
A Schema for Interprocedural Modification
Side-Effect Analysis with Pointer Aliasing

BARBARA G. RYDER
Rutgers University
WILLIAM A. LANDI
Siemens Corporate Research, Inc.
PHILIP A. STOCKS and SEAN ZHANG
Rutgers University
and
RITA ALTUCHER
Siemens Corporate Research, Inc.

The first interprocedural modification side-effects analysis for C (MODC) that obtains better than
worst-case precision on programs with general-purpose pointer usage is presented with empirical
results. The analysis consists of an algorithm schema corresponding to a family of MODC algorithms
with two independent phases: one for determining pointer-induced aliases and a subsequent one
for propagating interprocedural side effects. These MODC algorithms are parameterized by the
aliasing method used. The empirical results compare the performance of two dissimilar MODC
algorithms: MODC(FSAlias) uses a flow-sensitive, calling-context-sensitive interprocedural alias
analysis; MODC(FIAlias) uses a flow-insensitive, calling-context-insensitive alias analysis which
is much faster, but less accurate. These two algorithms were profiled on 45 programs ranging in
size from 250 to 30,000 lines of C code, and the results demonstrate dramatically the possible cost-
precision trade-offs. This first comparative implementation of MODC analyses offers insight into
the differences between flow-/context-sensitive and flow-/context-insensitive analyses. The analysis
cost versus precision trade-offs in side-effect information obtained are reported. The results show
surprisingly that the precision of flow-sensitive side-effect analysis is not always prohibitive in cost,
and that the precision of flow-insensitive analysis is substantially better than worst-case estimates
and seems sufficient for certain applications. On average MODC(FSAlias) for procedures and calls
is in the range of 20% more precise than MODC(FIAlias); however, the performance was found to
be at least an order of magnitude slower than MODC(FIAlias).

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compilers;
optimization; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming
Languages—program analysis

The research reported here was supported, in part, by Siemens Corporate Research and NSF grants
CISE-CCR-9208632, CCR-9501761, GER-9023628.
Authors’ address: W. A. Landi and R. Altucher, Siemens Corporate Research Inc, 755 College Rd.
East, Princeton, NJ 08540; email: {wlandi,raltucher}@scr.siemens.com; B. G. Ryder, P. A. Stocks,
and S. Zhang, Department of Computer Science, Rutgers University, 110 Frelinghuysen Road,
Piscataway, NJ 08854; email: {ryder,pstocks,xxzhang}@cs.rutgers.edu.
Permission to make digital/hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or com-
mercial advantage, the copyright notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to repub-
lish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a
fee.
C© 2001 ACM 0098-3500/01/0300–0105 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, March 2001, Pages 105–186.



106 • B. G. Ryder et al.

General Terms: Languages

1. INTRODUCTION

Accurate compile-time calculation of possible interprocedural side effects is cru-
cial for aggressive compiler optimization [Aho et al. 1986], practical dependence
analysis in programs with procedure calls [Banerjee 1988; Polychronopolous
1988; Wolfe 1989], data-flow-based testing [Bates and Horwitz 1993; Chatterjee
and Ryder 1999; Frankel and Iakounenko 1998; Frankel and Weiss 1993;
Harrold and Soffa 1991; Hutchins et al. 1994; Ostrand 1990; Weyuker 1994],
incremental semantic change analysis of software [Burke 1990; Burke and
Ryder 1990; Carroll and Ryder 1988; Cooper and Kennedy 1984; Marlowe and
Ryder 1990a; 1991; Pollock and Soffa 1989; Ryder 1983; Ryder and Paull 1988;
Yur et al. 1997; 1999], interprocedural def-use relations [Chatterjee 1999;
Chatterjee and Ryder 1999; Ghiya and Hendren 1998; Harrold and Soffa
1994; Pande et al. 1994], and effective static interprocedural program slic-
ing [Atkinson and Griswold 1996; 1998; Gallagher and Lyle 1991; Gupta and
Soffa 1996; Harrold and Ci 1998; Horwitz et al. 1990; Larsen and Harrold
1996; Ottenstein and Ottenstein 1984; Reps and Rosay 1995; Sinha et al. 1999;
Tip 1996; Tip et al. 1996; Tonella et al. 1997; Venkatesh 1991; Weiser 1984].
Many of these key applications in parallel and sequential programming envi-
ronments need interprocedural def-use information. Interprocedural side-effect
information can be used to approximate definitions; a similar calculation can
approximate interprocedural variable uses. The utility of tools that address
these problems can depend directly on the accuracy of the data-flow informa-
tion available to them. Some problems may not need highly accurate data-flow
information to solve them; in contrast, some applications may need to use all the
information in a highly accurate solution. The latter applications need an ef-
ficient method to report program-point-specific side-effect information in the
presence of pointers in order to handle modern languages such as C, C++,
FORTRAN90, and Java;1 this requires practical interprocedural side-effect
analysis with pointers, something that previous techniques for FORTRAN can-
not supply [Banning 1979; Burke 1990; Cooper 1985; Cooper and Kennedy 1987;
1988].

In the past, it has been suggested that one could do intraprocedural analyses
of C codes, by using worst-case estimates of variables which could possibly ex-
perience a side effect at a call site. This yields a safe approximation of side-effect
information, but almost surely overestimates the side effects in a program. To
validate that useful program transformations can be applied, however, more
accurate side-effect information may be needed.

This paper presents the first design and implementation of a schema for
practical interprocedural modification side effects (i.e., MODC) for languages

1Value-flow analysis for Java references is similar to pointer alias analysis [Chatterjee et al. 1999;
Rountev et al. 2000].
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with general-purpose pointers (e.g., C).2 Since determination of pointer-induced
aliasing occurs in the schema as a separable phase, the schema actually rep-
resents a family of MODC algorithms. The empirical experiments reported
involve two MODC methods with different component aliasing algorithms.
MODC(FSAlias) uses a flow-sensitive, calling-context-sensitive approximation
algorithm for pointer-induced aliasing, called FSAlias [Landi and Ryder 1992];
MODC(FIAlias) uses a flow-insensitive, calling-context-insensitive approxima-
tion algorithm for pointer-induced aliasing, called FIAlias, which is similar to
the algorithm described in Zhang [1998] and Zhang et al. [1998]. The actually
implemented algorithms handle unions and casting in C programs. The MODC
schema is independent of the aliasing algorithm chosen and can use any aliasing
algorithm, given a suitable interface. These MODC algorithms have extensive
implementation results reported; these experiments are the first investigations
of the cost-precision trade-offs of flow- and context-sensitivity as measured with
respect to interprocedural side-effect analysis.

MODC(FSAlias) reports program-point-specific possible modification side ef-
fects; the results are more precise than information derivable using the same
conservative alias summary for all statements of a procedure. After aliases
are computed, they are used to gather procedure summary modification infor-
mation categorized by calling context, with subsequent propagation of modi-
fications through the program call multigraph. Finally, call site modification
information is calculated using the results of the procedure side-effects sum-
mary. MODC(FIAlias) also reports program-point-specific possible modification
side effects, but it uses alias information that is assumed to be valid glob-
ally throughout the program. Thus, more spurious side effects may be re-
ported locally and propagated on the call multigraph (in a context-insensitive
manner).

The empirical tests of these algorithms used 45 C programs, most of which
are publicly available.3 Measurements of average and maximum number of
side effects found per assignment statement, per assignment through pointer
dereference (i.e., a through-dereference assignment statement such as ∗p=),
per procedure, and per call have been recorded for both algorithms. Signif-
icantly, better precision is obtained by MODC(FSAlias) at greater time cost
than MODC(FIAlias). This precision is necessary for some compiler transfor-
mations. MODC(FSAlias) shows surprising scalability on programs up to 10,000
lines of code at compile-time cost in the prototype. Extensive use of recursive
data structures is a key factor that limits the scalability of MODC(FSAlias).
Accordingly, MODC(FSAlias) successfully analyzes a 25,000-line program that
does not use recursive data structures. Unexpectedly, MODC(FIAlias) is much
more accurate than a coarse worst-case estimate and costs at least an order
of magnitude less than MODC(FSAlias), so it may be sufficient and practical
for program-understanding applications on large codes. The decreased cost is

2This is a presentation of the algorithm schema for MODC and describes new and extensive em-
pirical results with two of the algorithms. The first MODC algorithm in the schema was discussed
in Landi et al. [1993].
3Visit http://www.prolangs.rutgers.edu/ to obtain the public programs in this data set.
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primarily due to the cost of the FIAlias phase relative to FSAlias. In addition,
several suggested improvements may augment the precision of MODC(FIAlias).

Specifically, the results for MODC(FSAlias) show that procedures modify
on average 11 locations, while MODC(FIAlias) reports that procedures mod-
ify on average 17 locations, approximately 50% more side effects on average
reported by the insensitive algorithm.4 A crude measure of the accuracy of
MODC(FIAlias) versus MODC(FSAlias) can be obtained by examining the dif-
ference in their solutions on the data admitting both kinds of analysis, since
both are safe estimates of side effects that can occur. Normalized differences at
calls and for procedures are presented and discussed in Section 4.

The empirical results show the utility of both analyses for specific appli-
cations and demonstrate the precision gains from sensitivity for certain data-
flow information. Recent work in partitioning programs for analyses [Ruf 1997;
Zhang et al. 1996; 1998] yields hope that analyses of varying cost and preci-
sion can be applied to different parts of a program to obtain desired data-flow
information at practical cost. The experiments reported here can be viewed as
the initial investigation into the cost-precision trade-offs involved when using
data-flow analyses of varying degrees of flow- and context-sensitivity.

This paper is organized as follows. Section 2 discusses issues of accurate
interprocedural data-flow analysis and pointer aliasing algorithms. Section 3
presents the MODC algorithm schema, its worst-case complexity, and an ex-
ample of both of the MODC algorithms used in the empirical tests. Section 4
reports the empirical results and derived observations. Section 5 details re-
lated work in data-flow analysis. Section 6 summarizes the contributions of the
work. Appendix A presents a comparison of the MOD decomposition for C to
that for FORTRAN. In Appendix B, an extended MOD algorithm based on our
decomposition that approximately bounds the precision of side-effect solutions
is explained. Finally, Appendix C presents the raw data from the empirical
measurements discussed in Section 4.

2. INTERPROCEDURAL DATA-FLOW ANALYSIS

All interprocedural data-flow analyses for C-like languages encounter issues
of problem formulation: how to obtain good static estimates of the possible
execution paths through the program (including the possible calling patterns),
how to treat variables created dynamically on the heap and aggregates (i.e.,
arrays, structs), and how to obtain good approximations to the possible aliasing
induced by pointer usage in the program.

2.1 Program Representation

A program is represented by a common directed graph structure, an ICFG
or interprocedural control flow graph. This is no more than the control flow
graph of each procedure connected together at call sites, each of which has
been split into a call node and a return node. Procedures are made to have a

4If data for moria, a statistical outlier, are removed, the average total for MODC(FIAlias) becomes
14. By contrast, removal of moria from the average total for MODC(FSAlias) has no effect.
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single entry node and single exit node, if they do not already, by inserting extra
(dummy) nodes and edges as required. Each call node is connected to the called
procedure’s entry node; each return node is connected to the called procedure’s
exit node. Figure 11 of Section 3.2 shows the ICFG representation of a small
example program.

Iterative data-flow analysis is a fixed-point calculation for recursive equa-
tions defined on a graph representing a program that safely approximates the
meet over all paths solution of a data-flow problem [Kildall 1973; Marlowe and
Ryder 1990b]. For interprocedural data-flow analysis, not all paths in the usual
graph representation correspond to real program executions. A realizable path
is a path on which every procedure returns to the call site which invoked it
[Jones and Muchnick 1982b; Landi and Ryder 1992; Reps et al. 1995; Sharir
and Pnueli 1981]. Paths on which a procedure does not return to the call site
which invoked it are unrealizable and can never happen in an actual execution.
(setjump and longjump are not allowed in the C programs analyzed.) A funda-
mental problem of interprocedural analysis is how to restrict the propagation of
data-flow information to realizable paths, especially when the data-flow func-
tions are monotone rather than distributive so that the fixed-point solution need
not be the meet-over-all-paths solution [Kam and Ullman 1977; Marlowe and
Ryder 1990b].

2.2 Issues Involving Variables

The MODC schema defines a family of algorithms which determine modifica-
tion side effects to fixed locations at program points. A fixed location is either
a user-defined variable or a heap storage creation site. Each individual dynam-
ically allocated fixed location is identified by the site that created it [Jones and
Muchnick 1982b; Ruggieri and Murtagh 1988]; therefore, whereas two fixed lo-
cations created at the same allocation site are not distinguishable, those created
at different sites are. Fixed locations are so named because the relation between
a fixed location and the storage location to which it refers is unchanging during
execution. Fixed locations do not contain any dereferences. For example in C
syntax, x and x.f are fixed locations. By contrast, for other C names which
include dereferences (e.g., ∗p, p->f), the relation between the name and the
storage to which it refers can (and often does) change during execution. The
term object name will be used to refer to all C names in general, with or with-
out dereferences; thus fixed location will delineate a subset of those names.
Side-effect information is obtained only for fixed locations.

All data-flow algorithms must deal with the a priori unbounded nature of
recursive data structures. Many follow the approach of Jones and Muchnick
[1982a] which limits, by truncation, the set of possible object names obtain-
able by following links in a recursive data structure, only maintaining the
first k dereferences, a process known as k-limiting. Others have suggested less
naive ways of restricting the namespace while obtaining more accurate aliases
of heap-stored objects [Chase et al. 1990; Deutsch 1994; Ghiya and Hendren
1996a; 1996b; Hendren and Nicolau 1990; Hendren et al. 1992; Horwitz et al.
1989; Larus and Hilfinger 1988; Sagiv et al. 1998].
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One difficulty with k-limiting is that it loses information about the suffix
of an object name. With 2-limiting, the alias 〈p->f->g->h, x〉 is represented
by 〈p->f->g#, x〉. However this k-limited object name also represents a set
of object names, (e.g., p->f->g->hi for all i that make sense, ∗(p->f->g),
p->f->g->h->j). If no casting is allowed, then type information can rule out
most erroneous cases. However, in the presence of casting, especially when
an algorithm (like FSAlias) attempts to handle the most aggressive instances
(e.g., casting a pointer value to an integer and back again to pointer type), an
algorithm using this kind of k-limiting will experience much imprecision.

The FSAlias algorithm uses k-limiting of names in recursive data structures,
based on Jones and Muchnick’s original k-limiting definition, combined with a
naming scheme that identifies a dynamically created fixed location by its cre-
ation site. FIAlias needs no k-limiting because it only reports aliases involving
those object names that explicitly appear in a program.

As in most pointer-aliasing algorithms, arrays are treated as single variables
by FSAlias and FIAlias. Some algorithms distinguish the independent fields
of a structure (e.g., FSAlias, FIAlias [Emami et al. 1994; Steensgaard 1996a;
Wilson and Lam 1995; Zhang et al. 1996]) while others do not (e.g., Fahndrich
et al. [2000], Foster et al. [2000], Das [2000], Shapiro and Horwitz [1997b], and
Steensgaard [1996b]).

An added complication is presented by non-visible object names. The non-
visibles are local variables of procedures live at the call site (or in an earlier
invocation of the current procedure) which are accessible through an alias,
although not visible directly in the current scope. Possible side effects to these
object names must be accounted for [Emami et al. 1994; Landi and Ryder 1992;
Landi et al. 1993].

2.3 Alias Representation

The MODC schema requires knowledge of aliases, that is, object names that may
refer to the same storage location at some point in the execution. In program-
ming languages such as C, explicit addressing operators render alias analysis
more difficult than in FORTRAN, where aliases are introduced only through
call-by-reference parameter passing. But the need for alias analysis still exists
in modern programming languages whose pointer usage is more constrained
(e.g., Java and FORTRAN90).5

Alias algorithms can be distinguished by their representation of the alias re-
lations and the degree to which they preserve program-point-specific informa-
tion. Aliases are either represented explicitly as pairs of object names or implic-
itly embedded in a points-to relation.6 Hendren et al. represent aliases as a set
of simultaneous points-to relations at a particular program point [Emami et al.
1994; Hendren and Nicolau 1990] (e.g., 〈x,y 〉means x points to the object name
y). Choi et al. use an implicit representation which stores all aliases as pairs

5The MODC schema would be largely unchanged for these languages although the alias phase
would be specific to their simpler pointer usages.
6Differences between points-to analysis notation and the explicit pointer alias representation were
also discussed in Emami et al. [1994].
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Fig. 1. Comparison of implicit and explicit representations of aliases.

consisting of a fixed location and the object name (containing a single derefer-
ence) which points to it (e.g., 〈∗p,x 〉 means p points to x). This representation,
like a points-to representation, requires a closure step to obtain object names
containing multiple levels of dereferences [Burke et al. 1994; 1997; Choi et al.
1993; Hind et al. 1999; Marlowe et al. 1993]. For example, in order to determine
the fixed locations potentially experiencing side effects in ∗∗p=, the implicit rep-
resentation pairs 〈∗p,q 〉 and 〈∗q,r 〉must be combined to yield 〈∗∗p,r 〉. FSAlias
[Landi and Ryder 1992], the flow-/context-sensitive alias approximation algo-
rithm, uses an explicit representation of aliases as pairs of object names possibly
containing dereferences (e.g., 〈∗∗p,∗q 〉). Redundant aliases obtained through
dereferences applied to both elements of an alias pair are not stored explicitly
but are inferred (e.g., 〈∗p,∗q 〉 implies 〈∗∗p,∗∗q 〉). These two representations
will be referred to by the terms explicit and implicit.

Essentially, the implicit representation is the same as that in the points-to re-
lation, except the points-to has the “*” implied for the first element, making the
order of the relation relevant. By explicitly requiring the “*” to appear, the im-
plicit representation can also directly represent reference parameter and struc-
tural aliases between object names, but not general aliasing (e.g., 〈∗∗p,∗∗q 〉);
all of these are directly representable with the explicit representation.

The implicit representation, sometimes referred to as compact,7 is claimed to
be a space savings over the explicit representation, but no empirical or theoret-
ical comparison has yet been made. The observed memory needs of the explicit
representation used in FSAlias are bounded by the memory measurements in
Section 4. Thus, the memory trade-offs in choice of representation are not clear.

The implicit and explicit representations can be shown incomparable in
terms of the resulting accuracy they exhibit as illustrated in Figure 1. In Fig-
ure 1(a), an algorithm using the implicit representation will result in the 〈∗x,z 〉
alias replacing incoming alias 〈∗x,y 〉 at statement S3; thus no aliases involving
y will be reported at S4. By contrast, an algorithm using the explicit represen-
tation will have formed the alias 〈∗∗p,y 〉 at statement S2, and it will remain
in the alias set (as a spurious alias) reported at statement S4. In Figure 1(b),
an algorithm using the implicit representation will combine the aliases 〈∗p,q 〉
and 〈∗q,y 〉 from opposite arms of the if statement and obtain the spurious alias
〈∗∗p,y 〉 at S5, since this representation implies combination of any alias pairs

7The implicit representation is called compact in Burke et al. [1994; 1997], Choi et al. [1993], Hind
and Pioli [1998], and Hind et al. [1999].
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at a program point when aliases are needed. An algorithm using the explicit
representation will not find this spurious alias because no transitive combi-
nation of alias pairs is required. In Figure 1(c), an algorithm using either the
implicit or explicit representation will wrongly combine incoming aliases at
statement S5 〈∗p,q 〉 and 〈∗r,s 〉 with the unconditional alias created at that
statement, 〈∗q,r 〉, obtaining the spurious alias 〈∗∗∗p,s 〉. This occurs because
neither representation encodes enough information to remember that the two
incoming aliases do not exist concurrently on a path in the program. These
examples are simple instances of the general problem.

2.4 Analysis Precision and Sensitivity

Since the basic problem of determining pointer-induced aliases is undecidable
for programs with multiple levels of indirection [Landi 1992b; Landi and Ryder
1991; Ramalingam 1994], practical pointer-aliasing algorithms are approxi-
mate. Many algorithms use intraprocedural propagation of aliases through
pointer-assignment statements in a manner conceptually similar to the single-
level pointer-aliasing algorithm in Chapter 10 of Aho et al. [1986] with exten-
sions to handle multiple-level pointers. Intraprocedural algorithms can make
worst-case assumptions about the effects of call sites and determine a “first-cut”
alias solution.

Most pointer aliasing algorithms now in the literature do some form of in-
terprocedural analysis. They are distinguishable by the amount and type of
calling context they preserve with the derived alias information. Some algo-
rithms obtain differentiated program-point-specific alias information, because
in these algorithms statement order of execution is significant. They are called
flow-sensitive methods. When flow of control of execution is ignored, a flow-
insensitive method is obtained. Algorithms which propagate alias information
across calls, along paths in the called procedure, and then back again into the
calling procedure, keeping approximate calling-context information with each
alias pair, are termed context-sensitive, in that they distinguish back propaga-
tion of information between different call sites. Program-wide alias information
is obtained by techniques which, upon identifying an alias, presume it holds
throughout the program. This can be done in a context-sensitive or insensitive
manner.

2.5 Maintaining Calling Context

There are many methods proposed for distinguishing calling contexts (i.e., the
state of the call stack) in data-flow algorithms. Sharir and Pnueli [1981] ad-
vocate the use of a call-string list of open and not yet closed procedure ac-
tivations to label data-flow information precisely with the calling context in
which it was obtained. They also suggest use of an approximate call-string
consisting of the last j calls on the call stack. The call-string list is close to
the approach used in the points-to algorithm developed at McGill University,
where every procedure activation is analyzed separately [Emami et al. 1994;
Hendren and Nicolau 1990]; optimizations to reduce computation by reusing
the results for similar calling contexts were suggested by Emami [1993], and
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have been subsequently developed by Wilson and Lam [1995] for points-to anal-
ysis and Ghiya and Hendren [1996a] for connection analysis. Empirical data
seems to suggest that such optimizations can dramatically reduce the number
of contexts actually analyzed. Jones and Muchnick [1982b] describe the use
of an abstraction of the calling context at a dynamic creation site for a vari-
able; the precision of this abstraction plus the approximation lattice for the
data-flow problem in question determine the precision of the solution. Choi
et al. use the immediate past call site as their encoding of the calling context
in their flow-sensitive aliasing algorithm [Burke et al. 1997; Choi et al. 1993;
Hind et al. 1999; Marlowe et al. 1993]. They also describe an algorithm variant
that uses alias sets of unrestricted size at the call site, called source alias sets,
as additional call site encoding information. Their use of the previous call site
name is the same as approximations suggested earlier by Jones and Muchnick
[1982b] and Sharir and Pnueli [1981]. It also resonates with later work in the
functional programming community on higher-order functions, Shivers’ control
flow analyses (CFA) [Shivers 1988] in which a suffix of the call stack contents
is used to approximate calling context (e.g., 0CFA—no call sites distinguished,
1CFA—last call site distinguished, etc.).

The calling context approximation used in the MODC schema is inherited
from the alias analysis used. For MODC(FSAlias), this is the same as that of
the FSAlias algorithm [Landi and Ryder 1991; 1992]. The data-flow fact that x
and y are aliased at program point n is represented by an unordered pair 〈x,y 〉
at n. The encoding of calling context is the set of reaching aliases8 (RAs) that
exists at entry of procedure p containing n when p is invoked from a particular
call site. When an alias exists independently of calling context, any reaching
alias is an appropriate context to use, but to ensure correct propagation to all
contexts and efficient representation, the special reaching alias φ is used. The
RA set can be used to determine to which call sites aliases at the exit of a called
procedure should be propagated, namely only to those call sites which induce
that RA set. Essentially the RA set induced by a call corresponds to a source
alias set to which a namespace mapping is applied that includes the parameter
bindings as well as scoping transformations. Using a single alias pair from the
RA set to determine calling context yields a safe approximate solution of realiz-
able paths for programs containing multiple levels of dereferencing; this is the
reaching alias (RA) approximation used for calling context in MODC(FSAlias)
at procedure entry. For aliasing in programs restricted to one level of derefer-
encing, the RA sets are of cardinality one and can be used to obtain a precise
solution [Landi and Ryder 1991]. The empirical results in Section 4 indicate
that this is also a good approximation in practice. RA is used in the description
of the MODC schema to represent some approximation of calling context.

Figures 2 and 3 show that the reaching alias encoding of calling context
is incomparable to using the last call site (i.e., 1CFA). For comparison pur-
poses, these examples have been coded using the Landi–Ryder representation
of aliases. In these examples aliases created independently of calling context
are labeled with call site ⊥ and spurious aliases are underlined.

8Reaching aliases were referred to by the term assumed aliases in Landi and Ryder [1992].

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, March 2001.



114 • B. G. Ryder et al.

Fig. 2. An example in which last call site is more precise than reaching alias.

In Figure 2, the approximation arises because before n3, an algorithm using
reaching aliases for calling context cannot determine that 〈∗p,q 〉 and 〈∗x,y 〉
never occur on the same path; since different reaching aliases might corre-
spond to the same call site, the safe approximation is to assume this does occur,
which causes a spurious alias to be created. By using last call site information,
however, an algorithm can see that each alias is labeled by a different call site.
See Section 2.6.1 for further discussion of this example.

In Figure 3, the approximation in using last call site arises because on the
return of B to A, the algorithm has lost all information differentiating the call
sites in the main program, whereas in this case, the reaching aliases distinguish
the call sites; unlike in Figure 2, there is no approximation, since no aliases are
created involving their possible interaction. Thus, these two calling-context
approximations are incomparable.

2.6 The FSAlias and FIAlias Algorithms

The MODC schema inherits its calling-context sensitivity and flow sensitiv-
ity from the pointer-aliasing algorithm used. The empirical tests have exer-
cised two specific choices of MODC algorithms at opposite ends of the sensi-
tivity spectrum, namely MODC(FSAlias) which is flow-/context-sensitive, and
MODC(FIAlias) which is flow-/context-insensitive. MODC(FSAlias) is more
costly and more accurate, in general, than MODC(FIAlias) because of the
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Fig. 3. An example in which reaching alias is more precise than last call site.

differences in cost and accuracy of the aliasing algorithms used. These tech-
niques allow exploration of the precision/cost trade-offs of side-effects analysis
and the scalability of these approaches applied to real programs. While the re-
sults obtained are specific to the two algorithms used, it seems likely that sim-
ilar results will be obtainable from any pair of algorithms which vary similarly
in sensitivity. More general claims would require additional experimentation.

The following alias algorithm descriptions are explained on an intuitive
level to stress key concepts, with an example following to show the differences
between FSAlias and FIAlias.

2.6.1 FSAlias. Figure 4 gives an overview of the FSAlias algorithm, which
relies on a flow-/context-sensitive fixed-point iteration on the ICFG, using a
standard worklist approach. In FSAlias, alias information is propagated along
the static paths in each procedure for a specific calling context (i.e., a reach-
ing alias) in a manner which preserves statement order; during this propa-
gation, aliases are created or destroyed depending on the semantics of the
program statements encountered on the path. Therefore, a full description of
the algorithm requires a description of the transfer functions at intraproce-
dural nodes (i.e., pointer assignments) and at interprocedural nodes (i.e., call
sites).

The initialization phase of the algorithm (step 1) populates the initial work-
list with the initial set of aliases, either those created intraprocedurally by a
pointer assignment (1.1) or interprocedurally by parameter-argument associa-
tions at calls (1.2). This is done by procedures alias intro by assignment() and
aliases intro by call() respectively.Aliases that are created regardless of any
reaching alias can legitimately be associated with any reaching alias; to en-
sure correct propagation to all contexts, they are only associated with a special
reaching alias, φ.
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Fig. 4. FSAlias algorithm.

Step 2 performs the data-flow information propagation both intraprocedu-
rally and interprocedurally. During one step in the iteration, a (node, [calling
context, alias]) entry is removed from the worklist, and propagated to succes-
sor nodes by invoking appropriate handling procedures. (n, [RA, PA]) repre-
sents the fact that alias PA holds at node n in calling context RA. The term
alias tuple will be used to refer to an alias pair with its corresponding calling
context (e.g., [RA, PA]). The intraprocedural propagation of aliases through
pointer assignment statements is described by transfer functions associated
with each node in a standard extension of Aho et al. [1986] (i.e., performed by
procedure alias implies thru assign() in step 2.4.1). If an intraprocedural node
has no effect on pointer aliasing then the tuple is preserved through that node
(i.e., performed by procedure preserve() in step 2.4.2).

For example, in Figure 9 at the exit of statement 8 (p = q) in main,
the alias tuple [φ,〈∗p, ∗q〉] is generated under all calling contexts (i.e., 1.1
alias intro by assignment()) The alias tuple [φ,〈∗q, a〉] reaches (and is pre-
served through) statement 8 after having been created at statement 7. This
alias is combined with the semantics of the pointer assignment at 8 to cre-
ate alias [φ,〈∗p, a〉] at the exit of statement 8. This fully describes the trans-
fer function associated with the pointer assignment at statement 8 (i.e., 2.4.1
alias implies thru assign()). Similar functions are used at all pointer assign-
ments [Landi and Ryder 1992]. Essentially, an alias is created regardless of
calling context by the assignment itself; current aliases of the left-hand-side
object name (assuming it can be dereferenced) are killed by this assignment;
and aliases of the right-hand-side object name (if any) become new aliases of
the dereferenced left-hand-side object name.
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A more complex example of alias implies thru assign() is offered at state-
ment n3 in Figure 2. Alias tuples [〈∗p,q 〉,〈∗p, q〉] and [〈∗x,y 〉,〈∗x, y〉] both reach
statement n3 and combine with the semantics of that statement to create
alias 〈∗q,y 〉. Because two incoming alias tuples were needed, the algorithm
arbitrarily choses one of their reaching aliases to associate with the created
alias tuple [〈∗p,q 〉,〈∗q, y〉]. This choice is arbitrary because the alias 〈∗q,y 〉
will only hold at call sites whose reaching alias set contains both 〈∗p,q 〉 and
〈∗x,y 〉. Some approximation may occur if there is a call site whose reaching
alias set contains, for example, 〈∗p,q 〉 but not 〈∗x,y 〉, because given the above
choice, 〈∗q,y 〉will be propagated to that call site. Our empirical results indicate
that this happens only infrequently.

Intuitively, the processing in step 2 for propagation of aliases across pro-
cedure boundaries occurs as follows. Interprocedurally, a call to procedure Q,
callQ , creates reaching aliases at the entry of Q. If the algorithm is analyzing
the calling procedure under calling context RA, contexts of (callQ , RA) denotes
the set of reaching aliases induced by both the parameter bindings (handled by
step 1.2) and the aliases associated with RAs which reach the call. The special
reaching alias φ and reaching aliases created solely by the parameter bindings
are included in the set contexts of (callQ , φ).9 Alias(n, RA) represents the set
of aliases at program point n under the calling context RA which reaches the
entry of the procedure containing n.10 The mapping of Alias(n, R A) into the
called procedure is handled by procedure alias at call implies() in step 2.2.

At the exit of Q, aliases associated with reaching alias RA′ are propagated
to any call site callQ , where RA′ ∈ contexts of (callQ , RA), and thereafter are
associated with RA in the procedure containing that call site. This mapping is
performed by procedure alias at exit implies() in step 2.3. Aliases associated
with reaching alias φ are valid at every call site. The details of the algorithm
include the namespace mappings between the calling and called procedures
[Landi and Ryder 1992].

For example, in Figure 9 the set of alias tuples which reach the call at
statement 10 is ([φ,〈∗p, ∗q〉], [φ,〈∗q, a〉], [φ,〈∗p, a〉]). The transfer function at
the call (i.e., 2.2 alias at call implies()) maps each of these aliases into proc1
as a reaching alias, so that the alias tuples at exit of statement 3 in proc1 are
([〈∗p,∗q 〉,〈∗p, ∗q〉] [〈∗q,a 〉,〈∗q, a〉], [〈∗p,a 〉,〈∗p, a〉]). At the exit of statement 4 in
proc1, we preserve all of these incoming alias tuples and generate new alias tu-
ples: ([φ,〈∗r, ∗q〉], [〈∗q,a 〉,〈∗r, a〉]). Now, at the return from the call at statement
10 (recall that the ICFG breaks all call statements into two nodes, a call and a re-
turn), step 2.3 of the algorithm in Figure 4 (i.e., 2.3 alias at exit implies()) prop-
agates the alias tuples ([φ,〈∗p, ∗q〉], [φ,〈∗q, a〉], [φ,〈∗p, a〉], [φ,〈∗r, ∗q〉], [φ,〈∗r, a〉]),
back to the return at statement 10. Note that with respect to the last tuple, RA

9The correspondence between the non-visibles and non-addressable object names is memoized at
the called procedure entry so that a local of a (possibly transitive) calling procedure is mapped to
the representative object name nv which is used throughout the alias propagation on paths from
that procedure entry. Upon return from a call, any aliases involving nv are expanded using the
memoized information into the actual alias relations at the appropriate call sites.
10In Landi and Ryder [1992], may-holds were used to represent conditional aliasing information.
Alias(n, RA) = {PA |may-holds(n, RA, PA)}.
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is φ in the previous discussion and RA′ is 〈∗q,a 〉. This exemplifies the mapping
of corresponding reaching aliases at call sites during alias propagation.

In Figure 9, statement 15 provides an example of 1.2 alias intro by call(),
which accounts for the implied assignments between corresponding actual
arguments and formal parameters. Alias tuple [〈∗f,a 〉,〈∗f, a〉] is created at
statement 15 and propagated to statement 16.

The main approximation which can occur in FSAlias is that sometimes two
incoming aliases at a pointer assignment that are needed to create an alias as
a side effect of that statement can never actually occur on the same execution
path from program start to this assignment. There is an example of this in Fig-
ure 1(c). At the exit of statement S4, the existence of aliases 〈∗p,q 〉 and 〈∗r,s 〉
combined with the assignment at S4 seem to imply that 〈∗∗∗p,s 〉, but there is
no execution path through the if statement on which both 〈∗p,q 〉 and 〈∗r,s 〉
hold. The assumption about incoming alias information is that sets of aliases
can hold simultaneously on some path to this program point; this assumption
may lead to safe but possibly imprecise aliases being created.

FSAlias has worst-case polynomial time complexity.

2.6.2 FIAlias. FIAlias is a fast coarse-grained alternative to FSAlias.
FIAlias is a flow-/context-insensitive algorithm [Andersen 1994; Burke et al.
1994; Coutant 1986; Das 2000; Fahndrich et al. 2000; Foster et al. 2000; Guarna
1988; Hind and Pioli 1998; Rountev and Chandra 2000; Shapiro and Horwitz
1997b; Steensgaard 1996b; Weihl 1980; Zhang 1998; Zhang et al. 1996] which
calculates the same points-to sets as Steensgaard’s algorithm, although inde-
pendently derived [Steensgaard 1996b; Zhang 1995]; we do not describe it as a
nonstandard type analysis, and we do not use constraint-based solution proce-
dures. Aliasing is expressed as a relation between pairs of object names, which
is symmetric and reflexive, but not transitive; however, it is a common (though
not universal) practice to approximate this relation with transitive solutions.
FIAlias forms a partition of the object names which is a transitive representa-
tion of aliasing, and clearly can be represented with space linear in the number
of object names in the program.

For simplicity of explication, assume (i) there are no structure assignments
(these can be broken into multiple nonstructure assignments), (ii) all functions
are of type void (there are many ways to handle returned values; for example,
a function can be made to assign its return value to some new global, and that
global can be used to retrieve the returned value at the call site), and (iii) there
are no casting and no union types. (The handling of casting and union types
is simply a matter of encoding the relationship of fields within object names
[Yong et al. 1999].) Either fields can be represented by offsets from the start of
the structure [Emami et al. 1994; Wilson and Lam 1995] or by symbolic names
[Steensgaard 1996a; Zhang et al. 1996]. FIAlias uses the first approach.

The basic idea of FIAlias is that for the assignment a = b, ∗a and ∗b become
aliased (this is called a type 1 alias effect) and so do ∗ia and ∗ib for all i≥ 2,
assuming those object names make sense (this is called a type 2 alias effect).
The type 2 alias effect induces the right-regular property discussed in Deutsch
[1992] and Zhang et al. [1996].
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The FIAlias algorithm partitions the program’s object names using a
union/find data structure [Aho et al. 1986]. An overview of the steps of FIAlias
is as follows:

(1) Consider each object name to be in its own partition element.
(2) Perform unions of partition elements to account for type 1 alias effects at

all assignments, with formal/actual bindings at call sites considered to be
assignments.

(3) Perform unions of partition elements to account for type 2 alias effects.
(4) Perform some additional unions to ensure that actuals for function pointer

call sites are unioned with the formals of the called procedure. When
handling functions that are non-void, the returned value must be unioned
with the name to which the value is assigned.

Typically the only alias information of interest concerns object names that
physically appear in the program and their fixed-location aliases. The set of
interesting object names is defined to be those object names needed to get an
explicit alias solution for all object names that appear in the program and all
fixed locations (i.e., including heap storage creation site names). If an object
name n appears in an executable statement in the program, then n, ∗n, and any
prefix of n are interesting; thus, if p->m appears in the program, then ∗(p->m),
p->m and the prefixes ∗p and p are all interesting. Extending the interesting
object names by one dereference is necessary to compute the aliases of ∗p given
p=q, since the aliases of ∗q must be known.

The FIAlias algorithm is presented in Figure 5. In Phase 1, an object name
name is plausible if there is any possibility that ∗name can have aliases; thus,
constants are not plausible object names, and assignments like i=5 and p=NULL
generate no plausible left-hand-side or right-hand-side pairs. An assignment
i=j where i and j are integers is a more complicated case; this statement
can generate the plausible pair i/j if pointer-valued data are assumed to be
transferable through integer object names using casts, as in the C program
in Figure 6. Similarly, for p=q+i where p and q are pointers and i is an inte-
ger, p/q must be considered as a plausible left-hand-side/right-hand-side pair,
but p/i may not be considered as such. The assignment function pointer =
function is treated as function pointer = &function for this analysis; that is,
∗function pointer must be unioned to function and not to ∗function.

Phase 2 simply makes sure that for all pairs namei, name j in a partition,
that ∗namei and ∗name j are also in the same partition (i.e., type 2 alias effects).
Phase 2 defines map so that for all object names n, map[find(n)][op] = find(op(n))
assuming op(n) is interesting. For example, map[find(n)][∗] = find(∗n) if ∗n is
interesting. The type signature of map is

map : partition→ (operation→ partition).

Map is built incrementally by iterating through all interesting object names. The
merge function, also presented in Figure 5, unions two partitions and updates
map.
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Fig. 5. FIAlias algorithm.

Phase 3 is straightforward, accounting for calls through function pointers.
fp can be an arbitrary object name; for example, var1, ∗var1, or ∗∗var2. Care
must be taken in C because the calls var(. . .) and (∗var)() are semantically
equivalent and should be be treated as such. Because FSAlias as described does
not handle function pointers, we did not implement Phase 3 of FIAlias. None
of the C programs we used as data contained function pointers.

Figure 8 shows an example of Phases 1 and 2 of FIAlias as performed on
the small C program given in Figure 7. Initially, each object name is placed in
its own equivalence class; (∗∗x, ∗x, x, ∗y, y, a, ∗a, b) are all interesting names
for this program. The object names (∗a, ∗y, b, ∗∗x) do not appear themselves in

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, March 2001.



A Schema for Interprocedural Modification Side-Effect Analysis • 121

Fig. 6. Unsafe use of casting.

Fig. 7. A small C program.

executable statements, but are needed to calculate the aliases for this program.
Note that ∗∗y is not interesting, because neither ∗∗y nor ∗y appear in the as-
signments in the program.

As shown, Phase I of FIAlias computes equivalence sets {∗a,b}, {∗x,a,∗y},
{∗∗x}, {x}, {y} by accounting for type 1 effects for each program statement.
Phase II of FIAlias explores all the interesting names and essentially checks
that if two interesting object names w,v are in the same equivalence class and
∗w,∗v are also interesting, then ∗w,∗v are also in the same equivalence class. If
this is not the case, the algorithm makes it so by merging the two correspond-
ing equivalence classes; this is accomplished by using the map function. The
first Update map step of Phase II effectively uses map to represent the points-to
edge labeled ∗ going from equivalence class {x} to {∗x,a,∗y}; this is analogous
to drawing a labeled edge in a points-to graph between these two classes. In-
termediate steps in the example effectively draw other edges labeled ∗ between
appropriate equivalence classes. The last step of Phase II finds that {∗∗x} and
{∗a,b} should belong to the same equivalence class because of type 2 effects
with regard to ∗x and a, which are in the same equivalence class.

The final set of equivalence classes can be interpreted to mean that object
names ∗a,∗∗x share the same points-to set; namely, they both point to b. Simi-
larly, object names ∗x,∗y both point to a.

The operations in FIAlias are similar to those used by a unification-based
flow-insensitive analysis [Steensgaard 1996b]; the solution calculated by both
algorithms is the same. FIAlias can be shown to have worst case almost linear
performance O(Nα(N , N )) where N is bounded above by the number of object
names appearing in the program [Zhang et al. 1996].

2.6.3 Example. Figure 9 demonstrates the differences in precision be-
tween FSAlias and FIAlias through a small example involving three proce-
dures, main, proc1, and proc2. First, consider the solution obtained by FIAlias.
Since q is assigned both the address of a and b in main, FIAlias will assume
that the aliases 〈∗q,a 〉 and 〈∗q,b 〉 hold globally throughout the program. Be-
cause FSAlias propagates alias information through statements 7–14 in order,
the alias 〈∗q,a 〉 holds on exit from statement 7, through statements 8–9, and
is killed by statement 11; therefore, FSAlias can tell that b is the only fixed

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, March 2001.



122 • B. G. Ryder et al.

Fig. 8. Example of FIAlias applied to program in Figure 7.

location aliased to ∗q at statement 12, not both a and b which would be re-
ported by FIAlias. Similarly, at statement 9, FSAlias can tell that only fixed
location a is aliased to ∗p whereas FIAlias cannot and reports ∗p aliased to both
a and b.

To illustrate the interprocedural propagation of aliases by FSAlias, proc1
is called by main at statements 10 and 14 and proc2 is called at statement 15.
The alias tuple [φ,〈∗q, a〉] reaches the exit of statement 9. This is propagated
into proc1 as alias tuple [〈∗q,a 〉,〈∗q, a〉] and reaches the exit of statement 3.
Then, alias tuple [〈∗q,a 〉,〈∗r, a〉] is created on exit of statement 4, and it and
the alias tuple [〈∗q,a 〉,〈∗q, a〉] reach the exit of statement 5. Finally, the alias
tuples ([φ,〈∗q, a〉], [φ,〈∗r, a〉]) reach the exit of the call statement 10.

Statement 11 then kills alias tuple [φ,〈∗q, a〉], and creates the alias tuple
[φ,〈∗q, b〉] which reaches the call at statement 14. Alias tuple [φ,〈∗r, a〉] is pre-
served through statements 11–13 and reaches the call at statement 14. Alias
tuple [φ,〈∗r, a〉] will result in [〈∗r,a 〉,〈∗r, a〉] being propagated to the exit of
statement 3. Then this is killed by statement 4. Alias tuple [φ,〈∗q, b〉] will
result in [〈∗q,b 〉,〈∗q, b〉] being propagated to the exit of statement 3. This re-
sults in alias tuple [〈∗q,b 〉,〈∗r, b〉] at the exit of statement 4, which reaches
the exit of statement 5 as does [〈∗q,b 〉,〈∗q, b〉]. Finally, alias tuples ([φ,〈∗q, b〉],
[φ,〈∗r, b〉]) reach the exit of the call statement 14, and thus the entry of call
statement 15. Similarly, these tuples, [φ,〈∗q, b〉] and [φ,〈∗r, b〉], cause alias tu-
ples [〈∗f,a 〉,〈∗q, b〉] and [〈∗f,a 〉,〈∗r, b〉] to reach statement 16. In addition, tu-
ple [〈∗f,a 〉,〈∗f, a〉] reaches statement 16 because procedure proc2 has a formal
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Fig. 9. Example of differences between FIAlias and FSAlias.

parameter and parameter association is treated as an implicit assignment (i.e.,
1.2 alias intro by call()). All of these tuples are preserved through statement 17,
and no new tuple is created. On return from procedure proc2, tuples [φ,〈∗q, b〉]
and [φ,〈∗r, b〉] are passed back to the exit of statement 15.

Although alias tuples [〈∗q,a 〉,〈∗r, a〉] and [〈∗q,b 〉,〈∗r, b〉] both reach the exit
of statement 5 in proc1, the reaching alias abstraction ensures that these aliases
are mapped back only to the corresponding calling contexts; therefore, alias
tuple [φ,〈∗r, a〉] will be mapped back to the exit of statement 10, and alias tuple
[φ,〈∗r, b〉] will be mapped back to the exit of statement 14. Thus, the only fixed
location aliased to ∗r at statement 13 is a with FSAlias, but FIAlias will find
both a and b aliased to ∗r, since it combines all calling contexts. Note that ∗r is
reported aliased to both a and b at statement 5 using either alias algorithm.

3. MODC SCHEMA

The MODC schema defines a family of algorithms which solve for modification
side effects to fixed locations at program points, parameterized by the type
of aliasing algorithm used. Side effects reported are differentiated by fixed-
location type: global, local, dynamically-created, and non-visible. In solving for
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Fig. 10. Decomposition of the MODC problem.

modification side effects, the MODC problem is decomposed into subproblems
that are individually easier to solve than the monolithic problem. The prob-
lem decomposition assumes that context-sensitive alias information is avail-
able; it preserves calling-context information with the side effects for as long as
possible. The MODC schema is described for FSAlias, but any approximation
of calling context may be used instead. If the pointer alias algorithm used is
context-insensitive, then conceptually all calling contexts are mapped to one
context; that is, there is no differentiation in side effects returned from a pro-
cedure to any individual call site, and the multiple subproblems distinguished
by RA shown in Figure 10 become a single subproblem.

As mentioned previously, the first pass of the algorithm solves for aliasing
information, Alias. Given the results of this analysis, two related problems are
calculated: (i) PMOD, a procedure-level summary of context-sensitive modi-
fication side effects which can occur to fixed locations, and (ii) CMOD, a set
of modified fixed locations at each program point corresponding to a specific
context. CMOD solutions can then be used to derive MOD information for pro-
gram points, while PMOD solutions are a procedure-level summary of modifi-
cation side effects.

The decomposition of the MOD problem is pictured in Figure 10, where P is
a procedure, RA is a calling context (i.e., a reaching alias), and n is a program
point. The following brief description of each subproblem will be augmented
in the next section by the corresponding data-flow equations. Alias(n, R A) is
the pointer-alias solution at statement n under calling context RA. DIRMOD(n)
captures all object names which occur on the left-hand-side of the assignment
at program point n (e.g., ∗p=, v=). At an assignment n, CondLMOD widens
DIRMOD(n) to include the effects of aliasing; CondLMOD contains only fixed
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locations. CondIMOD(P, RA) summarizes CondLMOD information for each
calling context RA over all assignment statements in procedure P. PMOD(P,
RA) is formed from local CondIMOD information for P and PMOD information
propagated from procedures called by P all under context RA, thus calculating
both direct and indirect side effects of P. CMOD at a call site is constructed
from PMOD of the called procedure, and at an assignment, from CondLMOD
of that statement. Finally, MOD at a statement is constructed from CMOD by
summarizing over all contexts, as is MOD for a procedure.

A comparison of our MODC decomposition to that for FORTRAN is given
in Appendix A. Recall, that although the MODC schema is described with
calling-context information available, an easy transformation (i.e., folding all
contexts together) yields a MODC algorithm for use with context-insensitive
alias methods.

3.1 Data-Flow Equations

The following discussion makes these assumptions.r Assignment is synonymous with value-setting statement; thus, scanf is con-
sidered an assignment.r All object names are unique; thus the issue of name hiding is avoided. This
can easily be met by appending object names with the function and file in
which they are defined.r On bottom data-flow information is computed (i.e., information at a statement
incorporates the effects of that statement). Since a call statement is split into
a call node and a return node in the internal representation, the information
computed at the return node is “on bottom” information for the call statement,
while the information computed at the call node is “on top” information for
the call statement.r The modification side-effects sets are associated with some representation of
calling context to restrict attention to realizable paths; note that the MODC
schema is independent of the choice of calling-context abstraction.r Predecessors(n) represents the set of predecessors of n in the ICFG.r Trivial, reflexive aliases (e.g., 〈∗p,∗p 〉) are associated with the special reach-
ing alias φ at all program points; this assumption simplifies the equation
for CondLMOD. In the actual implementation these trivial aliases are not
stored.

DIRMOD(n) is defined as the visible direct side effects at a statement; there-
fore, it requires no data-flow equation. CondLMOD(n, RA) is the set of fixed
locations modified by the assignment at n because of aliases that occur on bot-
tom of any of the predecessors of n under calling context RA for the procedure
containing n:

CondLMOD(n, RA)=
⋃

pred∈Predecessors(n)

obj1

∣∣∣∣∣∣
obj2 = DIRMOD(n) and
〈obj1, obj2〉 ∈ Alias(pred, RA)
and obj1 is a fixed location

 (1)
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If DIRMOD(n) is a fixed location, it is included in CondLMOD(n, φ) because
reflexive aliases are associated with the special reaching alias φ.

For a procedure P and each calling context RA, CondIMOD(P, RA) contains
the fixed locations modified by assignments in procedure P.

CondIMOD(P, RA) =
⋃

n an assignment in P

CondLMOD(n, RA) (2)

PMOD(P, RA) is the set of fixed locations modified by procedure P, including
the effects of calls from within P, considering only aliases corresponding to call-
ing context RA. The PMOD sets for a procedure summarize its modification side
effects for a given reaching alias. They are specified by the following, possibly
recursive, system of data-flow equations which can be solved iteratively.
The fixed-point iteration used in the implementation is an optimistic lattice
framework,11 which has been highly optimized with respect to the interproce-
dural transfer functions.

PMOD(P, RA) = CondIMOD(P, RA)
⋃ ⋃

callQ in P and
RA′ ∈ contexts of (callQ , RA)

(
bcallQ (PMOD(Q , RA′))

)

(3)
In Equation (3), callQ is a call site in P at which P calls Q. RA′ represents the

calling context induced by callQ during data-flow propagation in P under calling
context RA of P . The function bcallQ , specific to callQ , maps object names from
the called procedure (Q) to the calling procedure (P) according to scoping rules
[Cooper and Kennedy 1987] and only returns fixed locations. Specifically, bcallQ

factors out all local fixed locations of Q (including formal parameters of Q), maps
global fixed locations (including heap storage creation sites) to themselves, and
maps non-visibles in Q to their corresponding fixed locations in P, which are
either locals of P or non-visibles in P [Landi and Ryder 1992].12 Recall that
contexts of are sets of reaching aliases defined in Section 2.6.1.

It is possible with the MODC schema to derive side effects at specific inter-
esting statements, namely calls and assignments.

CMOD(n, RA) =



CondLMOD(n, RA) if n is an assignment⋃
RA′ ∈ contexts of (n, RA)

bn(PMOD(Q , RA′)) if n is a call of Q

∅ otherwise

(4)

Finally, MOD(n) summarizes the side effects over all executions of n in pro-
cedure P, and MOD(P) summarizes the side effects over all calls of P. Both are
obtained by considering all contexts for P.

11An optimistic data-flow framework requires iteration to a fixed point to obtain a safe solution; by
contrast, partial solutions of a pessimistic framework are safe.
12If context-insensitive aliases are used, there are no non-visibles.
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Fig. 11. An example program and its ICFG.

MOD(n) =
⋃

context RA for P

CMOD(n, RA)

MOD(P ) =
⋃

context RA for P

PMOD(P, RA)

3.2 Example

The example in Figures 11, 12, and 13 shows a small C program analyzed by
both the MODC(FSAlias) and MODC(FIAlias) algorithms.

For MODC(FSAlias), both main and R are analyzed with reaching alias φ
at their entries. The first call to R (shown by the solid line) creates the alias
〈∗b,x 〉 at the entry of R. The second call to R (shown by the dashed line) creates
the alias 〈∗b,y 〉 at the entry of R. Procedure R is analyzed for each of these
calling contexts. Note there are no aliases in main. The FSAlias solution for R
is shown in Figure 12; the PMOD and CMOD solutions computed are shown in
the same figure. Empty entries in these tables mean either no alias or no side
effect. Note that the entries in the tables indicate additions to the solution at
a program point under a calling context. The whole solution at a point under
a given context is the union of the entry in the table and the solution under
calling context φ. Fixed location b is not in the solution for main because it is a
local of R.

For MODC(FIAlias), the FIAlias solution is shown in Figure 13. The PMOD
solutions for main and R are shown as well. The CMOD solution does differen-
tiate side effects at program points within main and R, but notice that calling
contexts are not differentiated.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, March 2001.



128 • B. G. Ryder et al.

Fig. 12. MODC(FSAlias) solution for the example program in Figure 11.

3.3 Handling Call-by-Reference Parameters

If a language uses call-by-reference parameter passing rather than the call-by-
value parameter passing as in C, programs can be transformed into equivalent
call-by-value programs by adding an additional level of indirection using the
following transformation:r For every call-by-reference formal r of type tr

1. make r a call-by-value formal of type tr∗
2. replace r everywhere in the procedure with (∗r)r For every actual a corresponding to a call-by-reference formal
3. replace a with &(a); note that a is an arbitrary object name (e.g., a[10],

p->next)

When 2 and 3 above are both applicable, apply both. This means that a refer-
ence formal r′ passed as an actual to another reference formal is transformed
into &(∗r′). Since semantically, dereference (∗) and address (&) are effectively
inverse operations13 (&∗r′ ≡ *&r′ ≡ r′), in the above case r′ will be unchanged.
This transformation is essentially the inverse of refizing as developed in Carroll
[1988]; for programs with single-level pointers it is equivalent to the transfor-
mation in Landi [1992a, p. 50].

3.4 Worst-Case Complexity

The following definitions are useful in arguing the worst-case complexity of the
MODC schema.

13In C, there is an exception: &∗(&x)≡ &x but ∗&(&x) is illegal. The transformation will never cause
this kind of translation.
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Fig. 13. MODC(FIAlias) solution for the example program of Figure 11.

r Nalias is the total number of aliases in the program.r Nassign is the number of assignments in the program.r Nfixed is the number of fixed locations.r NICFG is the number of nodes in the ICFG. This is roughly equivalent to
number of program points.r Nproc is the number of procedures in the program.r Ccopy is the cost of copying a set of fixed locations [Ä(Nfixed)].r Cunion is the cost of the union operation over sets of fixed locations [Ä(Nfixed)].r EICFG is the number of edges in the ICFG.r Mcall is the maximum number of calls for any one procedure.r Mpred is the maximum number of predecessors of any assignment.r MRA is the maximum number of reaching aliases at the entry of any
procedure.

The worst-case time complexity of a MODC calculation is

O
(
Nproc ∗ Mcall ∗ M 2

RA ∗ N 2
fixed + Nassign ∗ MRA ∗ Mpred ∗ Cunion

+Nalias + NICFG ∗ MRA ∗ Cunion
)

Nevertheless, as for most static analyses, the worst-case time has little corre-
lation with the observed behavior of the algorithm in practice.

To understand the sources of complexity in an algorithm, examine worst-case
time complexity of each calculation in turn.r DIRMOD: O(NICFG)r Predecessors: O(EICFG)r CondLMOD: O(Nalias + Nassign ∗ MRA ∗ Mpred ∗ Cunion)

Access to the alias solution is necessary to compute CondLMOD, but each
alias need only be considered once [O(Nalias)]. There are at most (Nassign∗MRA)
CondLMOD sets, and for each one at most (Mpred + 1) unions are performed.r CondIMOD: O(Nassign ∗ MRA ∗ Cunion)
Each CondLMOD(n, RA), with n an assignment statement and RA a reaching
alias, is conjoined into exactly one CondIMOD. Thus at most (Nassign ∗ MRA)
unions are performed.
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r PMOD: O(Nproc ∗ Mcall ∗ M 2
RA ∗ N 2

fixed)
PMOD requires a fixed-point calculation. There are at most (Nproc ∗ MRA)
PMOD sets. PMOD(P, RA) is first initialized to CondIMOD(P, RA). For all
procedures P and reaching aliases RA, this costs

O(Nproc ∗ MRA ∗ Ccopy). (5)

Secondly, PMOD is computed once for all procedures P and contexts RA using
Eq. (3); this cost will be amortized over all calls in the program. There are
O(Nproc ∗ Mcall) calls. For a call to procedure Q, each set PMOD(Q , RA′) will
be considered at most MRA times per union operation. There are at most
MRA such PMOD sets for Q. Therefore the cost of unions at a call is at most
(MRA ∗ MRA) ∗ (Nfixed + Cunion). The second term is the cost of the union as
well as applying bcallQ to each element. The cost of contexts of and bcallQ is
negligible as these functions are already calculated by the alias calculation,
and for the second pass are implemented as a simple (hash) table lookup.
Including the cost of a union with CondIMOD in Eq. (3), the total cost of
computing PMOD once is

O([number of calls] ∗ [cost of unions per call]

+ [number of PMODs] ∗ [cost of one union])

Taking into account that Cunion = Ä(Nfixed) and the first term dominates, this
is equal to

O([Nproc ∗ Mcall] ∗ [MRA ∗ MRA ∗ Nfixed]). (6)

Finally the cost of the iteration must be counted. Each PMOD can change
its value at most Nfixed times. Thus there are at most Nproc ∗ MRA ∗ Nfixed
changes over all PMODs. When PMOD(Q , RA′) changes, PMOD(P, RA) of all
the procedures P that contain a callQ such that RA′ ∈ contexts of (callQ , RA)
must be recomputed. There are at most Mcall ∗ MRA such PMODs. Thus,
the cost of changing PMOD(P, RA) is O(Cunion + Nfixed): one union (we do not
recompute Eq. (3) from scratch) plus the cost of applying bcallP to each element
of PMOD(Q , RA′). The cost of the fixed-point iteration phase is O([number of
changes] ∗ [recomputations per change] ∗ [cost of one recomputation]) =

O([Nproc ∗ MRA ∗ Nfixed] ∗ [Mcall ∗ MRA] ∗ Nfixed)

= O(Nproc ∗ Mcall ∗ M 2
RA ∗ N 2

fixed

)
. (7)

Thus, the total cost for computing PMOD is the sum of Eqs. (5), (6), and (7),
which is O(Nproc ∗ Mcall ∗ M 2

RA ∗ N 2
fixed).r CMOD: O(Nassign ∗ MRA ∗ Ccopy + Nproc ∗ Mcall ∗ M 2

RA ∗ Nfixed)
For each assignment statement and each reaching alias, the cost is Ccopy.
For each call, callP , (there are O(Nproc ∗ Mcall) of them in the program) and
each reaching alias, RA, bcallP is applied to PMOD(P, RA), and the results are
conjoined. Thus, the cost for each (callP , RA) pair is O(MRA ∗ Nfixed).r MOD: O(NICFG ∗ MRA ∗ Cunion)
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3.5 Counting Side Effects

An important issue in measuring the effectiveness of a data-flow analysis is the
choice of an empirically observable metric by which to judge performance. The
number of fixed locations reported experiencing side effects at an assignment, at
a call, and for a procedure is the metric used in these experiments. This seems
reasonable, since it is of clear use in program understanding and compiling
applications; if the number of measured side effects is too large at a program
point, the analysis is not of practical use.

Some assignment statements in C involve aggregate types such as structs
or unions. An aggregate is a fixed location whose fields can be simultaneously
modified through one assignment. Arrays in C are not aggregates, because an
array itself cannot be modified as one entity; all modifications occur through
individual array elements.

Aggregates in MODC solutions present problems in counting the numbers of
fixed locations modified.

Suppose s is a struct type with fields a, b, and c. It is possible that s,
s.a, s.b, and s.c all are modified by individual assignment statements, and
therefore all are found in a MODC solution for a particular procedure. For
example, in main in Figure 14 there are assignments to every field of struct s3.
In procedure p, there is a struct assignment which simultaneously assigns to
all three fields of struct s1. If struct fields are counted as fixed locations, then
3 side effects will be reported for main (one for each assignment); otherwise, 1
side effect to struct s3 will be reported. Similar questions determine if 1 or 3
fixed locations will be reported as side effects for procedure p or if 1 or 3 fixed
locations will be reported for procedure r. Note that the difference between q
and r is that r has a struct assignment and a field assignment to the same
struct, whereas q has a struct assignment and a field assignment to a different
struct.

The MODC implementation supports two counting schemes, called Fields
and NoFields, respectively. To explain how aggregates are handled in the two
counting schemes, refer to Figure 14. First an appropriate MODC algorithm is
applied to a program and sets of fixed locations collected at each assignment
statement. For procedures like r both the entire struct and an individual field
may occur in MOD(r) as a fixed-location side effect.

Counting fixed locations modified for an assignment statement is straight-
forward. For NoFields counting, any field name or struct name counts as 1 fixed
location. For Fields counting, a struct assignment statement affects m fixed lo-
cations for a struct with m fields; the effect would be the same for an indirect
access to the entire struct through a pointer to it. Each assignment to one field
of a struct counts as 1 fixed location as well. These counts are illustrated in the
Fields column in the code in Figure 14 for procedure q.

Counting becomes more complicated at a call when both a struct name and
one of its field names are reported; this corresponds to the call of r in main in
Figure 14. Intuitively, if Fields counting is used, each distinct field is counted
separately; thus the struct assignment statement in r finds 3 fixed locations ex-
periencing side effects whereas the assignment to s3.a finds only 1. If NoFields
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Fig. 14. Side effects counting example.

counting is used, when a field name experiences a side effect it is as if the en-
tire struct experienced the effect, so that the call to r reports 1 side effect
(to struct s3), and the three assignments in main all are counted as caus-
ing a side effect to struct s3, rather than to its fields. Notice for the call of
q in main only 2 fixed locations are reported as experiencing a side effect in
NoFields counting, structs s3 and s2. The same counting is used for MOD(P )
sets.

Unions are handled in much the same manner as structs. If any member
of a union appears in a MODC set, under Fields counting it will be expanded
to all of its members. The actual internal representation of fields/members for
structs and unions in FSAlias and FIAlias uses a start position and length; this
sometimes allows recognition of exact overlap of two struct fields (or members)
and results in better precision in counting.

There is also a problem with Fields counting of dynamically created structs
if a user creates their own malloc. Recall that a unique heap creation site name
is created for all cells corresponding to a single allocation statement in the
code. In Figure 15, procedure a only stores into struct ∗s, and procedure b only
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Fig. 15. Problem with Fields counting involving user-defined malloc.

stores into struct ∗t; yet 5 fixed locations are reported in MOD(a) and MOD(b),
because the naming mechanism does not remember that the 5 fields come from
two different structs. The problem is that the same heap creation site name
for the malloc site in procedure my-malloc is used for all calling contexts. That
name becomes associated with the sum of all the fields of all structs allocated
using this procedure; effectively, encapsulation of the heap allocation within a
procedure hides what is really going on from the aliasing algorithm.

NoFields counting is preferred, and the results in Section 4 are reported
using this scheme, though Figure 24 offers results using Fields counting and
shows how this choice can influence the results reported.

4. EMPIRICAL RESULTS

This section describes and discusses execution results of the MODC analyses.
The MODC, FSAlias, and FIAlias analysis code is implemented in C and ana-
lyzes a reduced version of C that excludes pointers to functions, setjump and
longjump, but allows type casting and unions. Recall that because FSAlias
as described does not handle function pointers, the implemented version of
FIAlias does not handle function pointers either. None of the C programs we
used as data contained function pointers. These results were gathered on a
75MHz processor Sun Sparcstation 20 with 348MB of RAM and 527MB swap
space.

Table I shows information about the 45 C programs that were analyzed. The
programs are ordered by the number of ICFG nodes; this order is maintained
in subsequent figures. The numbers of procedures, call statements, and assign-
ment statements in each data program are shown. For MOD(n), the relevant
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Table I. Program Data Set

# Assigns Flow-sens.
Program LOC ICFG Nodes # Procs # Calls All Thru-deref Alias Soln

allroots 215 422 8 20 72 3
√

fixoutput 401 617 7 13 123 5
√

diffh 1708 646 15 50 80 4
√

travel 862 698 16 24 170 3
√

ul 548 1027 15 36 168 6
√

plot2fig 1495 1077 27 78 159 16
√

lex315 719 1297 18 103 137 6
√

compress 1490 1319 16 29 274 11
√

clinpack 1226 1429 14 80 267 30
√

loader 1219 1563 31 80 242 78
√

mway 705 1576 22 43 406 71
√

ansitape 1596 1747 36 110 274 21
√

stanford 887 1771 48 80 369 42
√

pokerd 1243 1895 27 86 296 59
√

zipship 1283 1955 14 53 332 59
√

dixie 2109 2341 36 83 394 73
√

zipnote 3155 2407 20 71 348 86
√

learn 1483 2626 36 80 432 59
√

xmodem 1712 2672 28 156 447 97
√

compiler 2232 3008 39 350 304 2
√

zipcloak 3644 3033 30 93 424 104
√

sim 1439 3034 17 29 818 130
√

cdecl 1015 3196 33 204 448 25
√

diff 1708 3300 43 129 569 100
√

unzip 4106 3416 40 99 731 52
√

assembler 2673 3601 53 248 533 233
√

gnugo 2901 3651 29 89 650 109
√

livc 1886 4101 87 204 885 243
√

lharc 3303 4250 87 198 791 123
√

patch 2672 4608 56 271 750 135
√

simulator 3733 5574 100 409 666 107
√

arc 7507 5856 96 237 1105 160
√

triangle 1930 6119 19 43 1072 241
√

tbl 2511 6162 85 316 907 279
√

football 2222 7313 59 258 847 225
√

flex 6970 7376 86 307 1505 248
√

zip 7427 9288 109 324 1554 331
072.sc 8087 13690 154 698 1826 201
spim 19032 16740 168 974 1566 374
larn 9546 21184 264 2218 2536 158
tsl 14646 27302 450 2109 2350 587
008.espresso 13567 30510 308 1830 5054 1524
moria 24596 38572 432 3708 5893 1493

√
TWMC 23833 51627 204 796 10669 3949
nethack 28735 58317 474 2837 4268 900
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statements in a program are assignments and call statements. Assignments
through a pointer dereference are distinguished because these assignments
have nontrivial solutions, whereas other assignments (e.g., i = 0;) have trivial
solutions. For MODC(P ) the procedures are the relevant program constructs.

The last column of Table I indicates whether or not FSAlias succeeds in
calculating an alias solution for the program. FSAlias is unable to calculate a
solution for 8 of the programs because it runs out of virtual memory; FIAlias
can calculate a solution for all the programs. This raises the question of what
characteristics of a program affect the availability of a flow-/context-sensitive
alias solution. Certainly program size is a factor because of the relationship
between size of solution and size of program, but it cannot be the only factor
as the contrasting results for moria and zip show. Moria is a “large” program
with an FSAlias solution. Nor do the size differences between zip and flex seem
vast enough to indicate a threshold on the power of FSAlias. The root of the
problem is caused by recursive data structures. The FSAlias algorithm uses the
somewhat naive k-limiting approximation to handle recursive data structures;
however, in the cases of these larger programs that make excessive use of re-
cursive data structures, the analysis gets bogged down in the generation and
propagation of k-limited aliases, using much memory. Moria has no recursive
data structures. Zip uses recursive data structures much more heavily than flex.

MODC precision is reported in terms of the average number of fixed loca-
tions reported modified per kind of statement. The MODC(FSAlias) solution
is always a subset of the MODC(FIAlias) solution, and both are safe, so that
extra modifications reported by the MODC(FIAlias) solution are spurious. The
raw data used to produce the figures in the following sections can be found in
Appendix C.

4.1 Precision at Procedures and Call Statements

Figures 16(a) and 16(b) report the average numbers of fixed locations mod-
ified by procedures for both MODC(FSAlias) and MODC(FIAlias). The
MODC(FIAlias) result for moria is elided because it skews the figure; the
raw numbers are presented instead. The bars for each program are divided
into the kind of location being modified. Each segment of the average bar is
the average over the numbers in Figure 16 for that kind of location. Formal
parameters are reported as locals. Notice the enhanced precision of flow and
context sensitivity (especially for the large program moria); MODC(FSAlias)
reports 11 fixed locations modified on average by procedures, against the
17 fixed locations reported by MODC(FIAlias).14 Also notice that the aver-
age number of fixed locations modified is not closely correlated to program
size.

Figure 16(c) shows the same results for the programs with only a flow-/
context-insensitive MODC solution. Figure 16(d) compares the average totals
from Figures 16(a) and 16(b) in a more visually apparent manner. Programs are
plotted by their sizes in ICFG nodes, along the x-axis. Again, moria is excluded
from this comparison because it skews the figure.

14Excluding moria’s result, MODC(FIAlias) reports 14 fixed locations modified on average.
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Fig. 16. Average fixed locations modified by procedures.
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Fig. 16. Continued.

Figures 17(a) and 17(b) present the same information as Figures 16(a) and
16(b) for fixed locations modified by call statements. The conclusions to be drawn
are similar. The procedure averages in Figures 16(a) and 16(b) contain the
effects of all calls to the procedure. Recall that MODC for procedure P is defined
to be the union of PMOD(P, RA) over all RA’s that occur. At a call site, however,
only the effects at that call site are reported. So we expect MODC for procedure
P on average to be higher than MODC at a call site.

Figure 18 shows the standard deviations for the MODC(FSAlias) results pre-
viously reported in Figure 16 (i.e., the number of fixed locations possibly modi-
fied). These standard deviations are typical of those for each of our observations
in these experiments; they are included for completeness.
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Fig. 17. Average fixed locations modified by call statements.
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Fig. 18. Procedure MODC(FSAlias) standard deviations.

Figure 19 addresses the comparative difference between the MODC(FSAlias)
and MODC(FIAlias) solutions. If sens is the number of fixed locations reported
modified at a program point by MODC(FSAlias), and insens is the number re-
ported by MODC(FIAlias) at that same point, then the relative mean is the
average of the calculation (insens− sens)/insens over relevant program points
in a program. Figure 19 shows the relative means for procedure side effects
(Figure 19(a)) and call statement side effects (Figure 19(b)). These measure-
ments indicate the proportion of the MODC(FIAlias) solution that must be in
error. Low numbers here mean that the MODC(FIAlias) solution is nearly as
precise as the MODC(FSAlias) solution. Zero means that the solutions are the
same. The average bars are calculated by treating all the program points in
all programs as one set and averaging over all of them, rather than taking the
average of the averages for each program. Also note that summing the relative
means at each program point and averaging is substantially different from us-
ing the relative means calculation on the average total fixed locations modified
results from Figures 16 and 17. For example, consider a procedure with two
statements, where for the first statement MODC(FSAlias) reports 1 location
modified and MODC(FIAlias) reports 2 locations modified, and for the second
statement MODC(FSAlias) reports 99 locations modified and MODC(FIAlias)
reports 100 locations modified. The average total locations modified by the pro-
cedure as reported by MODC(FSAlias) is 50, and by MODC(FIAlias) is 51. The
relative mean for the first statement is 0.5, and the relative mean for the sec-
ond is 0.01. The relative mean for the whole procedure is then 0.255, but the
relative mean calculation using the average total numbers is 1/51 (a little less
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Fig. 19. Relative means for procedures and call statements.
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than 0.02). The numbers in Figure 19 are calculated using the former approach.
These results give an indication of the trade-off in precision involved in using
the flow-/context-insensitive analysis.

Even so, the precision of the MODC(FIAlias) analysis is not to be understated.
Figure 20 shows the average proportion of reported fixed locations modified by
procedures and calls to the number of fixed locations potentially modified. The
number of fixed locations potentially modified at a call or assignment statement
is the sum of the number of globals in the program, the number of dynamic al-
location sites in the program, the number of locals in the enclosing procedure,
and the number of accessible non-visibles. The number of fixed locations poten-
tially modified by a procedure is the sum of the numbers of potentially modified
locations for each assignment and call statement in the procedure. Figure 20
shows what percentage the average totals reported by MODC(FIAlias) are of
this worst case. In parentheses after each bar is the average total number
of fixed locations reported modified by MODC(FIAlias). Very low percentages
indicate that the worst-case MODC solution is very much larger than what
can be calculated using even flow-/context-insensitive data-flow analysis and
indicate the significant advantages that inexpensive data-flow analysis can
offer.

Table II presents another view comparing MODC(FSAlias) and
MODC(FIAlias) that shows a frequency table of the numbers of proce-
dures that modify a certain number of fixed locations. All the procedures in
all the programs are considered together when constructing these frequency
tables.15 The frequency tables are broken down by fixed-location kind with
the Total column representing all kinds. For example, Table II (a) says that
367 of the procedures in all the programs modify 0 globals (Glob) and 132
procedures modify no fixed locations (Total). The Percent Below column shows
what percentage of the procedures have that many total side effects or more.
Gaps in the sequence indicate that there are no procedures with that many
side effects. The reports of procedures modifying 0 total fixed locations are not
erroneous, but arise from simple procedures which have no local variables and
no side effects (e.g., absolute value function).

The frequency tables for each kind of fixed location and for the totals seem
to approximate a half normal distribution. For MODC(FSAlias), the frequency
table for globals is the most spread out. This is probably an artifact of how
globals are used in the data programs. For MODC(FIAlias), the frequency table
for non-visibles is the most spread out. The MODC(FIAlias) frequency tables
for all types of fixed locations apart from non-visibles appear to be close to
the shape of the frequency tables for MODC(FSAlias), albeit flatter and longer,
but the MODC(FIAlias) frequency table for non-visibles is much worse. Since
MODC(FSAlias) is safe, this cannot be an artifact of the real solution. It appears
that when the MODC(FIAlias) solution gets overly approximate, it is with re-
gard to non-visibles. Why this is so and what methods should be adopted to
remedy the situation are open questions.

15The programs with no FSAlias solution are omitted when calculating the MODC(FIAlias) fre-
quency table.
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Fig. 20. MODC(FIAlias) solution as percentage of worst-case solution.
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Table II. Procedure Frequency Tables

# Side Percent
Effects Glob Dyn Loc Nv Total Below

0 367 1389 577 1624 132 100.00
1 422 117 348 87 224 92.77
2 175 119 239 32 181 80.49
3 181 66 160 25 133 70.58
4 133 31 132 19 139 63.29
5 51 9 79 4 104 55.67
6 64 5 60 9 120 49.97
7 34 12 48 1 65 43.40
8 50 9 37 3 58 39.84
9 21 2 29 3 69 36.66

10–12 53 28 57 6 123 32.88
13–15 28 7 27 2 98 26.14
16–18 38 18 14 2 54 20.77
19–21 35 3 8 1 43 17.81
22–24 22 2 5 2 35 15.45
25–27 14 1 0 3 27 13.53
28–30 14 1 1 0 34 12.05
31–33 10 0 0 0 27 10.19
34–36 12 0 2 0 12 8.71
37–39 4 2 0 1 18 8.05
40–42 3 0 2 0 12 7.07
43–45 12 0 0 0 12 6.41
46–48 38 0 0 0 17 5.75
49–51 1 0 0 0 11 4.82
52–54 6 0 0 0 10 4.22
55–57 1 1 0 0 8 3.67
58–60 5 0 0 0 7 3.23
61–63 2 0 0 0 5 2.85
64–66 5 0 0 1 9 2.58
67–69 3 0 0 0 9 2.08
70–72 0 0 0 0 3 1.59
73–75 2 3 0 0 1 1.42
76–78 6 0 0 0 3 1.37
79–81 2 0 0 0 3 1.21
82–84 2 0 0 0 0 1.04
85–87 3 0 0 0 6 1.04
88–90 0 0 0 0 2 0.71
94–96 0 0 0 0 1 0.60

106–108 2 0 0 0 0 0.55
109–111 1 0 0 0 0 0.55
115–117 0 0 0 0 1 0.55
118–120 0 0 0 0 1 0.49
121–123 0 0 0 0 1 0.44
124–126 0 0 0 0 2 0.38
127–129 0 0 0 0 1 0.27
145–147 0 0 0 0 1 0.22
151–153 3 0 0 0 0 0.16
226–228 0 0 0 0 3 0.16

MODC(FSAlias)
(a)
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Table II. Continued

# Side Percent
Effects Glob Dyn Loc Nv Total Below

0 351 1344 577 935 113 100.00
1 375 92 348 117 216 93.81
2 143 96 239 76 172 81.97
3 172 101 160 71 87 72.55
4 121 59 132 33 84 67.78
5 48 12 78 29 69 63.18
6 59 9 60 44 64 59.40
7 30 17 49 33 34 55.89
8 35 9 37 45 36 54.03
9 32 5 29 19 44 52.05

10–19 132 66 100 83 278 49.64
20–29 151 8 12 117 164 34.41
30–39 74 1 2 20 110 25.42
40–49 19 2 2 21 63 19.40
50–59 12 1 0 1 44 15.95
60–69 44 0 0 6 21 13.53
70–79 10 3 0 7 19 12.38
80–89 8 0 0 5 18 11.34
90–99 0 0 0 0 10 10.36

100–109 5 0 0 3 4 9.81
110–119 1 0 0 2 5 9.59
120–129 0 0 0 2 3 9.32
130–139 0 0 0 0 3 9.15
140–149 0 0 0 28 4 8.99
150–159 3 0 0 5 1 8.77
160–169 0 0 0 1 0 8.71
170–179 0 0 0 36 21 8.71
180–189 0 0 0 7 10 7.56
190–199 0 0 0 3 1 7.01
200–209 0 0 0 7 21 6.96
210–219 0 0 0 3 18 5.81
220–229 0 0 0 3 6 4.82
230–239 0 0 0 2 7 4.49
240–249 0 0 0 3 6 4.11
250–259 0 0 0 4 6 3.78
260–269 0 0 0 2 0 3.45
270–279 0 0 0 1 2 3.45
280–289 0 0 0 1 4 3.34
290–299 0 0 0 0 2 3.12
300–309 0 0 0 0 2 3.01
310–319 0 0 0 6 2 2.90
320–329 0 0 0 2 1 2.79
340–349 0 0 0 1 0 2.74
350–359 0 0 0 18 3 2.74
360–369 0 0 0 6 3 2.58
370–379 0 0 0 4 2 2.41
380–389 0 0 0 5 0 2.30
390–399 0 0 0 2 0 2.30
400–409 0 0 0 3 0 2.30
410–419 0 0 0 3 16 2.30

MODC(FIAlias)
(b)
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Table II. Continued

# Side Percent
Effects Glob Dyn Loc Nv Total Below

420–429 0 0 0 0 1 1.42
430–439 0 0 0 0 3 1.37
440–449 0 0 0 0 6 1.21
450–459 0 0 0 0 8 0.88
470–479 0 0 0 0 2 0.44
480–489 0 0 0 0 2 0.33
490–499 0 0 0 0 1 0.22
510–519 0 0 0 0 3 0.16

MODC(FIAlias)
(b)

4.2 Precision at Through-Dereference Statements

Figures 21(a) and 21(b) show the average numbers of fixed locations modified
by through-dereference assignment statements, similarly to Figure 16. These
results are not discussed at length here because they are more related to the
choice of aliasing algorithm than the MODC algorithm. Nevertheless, their pre-
cision is interesting.

Any executable assignment in a normally terminating program will modify
at least one fixed location. Thus, 1 is a lower bound of total fixed locations modi-
fied per assignment statement (the dotted lines in Figures 21(a) and 21(b) show
the line x= 1). The precision of these results for MODC(FSAlias) is very encour-
aging, and highlights the precision of the flow-/context-sensitive algorithm. The
totals are all close to 1 with a maximum value of 2 and an average of 1.3. In con-
trast, MODC(FIAlias) is more imprecise, averaging 5.1, and sometimes being
wildly inaccurate as in such cases as moria.16 Moria is a large program with
very many large (though nonrecursive) data structures with several aliases.
Perhaps the inability of the MODC(FIAlias) algorithm to distinguish calling
context and its inability to kill aliases explain the massive distortion between
the MODC(FSAlias) and MODC(FIAlias) solutions for moria.

4.3 Discussion of Precision

A safe MODC solution is traditionally defined to be a pointwise superset of the
precise solution. In other words, any fixed location that can be modified by some
execution is guaranteed to be in the computed solution. The equations in Section
3.1 produce a safe solution. A reverse-safe solution is one that is pointwise a
subset of the precise solution. Barth [1978] defines the concept precise up to
symbolic execution to mean precise assuming that all program branches are
executable; effectively, this means that all intraprocedural paths are considered
to be executable. It is possible to define reverse-safe up to symbolic execution.
This is done by ensuring the approximate solution is a pointwise subset of the
precise-up-to-symbolic-execution solution.

There are two major sources of imprecision. The first is due to intraprocedural
paths that cannot be executed. The second is due to various interactions of

16Without moria the average total for MODC(FIAlias) is 2.6.
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Fig. 21. Average fixed locations modified by through-dereference assignments.
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Fig. 22. Percentage of average number of modifications that are maybes.

aliases that do not occur on the same execution. We assume we are calculating
a reverse-safe up to symbolic execution solution, and thus ignore the first type
of imprecision. However, we can bound the second type of imprecision.

The equations in Section 3.1 can be extended to associate with each ele-
ment of the MODC(FSAlias) solution either yes or maybe so that the part of the
solution associated with yes is reverse-safe up to symbolic execution and the
entire solution (i.e., the solution ignoring the yes/maybe information) is safe.
Appendix B extends the equations in Section 3.1 in this manner. The safe so-
lution implied by the modified equations is identical to the solution implied by
the original equations.

The equations in Appendix B allow a bound on the second type of impreci-
sion to be computed. All MODC(FSAlias) information not in the precise-up-to-
symbolic-execution solution must be labeled with maybe. Thus, if P percent of
the solution is labeled with maybe then at most P percent of the solution can
be imprecise. Figure 22 is a bar chart of the percentage of MODC(FSAlias) la-
beled with maybe for results for procedures, whose data imply that a majority of
solutions on this data set are precise up to symbolic execution as none of the so-
lution is associated with maybe. Even for the programs that have some of their
solution associated with maybe, that part of the solution is small (16% maxi-
mum). The charts for through-dereference assignments and calls are similar
in appearance to Figure 22 with averages of 4.1% and 2.4%, respectively. Com-
puting MODC(FSAlias) with yes/maybe information is more costly and could
not be done for moria. Note that the precise up to symbolic execution solution
at a program point is different from the must alias solution. For each alias in
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Fig. 23. Cost of keeping calling contexts.

the precise up to symbolic execution solution, there is some path in the ICFG
which results in that alias. For an alias to be a must alias, it must exist on all
paths to a program point.

4.4 Cost of Keeping Calling Contexts

The equations in Section 3.1 are context-sensitive in that they keep track of
calling contexts in order to increase precision. This of course has a cost, and
that cost is maintaining the same MODC information for different contexts. The
ratio of the size of CMOD plus the size of PMOD to the size of MOD indicates
the percent of the MOD solution that is represented redundantly under various
calling contexts. Figure 23 gives this ratio for the programs in the data set for
which the MODC(FSAlias) algorithm finds a solution. A ratio of 1.05 means that
5% of the solution is redundant. The average for these programs is around 1.01.
Given the nature of Eqs. (3) and (4), this ratio should also be a good predictor
of the extra time required to maintain the calling contexts.

4.5 Effects of Counting

Section 3.5 explains the issues in determining the size of the MOD solution.
Figure 24 compares the two methods of counting aggregates presented in that
section for the MODC(FSAlias) solution at procedures. Let base be the number
of modifications determined in the manner used throughout this paper (i.e.,
NoFields counting). The sum of base and extra is the number of modifications
that would be determined by counting each part of an aggregate separately.
What is important about this figure is that the numbers are very different de-
pending on how modifications are counted. In order to compare work by different
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Fig. 24. Different methods of counting.

research groups, minimally the assumptions used while counting must be doc-
umented. It would be even more useful if the same method of counting was used
by all research groups.

4.6 Lines of Best Fit (Regressions)

Regressions on the data in this paper are potentially interesting as they can
indicate how various factors are related (e.g., how the size of the program
correlates to the number of modifications). However, there are two major po-
tential problems:

(1) the data set in this paper is too small to make strong conclusions, and
(2) the regressions might not be good.

The former point can only be dealt with by expanding the data set vastly (at
least an order of magnitude). Regressions of many of the figures in this paper
look reasonable. The regression in Figure 25(a) is one that appears good and is
fairly typical. Given a line of best fit y =mx+ b for the data {(xi, yi)} where xi
is program size in ICFG nodes and yi is the program property being measured,
an error factor ei can be determined for each i such that ei = yi −mxi + b. For
example in Figure 16, yi is the number of fixed locations reported on average
per procedure.

The regression line indicates that there is a slight correlation between pro-
gram size and the number of modifications. An additional 886 ICFG nodes (i.e.,
program statements) increases the expected number of modifications by 1 at
each call site. However, the error factor seems to be a more important factor
than the program size. This indicates that while size plays a role there are
other, probably more significant, factors involved. For the data in this paper,
this is what the regressions typically indicate. The regression in Figure 25(a)
is fairly good in that the plot of the errors (residuals) in Figure 25(b) yields a
fairly random pattern (although the magnitude of the error might get larger
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Fig. 25. A typical regression.

as program size gets larger) and the histogram of the errors in Figure 25(c) is
roughly normal.

4.7 Timing Results

Timing results are reported for the analysis times of the MODC calculation,
broken into its two passes, and for simple compilations of the programs in the
data set using GNU’s gcc compiler version 2.7.2 with no optimizations enabled
and no linking. (All compile times reported in this section used this GNU com-
piler.) These numbers are as reported by the UNIX time utility, averaged over 5
executions. The notation MODC(FS) refers to the phase of the MODC(FSAlias)
algorithm after the alias solution has been computed; similarly for MODC(FI).
Thus, these times do not include the alias analysis times, but are simply the
time taken to calculate the MODC solution given the alias solution. The total
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Fig. 26. MODC(FSAlias) time, MODC(FIAlias) time, and compile time.
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Fig. 27. MODC(FS) and MODC(FI) analysis times.

analysis time for, say, the flow-/context-sensitive analysis is the sum of the
FSAlias time and the MODC(FS) time. The MODC analysis time is dominated
by the alias calculation.

Figure 26(a) contrasts the MODC(FSAlias) and MODC(FIAlias) analysis
times versus the compile times for the data programs, using a logarithmic scale
for the time axis (x-axis). Figure 26(b) plots the same data, but uses the pro-
gram sizes (in ICFG nodes) as the x-axis showing the times on log scale on the
y-axis. These figures demonstrate the dramatic difference between the sensi-
tive and insensitive analyses, showing at least an order of magnitude difference
between the two. The good news is that in most cases the FSAlias analysis time
is comparable to the compile time. This is an important feature for any analysis
destined for compiler optimization.

Figure 27 shows the times for the MODC(FS) and MODC(FI) phases of the
MODC calculation. MODC(FS) and MODC(FI) are both very fast, and are com-
parably fast, except in the case of moria. Notice that seemingly large differences
are not large because the scale of the time axis is so small. For some of the pro-
grams, differences between MODC(FS) and MODC(FI) for the same program
seem explainable by possible noise in our measurements. The only explanation
so far for moria is that the FIAlias solution is sufficiently imprecise to cause
the second pass of the MODC algorithm to do significantly more work. Table III
in Appendix C shows the raw data from which these figures are constructed.

4.8 Measurement of Memory Needed

The maximum memory needed by the two MODC analyses was measured empir-
ically by an external process while each analysis was running on each program
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Fig. 28. Memory usage of MODC(FSAlias) and MODC(FIAlias).

in the data set. The memory needs of each algorithm include (i) a fixed-size of
overhead space for algorithm data structures, (ii) the program representation,
whose size varies linearly with program size and was the same for both analy-
ses, and (iii) the analysis results. The maximum memory reported as used for
each program during the two phases of MODC analysis in Figure 28 includes
all three of these factors.

Figure 28(a) shows the absolute space needed, which varies for
MODC(FIAlias) from about 40MB to almost 160MB. The maximum space
needed for MODC(FSAlias), which runs out of virtual memory on the large pro-
grams, was about 90MB on moria. Note that the ratio of program size between
flex and moria (as measured by number of ICFG nodes—see Table I) is about
1:5.5 whereas the difference in maximum space needed for MODC(FSAlias)
is only about 50%. The maximum space needs of MODC(FIAlias) seem to be
growing precipitously; however, another way to view these results is shown in
Figure 28(b), where the maximum space needed by each analysis is normalized
by the number of ICFG nodes (i.e., approximately the number of C statements
in the program). Here it is clear that the memory needs of MODC(FIAlias) per
statement of code are fairly stable for the larger programs (i.e., more than 20K
LOC). Since no attempt has been made to optimize for memory usage in either
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Fig. 28. Continued.

analysis, these measurements are a “first cut” at what memory needs limit
these analyses.

5. RELATED WORK

Interprocedural Side-Effects Analysis. Interprocedural modification
side effects were first handled by Allen for acyclic call multigraphs in FORTRAN
programs [Allen 1974; Spillman 1971]. Later, Barth [1978] explored the use of
relations to capture side effects in recursive programs. Banning [1979] first ac-
complished the decomposition of the MOD problem for FORTRAN (and other
languages where aliasing is imposed only by call-by-reference parameter pass-
ing); he separated out two flow-insensitive calculations on the call multigraph:
one for side effects and a separate one for aliases. The interprocedural side-
effects problem for FORTRAN is flow-insensitive, but context-sensitive. Cooper
and Kennedy [Cooper 1985; Cooper and Kennedy 1987; 1988] further decom-
posed the problem into side effects on global variables and side effects accom-
plished through parameter passing. Burke showed that these two subproblems
on globals and formals can be solved by a similar problem decomposition [Burke
1990]. All of this work targeted the programming model of FORTRAN77, a lan-
guage without pointers. Choi, Burke, and Carini mention an interprocedural
modification side-effects algorithm for languages with pointers based on their
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flow-sensitive pointer-aliasing analysis technique [Choi et al. 1993; Marlowe
et al. 1993]; it is difficult to compare their work to this work, because they give
no description of their algorithm and offer no implementation results.

Another approach to side-effect analysis is to perform an interprocedural
pointer-aliasing algorithm and then identify all variables experiencing side
effects at indirect stores through a pointer (i.e., at through-dereference state-
ments) using the aliases found [Emami et al. 1994; Ghiya and Hendren 1998;
Hind and Pioli 1998; Ruf 1995; Shapiro and Horwitz 1997a; Zhang et al. 1996;
1998]. This is often used as an empirical test of the precision of the alias solution
obtained.

Related Analyses. Related interprocedural analyses include compile-time
interprocedural program slicing [Atkinson and Griswold 1996; 1998; Gallagher
and Lyle 1991; Gupta and Soffa 1996; Harrold and Ci 1998; Horwitz et al.
1990; Larsen and Harrold 1996; Ottenstein and Ottenstein 1984; Reps and
Rosay 1995; Sinha et al. 1999; Tip 1996; Tip et al. 1996; Tonella et al.
1997; Venkatesh 1991; Weiser 1984], interprocedural def-use associations
[Chatterjee and Ryder 1999; Ghiya and Hendren 1998; Harrold and Soffa
1994; Pande et al. 1994], and demand analyses [Duesterwald et al. 1995; 1996;
Horwitz et al. 1995]. Slicing determines the data- and control-dependent parts
of a program which correspond to a particular computation. Def-use associa-
tions trace value flow on static paths in a program; they are useful for various
machine-independent optimizations and data-flow testing methods. Demand
data-flow analysis seeks to efficiently answer queries about individual data-
flow facts at a program point; a partial calculation is performed to derive the
data-flow information, rather than a whole program analysis.

Interprocedural distributive finite subset problems can be solved using a
graph reachability technique on an “exploded” call graph of the program [Reps
et al. 1995]. Capture of calling context is not an issue here since the prob-
lems being solved are of a form such that reachability in each procedure can be
analyzed once for each parameter, regardless of calling context. The solution
at a call site is obtained by using the parameter-binding functions to identify
incoming information with outgoing information at the corresponding return
site. These relations between incoming and outgoing information are then mem-
oized to avoid re-analysis. The underlying ideas of this analysis are related to
notions expressed in the conditional analysis for aliasing due to single-level
pointers [Landi and Ryder 1991]. Several solutions to MODC with different
flow-insensitive, context-insensitive points-to approximation algorithms have
been obtained by this method, since using program-wide aliases yields an ap-
proximate problem for MODC that yields the same side effects regardless of
calling context [Shapiro and Horwitz 1997a]. This Horwitz and Shapiro study
shares the philosophy of the empirical results presented here, in that the ef-
fects of pointer aliasing on applications are reported. However, there are no
flow- and/or context-sensitive analyses performed, and direct comparison with
MODC(FIAlias) is difficult, since only a flow-/context-insensitive MOD(P ) is
defined with no per-statement side effects, and indirect side effects to structure
fields and union members are not distinguished.
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Ruf [1995] compared the effect of context sensitivity (or its lack) on a flow-
sensitive points-to algorithm. Most of his reported data is with respect to the
difference in precision of the points-to solution, with and without context in-
formation. Although his results were based on a possibly nonrepresentative
benchmark suite (a fact observed by him), they indicated that no precision im-
provement was observed for his flow-sensitive algorithm on these programs by
adding context sensitivity. For many reasons this study is difficult to compare
with the results presented here. First, his VDG program representation is in-
comparable to the ICFG, not being a statement-level representation. Secondly,
several independent structure field references may be merged, so that data on
“average” number of side effects at a write statement may not be comparable
to data at through-dereference statements. Thirdly, there is no flow-insensitive
method in his paper.

Newer studies of the affect of flow sensitivity on points-to analysis [Hind and
Pioli 1998; 2000] carefully track the performance of several flow-insensitive al-
gorithms versus that of a flow-sensitive algorithm [Burke et al. 1994; 1997;
Choi et al. 1993; Hind et al. 1999; Marlowe et al. 1993]. Comprehensive mea-
surements of comparative precision at through-dereference statements (as well
as precision on dereferenced reads), algorithm timings, and memory usage are
reported. These experiments on this data set showed that the precision of their
flow-insensitive analysis was identical to that of their flow-sensitive analysis
on 12 of their 21 benchmark programs [Hind and Pioli 1998]. Further work
[Pioli 1999] studies the affect of analysis precision on constant propagation. It
is difficult to compare Hind and Pioli’s results with those reported here, since all
of their algorithms are context-insensitive and a different alias representation
is used, which may alter the fixed location counts.

Pointer May Alias Algorithms. This paper discusses a schema for find-
ing side effects in C codes that is parameterized by the type of pointer-aliasing
technique used. Since the focus of this paper is the MODC schema, the re-
cent work in pointer analysis is merely summarized here. Recently, there have
been many investigations of pointer-aliasing algorithms which vary in cost and
precision. Several concentrate on aliases in heap storage [Chase et al. 1990;
Deutsch 1994; Ghiya and Hendren 1996a; 1996b; Horwitz et al. 1989; Hendren
and Nicolau 1990; Jones and Muchnick 1982a; Larus and Hilfinger 1988; Sagiv
et al. 1998]. Others calculate flow-insensitive aliases with recent emphasis on
algorithm scalability on very large programs (i.e., one million lines of code)
[Andersen 1994; Burke et al. 1994; Coutant 1986; Das 2000; Fahndrich et al.
2000; Foster et al. 2000; Guarna 1988; Hind and Pioli 1998; Liang and Harrold
1999; Rountev and Chandra 2000; Shapiro and Horwitz 1997b; Steensgaard
1996b; Weihl 1980; Zhang et al. 1996]. There are flow-sensitive techniques as
well which calculate program-point-specific aliases [Choi et al. 1993; Cooper
1989; Chatterjee et al. 1999; Emami et al. 1994; Ghiya and Hendren 1998;
Harrison and Ammarguellat 1990; Landi and Ryder 1992; Marlowe et al. 1993;
Ruf 1995; Sagiv et al. 1990; Wilson and Lam 1995]. Other work concentrates
on aliases in higher-order functional languages [Deutsch 1990; Neirynck et al.
1987]. SSA-form is used to transform the program in a way that effectively

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, March 2001.



A Schema for Interprocedural Modification Side-Effect Analysis • 157

adds “adjustable” flow sensitivity to a flow-insensitive pointer-alias analysis in
[Hasti and Horwitz 1998]; no empirical results are given, and it is not clear if
this technique is scalable. Newer work calculates pointer aliasing in programs
with explicit concurrency achieved with co-begin, co-end constructs [Rugina and
Rinard 1999]. Another new paper offers a framework for normalizing the rep-
resentation of structure fields, for use in determining aliasing in the presence
of unions and casting [Yong et al. 1999].

6. OBSERVATIONS

Recall that the empirical experiments refer to two specific implemented MODC
algorithms, MODC(FSAlias) and MODC(FIAlias). These observations are ob-
tained from examination of these results and are specific to them. The obvious
conclusion of the empirical results is that MODC(FSAlias) yields significantly
more precise solutions at far greater computation cost. Nevertheless, this is a
complex and interesting trade-off.

6.1 Flow-/Context-Sensitive Analysis

The flow-/context-sensitive data-flow analysis presented here is capable of pro-
viding very accurate results for small, real-world applications (10K LOC). As
expensive as it is, the cost of sensitive analysis is still not prohibitive for a
large subset of the data programs, being on the order of the time to compile the
program. Thus, the MODC(FSAlias) algorithm achieves scalability up to a cer-
tain point. Recall that previously published results for flow-/context-sensitive
side-effect analysis were only up to 4700 lines of code. In particular, substan-
tially larger programs that do not use certain program constructs heavily can
be analyzed; moria and zip vividly show the effects on the MODC analyses
presented here of heavy use of (large) recursive data structures. This level of
scalability is rather surprising for a program-point-specific analysis. Further,
note that users of software engineering tools, such as data-flow testers or off-
line program-understanding databases which gather def-use information about
a large program in order to query it later, may be willing to accept analysis costs
of several times that of the compilation time and/or large memory needs. Nev-
ertheless, it seems apparent that flow-/context-sensitive analysis is not going to
scale to the next order of magnitude without a major innovation; whole-program
flow-/context-sensitive analysis of large systems seems unattainable.

6.2 Flow-/Context-Insensitive Analysis

The flow-/context-insensitive analysis presented here is a very fast and scal-
able analysis. Whole-program analysis of large software, such as today’s com-
mercial applications, seems feasible. The loss of precision is a strong concern,
however. Most applications of the modification side-effects solution need quite
precise results (e.g., data-flow-based testing). Nevertheless, it is interesting that
the flow-/context-insensitive solutions are much more precise than the worst-
case estimate, meaning that there is still significant gain to be had from using
this inexpensive analysis. Software engineering tools such as smart semantic
browsers which trace approximate def-use information or debuggers which use
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run-time traces augmented by compile-time knowledge are possible consumers
of insensitive side-effect information. So, flow-insensitive analysis can be very
effective, being inexpensive and acceptably accurate for certain applications.

6.3 Comparison of Sensitivity

One claim being disputed in the analysis community is that flow-/context-
sensitive analysis will obtain much better precision than flow-/context-
insensitive analysis on important problems, such as modification side effects.
The empirical results confirm the belief that sensitivity provides discernably
increased precision in the solution obtained; for program transformation or
validation applications, this accuracy may be required.

6.4 Where to Now?

This study raises three topics for further exploration. The first is how to incor-
porate flow sensitivity into analysis of very large programs. Zhang et al. [1996;
1998] report on a program decomposition strategy in which the alias relation in-
duces a partitioning of the assignment statements involving pointer variables.
This in turn can be used to decompose the program into sections for which
analyses of differing precision and cost can be applied. Initial experiments tar-
geted recursive data structures as subjects for a flow-/context-insensitive alias
analysis with appealing results. Reorganization and redesign of flow-/context-
sensitive analysis to reduce memory costs of points-to analysis in C++ and Java
is the focus of [Chatterjee 1999; Chatterjee et al. 1999]; preliminary empiri-
cal findings are encouraging. More recent work investigates program fragment
analysis in which an initial, coarse-grained, whole-program analysis is followed
by an analysis of a fragment or module, which obtains more precise data-flow
information on that fragment [Rountev et al. 1999]. This offers the promise of
a focused analysis that yields greater precision where it is needed.

The second topic is how to make flow-/context-insensitive analysis more effec-
tive without increasing the cost. An interesting idea stems from the observation
that safe analyses produce supersets of the precise solution. The intersection of
the solutions generated by different, safe analyses for the same problem must
also be safe, and may be closer to the precise solution. Recently, Shapiro and
Horwitz [1979b] used this idea with several flow-/context-insensitive points-to
analysis algorithms. This approach needs more exploratory experimentation.

The final topic is to discern more fully the kind of program construct and
programming style that foils data-flow analysis. Perhaps the availability of pre-
cise, flow-/context-sensitive data-flow analysis would be sufficient motivation
to change programming practice, language design, and programmers’ habits.
For instance, references in Java are a restricted form of pointers, and might be
substantially easier to deal with under static analysis than C’s general-purpose
pointers.

7. CONCLUSION

This is the first interprocedural modification side-effects analysis for C (MODC)
that obtains reasonable precision on programs with general-purpose pointer

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, March 2001.



A Schema for Interprocedural Modification Side-Effect Analysis • 159

usage. The algorithm schema is parameterized by choice of pointer-aliasing
method used as the first pass. Two MODC algorithms at opposite ends of the
spectrum in terms of flow and context sensitivity were empirically profiled, with
data collected for key statements (i.e., through-dereference assignments and
calls) as well as for procedures (i.e., MOD(P)). This is the first empirical com-
parative study of the effects of both flow and context sensitivity in the context
of an important data-flow problem. It is especially significant that the utility of
the data-flow solution obtained is studied in an application context, because the
hypothesis is that different applications will select different trade-offs in cost
versus precision. A significant precision advantage was established for the flow-
/context-sensitive side-effects analysis over that of the flow-/context-insensitive
analysis; but, this performance was at a severe cost in analysis execution time
usually of at least an order of magnitude. Maximum memory usage was tracked
for these types of analyses, but no meaningful comparison can be made with
regard to memory usage until analyses have been optimized to save space.

APPENDIX

A. COMPARISON WITH THE MOD DECOMPOSITION FOR FORTRAN

The decomposition of the MOD problem for C in Figure 10 is similar in structure
to the original decomposition for FORTRAN by Banning [1979], in the sense
that both calculate local side effects in each procedure first, and then set up
data-flow equations on call graphs to compute procedure-level side effects (i.e.,
a flow-insensitive interprocedural calculation).

The two decompositions are also similar in what is included in the MOD sets.
In FORTRAN programs, variables are the only fixed locations, and therefore
various MOD sets in the decomposition for FORTRAN include just variable
names. In C, pointers and dynamic allocation are allowed.

The two decompositions differ in their treatment of aliases. In the FORTRAN
decomposition, aliases are computed at procedure calls. This is possible because
for FORTRAN programs, only procedure calls can create aliases, and aliases
created by a call hold throughout execution of the procedure being called. In the
MOD decomposition in Figure 10, aliases are computed at pointer assignments
and procedure calls (i.e., at program points), because aliases vary intraproce-
durally. An alias at a program point is associated with a reaching alias for the
procedure containing that program point. These reaching aliases differentiate
side effects caused by different calls of the same procedure.

The MOD problem for FORTRAN was further decomposed by Cooper [1985]
and Cooper and Kennedy [1987; 1988] into two subproblems, one on global vari-
ables and another on reference formals. The first subproblem is provably rapid
[Marlowe and Ryder 1990b] while the second one is not. Similarly, for the C
language, side effects on global fixed locations (including heap storage creation
site names) can be separated from side effects on locals and non-visibles.

This can be done by introducing a new set CondIMOD+(P, RA) to the decom-
position of Figure 10. This new set is the set of fixed locations either modified
directly in procedure P or modified as non-visibles in procedures called by P, con-
sidering only aliases in P that are conditioned on RA. The non-visibles modified
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by procedures called in P are local variables of either P or other procedures
that have called P, directly or indirectly. The system of data-flow equations for
CondIMOD+ sets is as follows, where b′callQ

is the function bcallQ in Section 3.1
restricted to mapping of non-visibles in Q to either locals or non-visibles in P.

CondIMOD+(P, RA) =
CondIMOD(P, RA)

⋃ ⋃
callQ ∈ P and

RA′ ∈ contexts of (callQ , RA)

(
b′callQ

(CondIMOD+(Q, RA′))
)

After obtaining CondIMOD+(P, RA) solutions, the PMOD sets can be com-
puted by solving the following data-flow equations.

PMOD(P, RA) =
CondIMOD+(P, RA)

⋃ ⋃
callQ in P and

RA′ ∈ contexts of (callQ , RA)

{
obj

∣∣obj ∈ PMOD(Q, RA′) and obj is global
}

Figure 29 compares various MOD sets defined in this MOD decomposition
for C and those in the decomposition for FORTRAN as presented in Cooper and
Kennedy [1987].

B. CALCULATION OF MOD WITH maybes

In order to incorporate maybe information from the alias solution into the MOD
solution, the following definitions are needed:r L1 is the lattice ({maybe, yes},v1, t1, u1,>1,⊥1) implied by the relation maybe
v1 yes.r F is the set of fixed locations of the program being analyzed.r L is (S,v, t, u,>,⊥)
—S=powerset(F × {maybe, yes})
—a v b iff [(∀s)[s = ( f , d1) ∈ a]⇒ [(∃d2) such that ( f , d2) ∈ b and d1 v1 d2]]

—a t b =
⋃
f ∈F



{( f , d )}
[(∃d1) such that ( f , d1) ∈ a] ∧

[(∃d2) such that ( f , d2) ∈ b] ∧
d = d1 t1 d2

{( f , d )}
{

( f , d ) ∈ a ∧
[(6 ∃d1) such that ( f , d1) ∈ b]

{( f , d )}
{

( f , d ) ∈ b ∧
[(6 ∃d1) such that ( f , d1) ∈ a]

∅ otherwise
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Fig. 29. Comparison of MOD decompositions for FORTRAN and C.

—u is analogous to t but is not needed
—> = F × {yes}
—⊥ = ∅r DIRMOD, Predecessors, and bcallQ as in Section 3.r For all program points n and all reaching aliases RA
—(〈x, y〉 , yes) ∈ Alias′(n, RA) if x and y are definitely aliases on some path

to n given RA reaches the entry of the procedure containing n. This is
simply a guarantee that 〈x, y〉 is in the precise up to symbolic execution
alias solution. Note that the precise up to symbolic execution solution at
a program point is different from the must alias solution. For each alias
in the precise up to symbolic execution solution, there is some path in the
ICFG which results in that alias. For an alias to be a must alias, it must
exist on all paths to a program point.

—(〈x, y〉 , maybe) ∈ Alias′(n, RA) if x and y may be aliases on some path to
n given RA reaches the entry of the procedure containing n and the alias
algorithm assumes it is for safety.
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r For all program points n, (〈x, x〉 , yes) ∈ Alias′(n, φ) where 〈x, x〉 is any trivial,
reflexive alias.r contexts of ′ is identical to contexts of in Section 3.1 with yes or maybe as-
sociated with each alias as above.

The MOD problem can be decomposed when yes and maybe are to be associ-
ated with the solution in a manner similar to that in Figure 10.

First, notice that obj∈CondLMOD(n, RA) should be associated with yes
(maybe) iff the alias responsible for it is associated with yes (maybe).

CondLMOD′(n, RA) =
⋃

pred ∈ Predecessors(n)

(obj1, b)

∣∣∣∣∣∣
obj2 = DIRMOD(n) and

(〈obj1, obj2〉 , b) ∈ Alias′(pred, RA)
and obj1 is a fixed location


For a procedure P and reaching alias RA, CondIMOD′(P, RA) contains the

fixed locations modified by assignments in procedure P:

CondIMOD′(P, RA) =
⋃

n an assignment in P

CondLMOD′(n, RA)

A fixed location in PMOD′(P , RA) is definitely modified if it is definitely
modified (associated with yes) in a called procedure and the alias at the call
site which triggers that modification is also associated with yes:

PMOD′(P, RA) = CondIMOD′(P, RA) ∪⋃
callQ in P and

(RA′, b′) ∈ contexts of ′(callQ , RA)

{
(obj , b)

∣∣∣∣ (obj ′, b′′) ∈ PMOD′(Q , RA′)∧
obj ∈ bcallQ ({obj ′}) ∧ b = b′ u1 b′′

}

CMOD′ is simple for assignments and for procedure calls is analogous to
PMOD′.

CMOD′(n, RA) =
CondLMOD′(n, RA) if n is an assignment
S(n, RA) if n is a call of Q
∅ otherwise

where S(n, RA) =
⋃

(RA′, b′)∈ contexts of ′(n, RA)

{
(obj , b)

∣∣∣∣ (obj ′, b′′) ∈ PMOD′(Q , RA′)∧
obj ∈ bn({obj ′}) ∧ b = b′ u1 b′′

}

Finally, MOD′ is (n is in procedure P)
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MOD′(n) =
⋃

reaching alias RA for P

CMOD′(n, RA)

MOD′(P ) =
⋃

reaching alias RA for P

PMOD′(P, RA)

C. RAW DATA

Table III shows the analysis times for the MODC calculations broken into two
passes, and for a simple compilation using Gnu’s gcc compiler version 2.7.2
with no optimizations enabled. The numbers are as reported by the UNIX time
utility, averaged over 5 executions on a Sun Sparcstation 20 with 348MB of
RAM and 527MB swap space. The MODC(FS) and MODC(FI) times do not
include the alias analysis times, but are simply the time taken to calculate the
MODC solution given the alias solution. The total analysis time is the sum of
the two columns (columns 4 and 6 for MODC(FSAlias) and columns 5 and 7 for
MODC(FIAlias)).

Tables IV to XI contain summary statistics for the MOD solution. These
statistics are subdivided with respect to the type of fixed locations being modi-
fied. There are five types:r glo: MOD information for global variables.r dyn: MOD information for dynamic storage locations (heap storage creation

sites).r loc: MOD information for local variables of the enclosing procedure (including
formal parameters).r nv: (non-visible) MOD information for local variables of other procedures or
of an earlier recursive instantiation of the enclosing procedure. Section 2.2
discusses non-visibles in more detail.r tot: MOD information for all fixed locations.

There are three different summary statistics. Average # Location Modi-
fied (Maximum # Location Modified) is the average (maximum) number of
fixed locations modified by statements (possibly procedures) of the type indi-
cated by the tables. Average Percent of Worst Case is more complicated. The
number of fixed locations potentially modified by an assignment is the sum ofr the number of globals in the program,r the number of dynamic allocation sites,r the number of locals in the enclosing procedure, andr the number of locals of other procedures (including locals of earlier recursive

instantiations of this procedure) accessible through globals and formals at
the entry of the enclosing procedure.

Percent of Worst Case is simply the number of fixed locations modified
divided by the number of potentially modified locations. The Average Per-
cent of Worst Case is the average of Percent of Worst Case over all as-
signments, calls, or procedures depending on the statement kind. For some
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Table III. Timing Data

ICFG Compile FSAlias FIAlias MODC(FS) MODC(FI)
Program Nodes Time(s) Time(s) Time(s) Time(s) Time(s)

allroots 422 2.42 2.34 0.08 0.02 0.02
fixoutput 617 1.98 1.18 0.07 0.03 0.03
diffh 646 1.62 1.70 0.11 0.04 0.03
travel 698 2.04 3.34 0.12 0.04 0.05
ul 1027 1.72 3.15 0.13 0.08 0.05
plot2fig 1077 15.68 3.80 0.18 0.06 0.07
lex315 1297 2.10 3.64 0.14 0.08 0.07
compress 1319 2.10 3.16 0.18 0.08 0.08
clinpack 1429 2.42 7.34 0.23 0.12 0.09
loader 1563 5.42 6.18 0.29 0.12 0.15
mway 1576 3.12 4.59 0.21 0.10 0.11
ansitape 1747 3.24 5.13 0.39 0.11 0.12
stanford 1771 2.46 2.53 0.22 0.10 0.09
pokerd 1895 7.90 26.52 0.29 0.14 0.11
zipship 1955 2.66 4.33 0.27 0.20 0.13
dixie 2341 10.64 8.09 0.30 0.18 0.23
zipnote 2407 9.50 19.40 0.53 0.64 0.16
learn 2626 8.24 6.27 0.37 0.18 0.21
xmodem 2672 6.00 4.81 0.31 0.21 0.19
compiler 3008 7.84 3.06 0.19 0.36 0.35
zipcloak 3033 7.50 20.42 0.64 0.67 0.19
sim 3034 3.00 8.24 0.35 0.31 0.20
cdecl 3196 4.60 21.08 0.33 0.34 0.25
diff 3300 4.36 11.17 0.50 0.32 0.21
unzip 3416 9.88 10.57 0.40 0.27 0.29
assembler 3601 11.54 26.06 0.55 0.57 0.56
gnugo 3651 14.24 3.25 0.32 0.19 0.19
livc 4101 4.50 7.98 0.57 0.26 0.37
lharc 4250 4.62 12.72 0.79 0.34 0.36
patch 4608 6.94 18.80 0.51 0.35 0.40
simulator 5574 14.70 11.31 0.60 0.34 0.53
arc 5856 19.02 15.00 0.91 0.44 0.53
triangle 6119 8.42 8.88 0.64 0.72 0.31
tbl 6162 14.00 27.16 0.54 0.67 0.43
football 7313 10.22 9.86 0.83 0.37 0.46
flex 7376 11.46 116.82 0.74 0.82 0.67
zip 9288 18.12 1.80 1.01
072.sc 13690 16.52 2.05 2.08
spim 16740 25.38 2.23 3.78
larn 21184 37.78 2.36 8.03
tsl 27302 21.72 10.86 14.69
008.espresso 30510 40.72 6.17 6.09
moria 38572 45.84 77.89 7.02 3.02 52.07
TWMC 51627 152.22 11.06 9.47
nethack 58317 71.38 124.32 355.41
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statements/procedures, the number of possible locals and the number of
non-visibles are zero. In these cases, “0%” is used as the percent/assign.
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