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Abstract

On-chip caches consume a significant fraction of energy in current micro-
processors. Hence, hardware techniques such as block buffering have been
developed and shown to be effective in reducing on-chip cache energy con-
sumption. We are not aware of any software solutions to exploit block
buffering. This paper presents a compiler-based approach that modifies both
code and variable layout to effectively exploit block buffering, and is aimed
at the class of embedded codes that make heavy use of scalar variables. Un-
like previous work that uses only storage pattern optimization, our solution
integrates both code restructuring and storage pattern optimization. Experi-
mental results on a set of complete programs demonstrate that our solution
leads to significant energy savings.

1 Introduction

On-chip caches are a major source of energy consumption in current
microprocessors. For example, Edmondson et al. [2] report that the
on-chip cache in DEC Alpha 21264 consumes approximately 25%
of the on-chip energy. Circuit and architectural techniques that im-
plement alternative cache organizations (e.g., sub-banking, bitline
segmentation, and block buffering [5]) have been shown to be very
effective in reducing the energy consumption of on-chip caches. A
block buffer is a small line buffer inserted between the processor
and the first-level on-chip cache to hold the most recently accessed
cache line (block). The key idea is to keep the most recently ac-
cessed cache line in the block buffer so that the following request
can access the data from the block buffer if it targets the same cache
line (this depends on the block-level locality exhibited by the appli-
cation). As noted by Ghose and Kamble [4], this not only saves
accesses to data arrays of the on-chip cache but, at the same time,
also saves the access to the tag arrays. Su and Despain [9] propose
a single block buffer structure; Ghose and Kamble [4] extend this
structure to multiple buffers (for set-associative caches), and report
as much as 75% savings in power dissipation as compared to a con-
ventional cache architecture.

A simplified block buffering scheme is depicted in Figure 1.
This is similar to the architecture proposed by Ghose and Kamble
[4]. An access to the block buffer-augmented cache is performed
in two cycles but at the rate of one access per cycle using a two-
phase clock. In the first cycle, the last set number is compared to
the corresponding field of the address issued by CPU to determine
if the current access is to the same set as the previous one. If it is,
the tag and data array sensing are disabled. Otherwise, the selected
set is latched in and the set number for the current access is moved
into the latch that holds the set number for the last access. In the
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second cycle, normal tag comparison is done and if it succeeds,
word multiplexing is performed as in normal caches.

While previous research [9, 4, 6, 3] investigated different block
buffering schemes and evaluated their impact on energy and perfor-
mance, to the best of our knowledge, no previous study considered
compiler support for block buffering. In this paper, we present a
compiler-based approach that modifies code and variable layout to
take better advantage of block buffering. The application domain
that this technique targets includes a class of embedded codes that
make heavy use of scalar variables. That is in contrast to a vast
amount of locality-oriented work done for array-dominated appli-
cations in the optimizing compiler area (see, for example, Wolfe’s
book [11] and the references therein). While previous work such as
[7] addresses optimizations for improving cache locality of scalar-
dominated codes, their approach is limited to variable placement
(called storage pattern or storage sequence optimization in this pa-
per). In comparison, the integrated approach proposed in this pa-
per employs both storage pattern and access pattern optimizations.
Specifically, this paper makes the following contributions:
� It presents an access pattern (access sequence) optimization tech-

nique to maximize the benefits of block buffering for data ac-
cesses in scalar-dominated embedded codes;

� It presents a unified (integrated) optimization strategy that em-
ploys both access pattern and storage pattern (variable place-
ment) optimizations for multi-basic block codes; and

� It quantifies the benefits from the proposed techniques over a
straightforward block buffering scheme that does not make use
of any compiler support using four complete programs.

Overall, we believe that compiler support is complementary to ar-
chitecture and circuit-based techniques to extract the best energy
behavior from a cache subsystem that employs block buffering.

The remainder of this paper is organized as follows. Section 2
describes the problem. Section 3 formulates it on a graph-based
structure, and presents our solution strategy for the single basic
block (a straight line of code without branching/conditionals) case
along with a brief discussion of how we handle multiple basic blocks.
Section 4 presents experimental data showing the effectiveness of
the proposed technique. Section 5 concludes with a summary and
an outline of the planned future work.

2 Problem Description

The success of a block buffering scheme is strongly dependent on
the variable access pattern. Let us assume that our block buffer can
hold k (> 1) variables (i.e., a line size of k elements). In this case,
given a code fragment, we can increase the block buffer hit rate
(which is defined as the ratio between the number of block buffer
hits and the total number of data accesses) by using both access se-
quence and storage sequence (variable layout) optimizations. Con-
sider the following code fragment assuming that k = 2 and that the
storage order of the variables is a,b,c,d, the first variable being
at the head of a cache line (i.e., aligned to the cache line boundary):

a = b + c; c = d + b

The original access sequence is b,c,a,d,b,c and does not take
any advantage of the block buffer. If the code is transformed to

a = c + b; c = b + d

we obtain a new access sequence (c,b,a,b,d,c) with a 50%
(3/6) block buffer hit rate. Note that it would also be possible to
optimize the original code fragment above using storage (variable
layout) optimizations by transforming the original storage pattern
a,b,c,d into b,c,a,d.
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Figure 1: Operation of block buffering

We can conclude from this example that in order to increase the
block buffer hit rate, we need to maximize the number of consecu-
tive accesses to a given line. This can be done by modifying the or-
der of variable access (access sequence optimization), by modifying
the storage order of variables in memory (storage pattern optimiza-
tion), or by a combination of these (unified optimization). Note that
when k is one, access sequence optimization is the only available
option.

3 Representation and Solution

We represent the problem using a graph-based structure and solve
it using a longest path algorithm. We define two data elements as
neighbors if they map onto the same cache line and the distance
between them (in memory) is less than k (the cache line size) ele-
ments. Note that the neighboring elements are brought into cache
(when they are accessed) and hence into the block buffer at the same
time. We also define virtual lines in memory, each of which holding
a group of neighboring elements.

Given a basic block (i.e., a block of sequential assignment state-
ments without a branch except maybe at the end of the sequence),
we use a layout transition graph (LTG) to show the connections
between elements that are mapped on the same cache line. Specif-
ically, a layout transition graph of a basic block is a directed graph
LTG(V;E) where each node (vertex) vi 2 V represents the oc-
currence of a variable in the basic block, and a bi-directional edge
e = (vi; vj) 2 E from a node vi to a node vj indicates that the
variables represented by vi and vj are neighbors (that is, they are
in the same virtual line). An LTG also contains an edge between
vi to vj if these two nodes represent the occurrences of the same
variable.

For ease of exposition, we divide a given LTG into layers, each
of which corresponding to an assignment statement in the basic
block. If the basic block contains K statements, each variable vi
in the jth statement from top (denoted sj where 1 � j � K) is
assumed to belong to the variable set of sj ; we express this concept
using the notation vi 2 sj . When there is no confusion, we will
abuse the notation sj to denote both the statement and its variable
set.

A given variable set si can also be divided into two logical sub-
sets: one that contains the variable on the left hand side (LHS), and
one that contains the variable(s) on the right hand side (RHS). For
a variable set si, the first set is denoted by siL and the second set
is denoted by siR. As will be discussed later in this section, the
edges of the LTG can be used to traverse the nodes in the graph,
which, in turn, corresponds to intra-statement and inter-statement
transformations.

We define a traversal of (the variables in) a given LTG as a set of
paths that collectively visit each and every node only once without
mixing accesses to the variables from different statements. While
a given LTG shows the storage connections (relations) between the
variables in the basic block, it does not dictate any traversal. Note
that a traversal of the LTG corresponds to an ordered sequence
of variable accesses (i.e., access pattern). Consequently, different
traversals correspond to different access patterns. It is well known
from data dependence theory [11] that there are some traversals (of
variables during execution) that are not valid (i.e., semantically cor-

rect). To eliminate some of the invalid traversals from the LTG, we
constrain it by eliminating any edge e = (vi; vj) 2 E if going
from vi to vj during the program execution (i.e., touching the vari-
ables represented by vi and vj immediately one after another) does
not preserve the original semantics of the code. This pruned LTG is
called constrained LTG (CLTG) in this paper and is the main data
structure which the optimizations we employ operate on.

To illustrate how an LTG and a CLTG are constructed, let us
consider the following code fragment (basic block):

a = i + b + 3j
e = g + h + k
b = 2d + 4a - 5
k = l + f

Let us assume that the variables are stored in memory in the or-
der of a,b,c,d,e,f,g,h,i,j,k,l and that k = 4. Con-
sequently, we have three virtual lines: fa,b,c,dg, fe,f,g,hg,
and fi,j,k,lg (We assume perfect alignment). Figure 2(i) shows
the four layers corresponding to four statements in this fragment.
Each layer is delimited using dashed lines and corresponds to an in-
dividual statement. For example, labeling the first statement as s1,
we have s1L = fag and s1R = fi,b,jg. Given the storage se-
quence (virtual line mapping) above, Figure 2(v) shows the LTG for
this code fragment. Note that there is a bi-directional edge between
two nodes whenever the corresponding variables are neighbors (i.e.,
they reside in the same virtual line). Figures 2(ii), (iii), and (iv), on
the other hand, show the contributions (that can be called sub-LTGs)
coming from the three virtual lines (group of neighbors) mentioned
above. It should be noted that a different alignment in memory (vir-
tual line mapping) would generate a totally different LTG.

We see that the LTG shown in Figure 2(v) is very dense. How-
ever, assuming that the statements in the fragment will not be bro-
ken into sub-statements and that the variable accesses from different
statements are not mixed, a simple analysis of the code fragment re-
veals that many of the edges in this LTG cannot be traversed by a
legal access pattern. For example, there is no way that the edge
from i to k be taken by any given schedule (access pattern) as a
LHS variable needs to be touched between these variables. Data
dependence constraints might also help one to eliminate a number
of edges (e.g., the one from b in the third statement to b in the
first statement). Eliminating all these illegal (unacceptable) edges
(transitions) gives us the CLTG shown in Figure 2(vi). Note that
as compared to Figure 2(v), the graph in Figure 2(vi) contains very
few edges.

The optimization process described next operates on the CLTG.
Before moving to the optimization phase, let us first formalize the
constraints that allow us derive a CLTG from a given LTG. A con-
strained layout transition graph, written CLTG(V;E0), is a sub-
graph of the LTG(V;E) with the same nodes and E0 contains all
the edges in E except those that can lead to an incorrect or infeasi-
ble code transformation (transition). Note that the construction of
the CLTG subsumes both the intra-statement constraints (i.e., eval-
uation rules that need to be obeyed when processing the RHS ex-
pression) and the inter-statement constraints (i.e., data dependence
and other constraints between different statements). In mathemati-
cal terms, to build the CLTG, the following edges of the LTG should
be dropped (Note: s.t. means ’such that’)

- Any edge (vi; vj) 2 E s. t. vi 2 skR, vj 2 sk0R with k 6= k0

- Any edge (vi; vj) 2 E s. t. vi 2 skR, vj 2 sk0L with k 6= k0

- Any edge (vi; vj) 2 E s. t. vi 2 skL and vj 2 sk0L, where
k 6= k0 and sk0R 6= ;

- Any edge (vi; vj) 2 E such that traversing this edge would
break expression evaluation rules or data dependence

3.1 Single Basic Block
We formulate the problem of modifying a given basic block code
for effective use of the available block buffer of k elements as one
of determining a path cover and a traversal order on the CLTG. To
generate correct code (i.e., to preserve the semantics of the basic
block), we impose the following conditions on traversal order:

- Each node in the CLTG (i.e., a variable occurrence in the basic
block) should be visited.
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Figure 2: (i) Four layers (corresponding to four statements) for a basic block. (ii-iv) sub-LTGs induced by different virtual lines. (v) the
overall LTG. (vi) the corresponding CLTG. (vii) four representative paths in the CLTG. (viii) the final traversal of nodes.

- For a given layer in the CLTG corresponding to the statement
sk, all nodes in skR should be visited before the node in skL.

- Once the traversal reaches a layer corresponding to the state-
ment sk, it should finish all variables in that layer (that is, the
set skL [ skR) before moving to another layer.

- All data dependences and other restrictions such as latency con-
straints or expression evaluation constraints should be observed.

Based on these observations, our approach determines a traversal
order and during the traversal it also transforms the underlying code
fragment (basic block). The objective of the traversal (and that of
transformation) is to minimize the cost of traversal. In our context,
the traversal cost is defined as the number of transitions (i.e., suc-
cessive variable accesses) that do not have a corresponding edge in
the CLTG. This is because each such transition accesses two vari-
ables (one after another) that reside in different virtual lines, and
consequently, the second access (in the transition) cannot exploit
the data currently residing in the block buffer (i.e., results in a block
buffer miss). Recall that we assume a single block buffer that can
hold k consecutive elements. Therefore, one way of minimizing the
cost is to traverse as many edges from the CLTG as possible.

In the following, we present the description of an algorithm
that takes as input a CLTG and generates as output a traversal (an
access sequence) and all the necessary (inter-statement and intra-
statement) transformations to obtain this access sequence. Given a
CLTG, the algorithm first detects the longest directed path (i.e., the
path that contains the maximum number of edges in the same direc-
tion). It then transforms the portion of the CLTG (which contains a
subset of the statements in the original basic block) in accordance
with this longest path. Finding the longest path in a given directed
graph is straightforward, and takes O(N3) time where N is the
number of nodes in the graph. Due to lack of space, we only present
an example and omit the details of transforming the program code
in accordance with the longest path, which is a challenging prob-
lem.

We illustrate the operation of this transformation mechanism us-
ing the example in Figure 2. The longest path in the CLTG in Fig-
ure 2(vi) is marked (1) in Figure 2(vii). It contains two nodes (b and
a) from the first statement and three nodes (a, d, and b) from the
third statement. In order to realize this path (i.e., to touch the vari-
ables at runtime in the order indicated by this path), variable b in
the first statement should be the variable that is accessed last on the
RHS (just before the LHS variable a), the third statement should be
moved to just below the first statement (an inter-statement transfor-
mation) to ensure successive accesses to variable a, the variables
a and d (in the original third statement) should be accessed one
after another (already satisfied as there are only two variables on
the RHS), and d should be the last variable accessed on the RHS.
Note that after performing these transformations the access orders
for variables i and j (in the first statement) are also fixed. The

approach next moves to the second longest path (marked (2) in Fig-
ure 2(vii)) and performs the transformations indicated by it. It is
important to stress that the transformations that would be performed
based on the second (longest) path cannot override (nullify) those
performed based on the longest (previously optimized) path. Note
that after processing path (2), the access order of all the variables
in the code is fixed. The approach verifies this by checking the re-
maining paths (which are marked (3) in the figure) and making sure
that the nodes contained in them have all been processed.

Figure 2(viii) shows the final access sequence (traversal). The
dashed edges (arrows) correspond to transitions that contribute the
cost of the traversal as they do not have corresponding edges in the
CLTG. In this particular case, the overall cost is 4. Note that the
cost of the traversal directly corresponds to the number of block
buffer misses. It is easy to verify that the traversal cost would be
11 had we not performed any transformation. Considering that the
total number of variable accesses in this example is 14, we observe
a significant impact of the code transformations used.

3.2 Multiple Basic Blocks

Our procedure-wide (global) optimization approach operates on the
CFG representation of the procedure and starts by ranking the basic
blocks according to decreasing execution frequencies (which might
be obtained through static analysis or profiling as mentioned ear-
lier). It then starts the optimization process with the most frequently
executed basic block and optimizes this basic block using only stor-
age sequence optimizations proposed by Panda et al. [7]. After
optimizing this block, the storage order of the variables accessed
by this block is known. The approach then moves to the second
most frequently executed basic block and optimizes this basic block
using the three-step approach discussed in the previous paragraph.
After optimizing this block, the set of variables whose storage loca-
tions are determined is updated and the approach moves to optimize
the next basic block, and so on. Therefore, two distinguishing char-
acteristics of the approach are (i) the fact that it gives priority in
optimization to the most frequently executed basic blocks, and (ii)
that it propagates variable layouts between basic blocks to reach a
globally (procedure-wide) acceptable solution. It should be noted
that once a memory location is determined for a variable (during
optimization of a basic block) it is never changed later (during the
optimization of a less frequently executed basic block).

4 Experimental Evaluation

This section provides results of the experiments we performed to
evaluate the proposed optimization scheme. Our scheme has been
implemented within the SUIF compilation framework [10] and eval-
uated using four codes: int mxm, an integer matrix multiply pro-
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Figure 3: Data cache energy percentage improvement over original

gram (that contains one initialization and one multiplication nest);
full search, a motion estimation code; rasta fft, a discrete
Fourier analysis code; and rasta flt, a filtering routine. The
data set sizes (resp. the number of basic blocks) for int mxm,
full search, rasta fft, and rasta flt are 196K (resp.
2), 71K (resp. 11), 224K (resp. 8), and 128K (resp. 12), respec-
tively. For each code, four different versions have been evaluated:
original code, a version that uses only storage layout optimizations
(s opt) [7], a version that uses only access sequence optimizations
(a opt), and a version that uses both storage layout and access se-
quence optimizations (s+a opt). The block buffer miss rates are
obtained through the use of an in-house simulator built upon the
Shade infrastructure [1]. To calculate energy consumptions, we em-
ploy the on-chip energy formulations in [8]. All the graphs shown
here are for an 8K, direct-mapped, write-back data cache with a
single block buffer. Experiments with 2-way and 4-way associative
caches produced similar results; so, they are omitted due to lack
of space. Also, when we increase the number of block buffers (to
4 and 8), we obtained larger energy savings (though slightly sub-
linear in terms of the number of block buffers). Beyond 8 buffers,
we noticed that the buffers themselves consume a large amount of
energy.

Figure 3 gives the percentage improvements (reductions) in data
cache energy consumption with respect to the original version for
two different values of k (1 and 4). We can make two major ob-
servations from these graphs. First, there is no clear choice be-
tween s opt and a opt as none of them dominates the other. This
means that both access pattern optimizations and storage pattern
optimizations need to be considered by the compiler. Second, the
unified strategy (s+a opt) outperforms the other two optimization
schemes over all codes and buffer sizes. Figure 4 presents reduc-
tions in the overall data memory system energy (main memory en-
ergy plus data cache energy). An amount of 4.95nJ is assumed to
be spent per main memory access [8, 3]. We see that the average
(over all codes and all buffer sizes) energy reductions brought about
by s opt, a opt, and s+a opt are 9.8%, 9.5%, and 17.5%, re-
spectively.

Figure 4: Overall memory energy percentage improvement over original

5 Conclusions and Future Work

This paper presented a compiler-based approach that modifies code
and variable layout to take better advantage of block buffering, for
a class of embedded codes that make heavy use of scalar variables.
Unlike previous work that uses only storage pattern optimization,
we use an integrated approach that targets whole programs and em-
ploys both code restructuring and storage pattern optimizations. We
have implemented our solution in a compiler using SUIF [10]. Ex-
periments with several codes demonstrate that our solution results
in up to 17% savings in overall memory energy. Work in progress
includes the investigation of different ways of combining storage
layout and code restructuring transformations, and incorporating
partitioning of variables for multiple block buffers.
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