figures 7 to 9.
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Figure 7 shows four workload classes for users. 43% of user sessions are
characterized as heavily cacheable, with an average 96% of requests being
cacheable. These users do not rely on the search engine and cause little
back-end activity. They are “window shoppers.” The mean inter-request
time is 40 seconds and the average number of URLs per session is 7.5. We
refer to the next two classes as Moderate Cacheable and Search. These
classes represent 23% and 15% of sessions, respectively. These sessions are
less skewed towards any one kind of request. The last class is referred to as
Noncacheable. It represents 19% of sessions; 68% of these requests are not
cacheable. The mean inter-request time is 75 seconds, which is significantly
higher than for the other classes.

Next we consider clustering with respect to the ratio of cacheable
requests to total requests. From a capacity planning perspective, this
distinguishes classes based on their use of the system’s caching infrastruc-
ture. Figure 8 shows the characteristics of the resulting four classes. The
classes range from Highest cacheable with 95% of requests being cacheable
to Low with 5% of requests cacheable. The results are similar to those of
the characterization by request class mix, but there is a clear increase in
mean inter-request time, as sessions make fewer cacheable requests be-
cause the requests divide across Noncacheable and Search. From Figure 7,
we see that noncacheable requests are associated with high inter-request
times. The inter-request times in Figure 8 range from 40 to 59 seconds.

Figure 9 distinguishes classes based on the ratio of search requests to
total requests. Six classes of user sessions are reported. The percentage of
search requests per session are 91, 67, 48, 29, 14, and 0%, respectively. As
the percentage of searches decreases the mean inter-request time in-
creases, again due to more noncacheable requests. 64% of sessions do
virtually no searching at all. The remaining classes have between 2 and
11% search requests.

7.3.2 Characterizing Robot Sessions. This section presents a second set
of clustering exercises. It characterizes and compares classes of robot
sessions obtained using request class mix and a transition matrix (with 3
rows/columns) based on counts. The latter example illustrates the advan-
tages and disadvantages of using counts rather than normalized counts.
The results for the July data set are given in Figures 10 and 11, respec-
tively.
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Figure 10 presents three classes of robot sessions. 59% of robot sessions
have an average of 92% cacheable requests. These robots are looking at
known items, most likely observing pricing information. For this reason we
refer to them as “window shopper robots.” The average number of URLs per
session is 53. 10% of robot sessions have an average of 91% noncacheable
requests. We refer to them as back-end robots. The remaining 30% of
requests have a less skewed mix. Their behavior is more user-like, with a
request class mix and think time similar to the Moderate cacheable and
Search classes of Figure 7. However, these sessions have an average of 50
URLs per session—some sessions may be real users with particularly long
sessions; as noted earlier, we have at least 9% false positives for our simple
robot identification technique. Future work includes a better characteriza-
tion of long user sessions and their differences from positively identified
robot sessions.

A transition matrix with counts, as in Menascé and Almeida [2000],
confounds session length and request class mix. This approach discovers
four classes of user sessions, as shown in Figure 11. The first class has an
average of over 1000 URLs per session. For presentation, it is shown in the
figure as 150. The fraction of sessions in this class is small, but virtually all
of these requests are for cacheable documents. With this approach, 82% of
sessions appear as user-like sessions. The mix and mean inter-request
times of this class are similar to the moderate cacheable class of Figure 7.
The mean number of URLs per session for the clusters is over 1000, 111,
102, and 44. The middle classes differ because one class is biased towards
search requests and the other towards noncacheable requests.
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Menascé et al. [2000] suggest that high session lengths combined with
highly skewed access to a particular class of requests is a good indicator of
robot sessions. This is compatible with the data from our study. We believe,
however, that there is a very strong likelihood of false positives and false
negatives. It will always be very difficult to recognize robots that intention-
ally behave like users.

7.3.3 Capacity Planning Example. This section demonstrates how the
results of clustering exercises can be used to create multiclass queuing
models [Jain 1991]. Without loss of generality, we consider a multiclass
model for application server CPU resources.

For the model, each class requires a demand value. This article offers
ratios of demand with respect to the CPU demand of a request cache hit.
The product of a request class mix (from the clusters in Figures 7 and 10)
and the application server CPU demand ratios of Table II give a normalized
per-class demand value for the application server CPU resources for classes
of users and robots, respectively. These values are given in Table IV for the
user classes and Table V for the robot classes. For example, Table IV
indicates that a heavy cacheable user session requires 365 times the
resource demand of a single request cache hit.

The demand ratios of Tables IV and V support utilization and queuing
analyses. In Section 6, an example was given to show the sensitivity of
cost-effective system scalability to request class mix and response person-
alization. The same method can be used to assess the sensitivity of system
performance and cost-effective scalability to the above workload classes.

Each workload class imposes significantly different resource demands on
the application servers. The classes offer insights into the impact of users
and robots on system performance and scalability. The following examples
illustrate why multiclass models are important for this system.

● A large increase in search users per unit time will cause more than ten
times the demand on application servers than a similar increase in heavy
cacheable users. Such insights can be used when recommending changes
for site design or implementation.

● The system should be sized for increases in user sessions per unit time,
not the heavier robot sessions. Robot load is not likely to increase with
promotions in the same way as user load will.
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8. PERFORMANCE AND SCALABILITY ISSUES

The system under study had moderate changes in capacity requirements
during the March and July measurement periods. During these periods the
minimum to maximum capacity requirements differed by a factor of nine.
The mean and maximum capacity requirements differed by a factor of
slightly more than two. It is important to note, however, that there were no
shopping promotions in place during our measurement periods, and neither
of our measurement periods overlapped with traditional busy periods in
consumer shopping (e.g., Valentine’s Day, Mother’s Day, Father’s Day,
Easter, and Christmas). Hence we expect that the range in capacity
requirements could be (significantly) higher at times. Anecdotal evidence
from the networking community suggests bandwidth usage on busy Inter-
net links can vary by a factor of 15 over a 24–hour period. In the workload
of the 1998 World Cup Web site, the average request rate during the
busiest 15–minute interval was 19 times greater than the average request
rate for the entire measurement period [Arlitt and Jin 2000].

For the Web-based shopping system under study, the application servers
were a system bottleneck because they performed all of the required
response generations. As a result, much of our characterization and model-
ing focussed on the application server tier.
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Table IV. Per Class Session Demand Value for User Classes

Workload Class Ratio of Session Demand to Request Cache Hit

Heavy cacheable 365
Moderate cacheable 2570
Search 4175
Noncacheable 7002

Table V. Per Class Session Demand Value for Robot Classes

Workload Class Ratio of Session Demand to Request Cache Hit

Window shoppers 753
User-like 3795
Back-end robots 9347
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We found that changes in request class mix of only 65% can affect
capacity per application server by a range of 1.17 to 0.87. Request cache
misses or personalization causing page generation up to 8% of cacheable
responses can decrease capacity per server by a factor of 2.7. This suggests
that 2.7 times as much application server infrastructure is needed to
support a system with 8% personalization of cacheable requests, as opposed
to 0% personalization. This can be an issue for sites that target many users
and have wide fluctuation in workload intensity.

One approach for designing a scalable e-commerce system is to deploy an
application server cache that is large enough to store all of a site’s
responses (or static portions thereof). With this approach, a cache replace-
ment policy is not necessary. This strategy is recommended due to the large
difference in resources needed to serve a response from cache compared to
generating a response on-demand (a difference of 500x for cache hits and
cache misses for the system under study, as shown in Table II). Further-
more, this cache should be “primed” (i.e., filled in advance of customer
demand) to avoid the risk of any additional response generations during
intervals of peak capacity requirements.

To summarize, Web-based shopping sites must have adequate capacity to
support peak loads. This presents a planning challenge for large systems
due to

● lack of control over how many users may arrive;

● the large number of servers that may be needed;

● the sensitivity of resource demands to workload mix; and

● the sensitivity of resource demands to features such as personalized
responses.

Systems are often said to be scalable if they present mechanisms for
adding capacity as load increases. The architectures for typical Web-based
shopping sites support near linear scalability by enabling the addition of
servers as capacity requirements increase. However, linear scalability is
not always adequate for these systems. The uncertainty of workloads and
the fluctuation in capacity requirements can make linear scalability unat-
tractive. Other mechanisms are also needed for managing capacity. We
consider Quality of Service (QoS) management techniques for dealing with
system overload and caching techniques to reduce the likelihood of such
overload.

For improving the service a business provides, features such as personal-
ization of service to customers are important. However, such features come
at a cost. Thus, there is a tradeoff to be considered. During periods when
ample system resources are available, personalization can be offered for all
customers. As system resources become scarce due to the arrival of addi-
tional customers, the site could decide to offer full personalization to only a
select group of customers and reduced personalization (or none at all) to
others. In the traditional retailing world, customers expect better service
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during nonpeak periods. Similarly, software systems for Web-based shop-
ping environments should provide for cost-effective scalability by employ-
ing QoS management techniques as described in the literature [Abdelzaher
and Bhatti 1999].

Efforts should be made to recognize robots. In most cases requests from
robots should be considered as lower priority tasks than requests from all
other customers. This is important—the quality of service to customers
should not be impacted by robots wanting to access the site.

Another approach for further improving the scalability of large Web-
based shopping systems is to extend caching technologies (e.g., content
distribution networks) developed for static Web workloads [Wang 1999].
Utilizing distributed caching techniques is appealing for numerous reasons.
As we discussed in Section 5.3, even a relatively small cache could have a
positive impact on system performance, since many customer requests are
for a small percentage of the site’s resources. In Section 5.4 we observed
that many of the requests came from a small number of clients. This
suggests that even a few caches located at strategic points in the network
could be very effective for reducing the load on the site’s servers. Pushing
content closer to the edge of the network (where the customers are) can also
improve the customer experience by reducing response latency.

Unfortunately, caching in an e-commerce environment is more compli-
cated than in a static Web environment. For example, session state
management, privacy, security, personalization, information consistency
(e.g., pricing and availability), and the ability to monitor customer behavior
are all issues that must be addressed. While these problems are difficult,
they are not impossible to solve. One approach is to separate the static
portion of each Web page from the personalized (i.e., dynamic) parts. The
static portions could then be cached, reducing the amount of dynamic
content that must be generated on demand. Techniques such as these were
utilized to improve the performance of the 1998 Olympic Games Web site
[Challenger et al. 1999]. A related technology is delta encoding, which
reduces the amount of data that must be retrieved when a static Web page
has been modified [Mogul et al. 1997]. Server-push-based cache consistency
mechanisms could also be used to give a business control over what content
gets cached, where it gets cached, and for how long. Existing cache
consistency mechanisms designed for static Web pages could be used or
modified for an e-commerce environment [Dilley et al. 1999; Liu and Cao
1997; Yin et al. 1999; Yu et al. 1999].

9. CONCLUSIONS

For businesses intent on providing the best possible service to their
customers, system scalability for Web-based shopping systems is an impor-
tant issue. For such systems linear scalability is not always adequate.
These systems are sensitive to many factors beyond a planner’s control. As
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a result, application- and system-level QoS mechanisms are needed to
properly manage overload conditions.

Web-based shopping systems often have significantly different resource
demands for application server request cache hits and misses. Replacement
algorithms are not the primary issue for such caches. These (server-side)
caches must be sized in an appropriate manner to avoid all misses,
particularly during periods of significant customer demand.

Effective network-based caching techniques enhance system scalability
by limiting the likelihood of system overload. The results of our workload
analysis of a Web-based shopping system suggest that caching mechanisms
developed for the scalable delivery of static Web content can be exploited by
e-commerce systems as well. Section 8 lists numerous challenges that must
be addressed before these techniques can be fully exploited.

In this study, cluster analysis was used for the purpose of capacity
planning. We employed an approach based on classes of requests with
significantly different resource demands. This approach has the advantage
of forming workload classes in terms of system features that affect perfor-
mance most.

Additional workload characterization studies are required for several
reasons. First, our measurement data did not contain all of the information
of interest to us. Thus, a number of interesting questions remain unan-
swered (e.g., what was the response size distribution for this workload?).
Characterizing the workloads of additional e-commerce systems is needed
to validate the hypotheses we proposed on the basis of the characterization
of a single e-commerce site. The characterization of additional e-commerce
sites may also provide insights into additional strategies that can help
improve the performance and scalability of e-commerce sites. Performing
workload characterization of a set of sites on an ongoing basis would allow
us to understand trends in e-commerce workloads and to evaluate the
impact of changes to systems. Finally, we believe that additional study is
needed in identifying robots, so that these processes do not degrade the
experience of actual customers.
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