
 

 

Energy Efficient Turbo Decoding for 3G Mobile  
David Garrett, Bing Xu, Chris Nicol 
Bell Labs Research, Lucent Technologies 

Sydney, Australia 
garrettd@bell-labs.com 

 
ABSTRACT 
The requirement of turbo decoding in 3G wireless standards has 
forced handset designers to consider power consumption issues in 
their implementations. The phenomenal performance of turbo 
codes comes at the expense of computation. Primarily this paper 
looks at methods of substantially reducing the power consumption 
for the decoding operation, making it feasible to integrate turbo 
decoders into a low power handset. The techniques presented 
include early termination of the turbo process, encoding of 
extrinsic information to reduce the memory size, and disabling 
portions of the MAP algorithm when the results will not affect the 
decoded output. The net result of these techniques is almost a 70% 
reduction in power over a fixed 6 iteration, 8-state baseline turbo 
decoder at 2 dB of signal to noise ratio (SNR). 

Keywords 
Turbo coding, low power, early termination, extrinsics. 

1. INTRODUCTION 
Power consumption in mobile terminals for 3G systems will 
certainly be driven higher by the requirement for turbo decoding 
data. Since their introduction in 1993 by Berrou et. al. [1], turbo 
codes have quickly become mainstream and have been integrated 
in the 3G wireless standards with several data rates [2]. The turbo 
algorithm itself gains its performance by blindly throwing 
computation power at the problem. In order for 3G mobile 
terminals to provide the energy efficiency that users have come to 
expect, significant changes to the turbo algorithm are required. 

The earliest implementations of turbo decoding algorithms were 
based on Berrou’s work with the soft output Viterbi algorithm 
(SOVA) as the constituent decoder [6]. Pietrobon further explored 
implementation issues a turbo decoders with the logMAP 
algorithm with his VXI chassis test platform [4]. Since then, there 
have been several other implementations [5][3], but only recently 
has published work specifically focussed on low power 
considerations [7][8][9][10]. 

The paper highlights several key techniques to significantly reduce 
the energy required for turbo decoding. These techniques attack 
not only the computational inefficiency of turbo by pruning 
unnecessary operations, but also by restricting memory power 
consumption through data encoding and reduced memory 
accesses.  These techniques allow most of the energy to be spent 
where it provides the biggest gain, in the first couple iterations. 
Section 2 highlights seven techniques to reduce the power 
dissipation in the turbo decoding algorithm. Section 3 presents 
results estimating the power savings due to the techniques. Section 
4 presents turbo simulation results to prove that the power savings 
techniques have little impact on the overall system performance.  

2. POWER REDUCTION TECHNIQUES  
2.1. Early Termination  
The strength of the turbo decoding process is in allowing the two 
constituent decoders to share information between iterations and 
reinforce the symbol decision made in each decoder. Consider the 
wide range of channel conditions that can be experienced in turbo 
decoding. In many cases only two iterations are sufficient to 
guarantee excellent coding gain, while particularly difficult 
channel conditions may require many more iterations.  The goal of 
early termination is to determine when the algorithm has 
converged in order to stop the excess computations that are 
contributing little to the final solution.  

The first work on early termination stems from Haganuer et. al. 
definition of the cross-entropy (CE) between the decoders. CE can 
be used as a method to stop the overall terminations in the turbo 
algorithm [11]. Shao et. al. used the measure of CE to identify two 
simple stopping criteria, the sign change ratio (SCR) and the hard 
decision aided (HDA) technique for early termination [12]. Both 
of Shao’s techniques involved monitoring the bit decisions 
between iterations and determining if there are any changes. The 
main problem with both SCR and HDA in terms of power 
consumption is that they require a memory to store all hard 
decision bits in order to compare with the next iteration. Another 
shortcoming of the HDA and SCR algorithms is that they require 
two iterations of data to compare, the previous and the current set, 
and thus the turbo decoder must perform an extra iteration to 
confirm that the bits have stabilized. There have been other papers 
on early termination, but they have also monitored the decision 
bits [9].  

In this paper we present a different early termination algorithm 
based on CE call the soft decision extrinsic aided (SDEA) 
algorithm. Instead of looking for just hard decision bits out the 
decoder, SDEA simultaneously monitors the log-likelihood ratios 
(LLR) and the extrinsic information from the decoders to identify 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
ISLPED’01, August 6-7, 2001, Huntington Beach, California, USA. 
Copyright 2001 ACM 1-58113-371-5/01/0008…$5.00. 

328



 

 

when the decisions have stabilized. SDEA is based on the idea that 
soft information for a particular decoder has been generated 
through multiple iterations meaning that it inherently contains 
information from previous iterations. Thus the termination can be 
determined with a proper analysis of information only from the 
current iteration.  

The way SDEA works is to use two comparators to check the 
magnitudes of the LLR and extrinsic information against 
thresholds on a per symbol basis. One counter is needed to record 
the number of bits in the block where the LLR and extrinsic 
information are both under their respective thresholds. At the end 
of the block, the turbo decoding will terminate if the value of the 
counter is below a threshold. For optimum performance with 
SDEA the counter threshold will be set to zero, meaning all of the 
LLR and extrinsic information must be above their thresholds. 
However, the counter threshold can be adjusted to trade further 
iteration reduction with a slight decrease in performance. 
Furthermore, because SDEA does not compare its results with the 
previous cycle, the turbo process can be terminated by either of the 
two decoders (potentially saving a half iteration). The advantage of 
the SDEA scheme is that it uses the instantaneous LLR and 
extrinsic information from one decoder, and hence no memory is 
required. 

Figure 1 SDEA Architecture 

Figure 2 Early termination iterations counts. 

Consider the simulation results from a rate 1/3 turbo code system 
with 8-bit input data, AWGN, and with a block size of 1700. 
Figure 2 shows a plot of the average number of iterations for the 

turbo system for HDA and SDEA. On average SDEA results in 
half an iteration savings across the simulated range of SNR. At 2 
dB of SNR, SDEA early termination translates into just over a 
60% power savings over a 6 iteration fixed system, almost 10% 
less than with HDA. 

2.2. Quantization of Extrinsics 
One of the properties of the logMAP algorithm is that the extrinsic 
information will continue to grow as each decoder reinforces its 
bit decision. This is costly in terms of memory size because the 
interleaver between the decoders must store the entire block of the 
extrinsic information. For an 8-bit turbo decoding system over 6 
iterations, the extrinsic starts at zero but can grow to over 30,000 
by the 6th iteration. This requires 16 bits of precision to represent 
the full range of the extrinsics. Figure 3 shows the extrinsics in the 
same system where the values have been clamped to 512. By the 
3rd iteration, over 85% of the extrinsic values have diverged to the 
clamping limit. Clamping the extrinsic memory reduces the 
extrinsic memory width from 16 bits down to 10 bits.  

Simulations have revealed no measurable performance degradation 
due to the clamping. In the logMAP algorithm, the extrinsic 
information is fed back to the branch metric calculator, which 
combines the input symbol histories (ISH) with the extrinsic 
information. With an 8-bit system, the maximum input symbol 
value is 127. Thus the limit of 512 works because it is sufficiently 
larger than the input symbol values so that it can dominate the 
branch metric calculation term. 

Figure 3 Extrinsics clamped to 512 over 6 Turbo iterations 

Clamping the extrinsic can reduce the memory requirement to 10 
bits, but there are also further reductions that are possible.  When 
the extrinsic is small, each of the values are important to swing the 
balance of the turbo operation, but as the extrinsic increases in 
value, it overwhelms the calculation and only an approximation is 
needed. Based on this idea, we experimented with encoding the 
extrinsic data to further reduce the memory requirements of the 
interleaver.  

A  simple but effective encoding scheme that accomplishes high 
precision at small values, and less precision at the larger values is 
to floor the extrinsic value to the closest power of two number. 

� ��� � ��� � ��� �
���

�

���

�

���

�

���

�

���

�

���

	
�������

�
�
�
��
�
�
�
�
�


�
�
�
�
��
�
��
��
�
�
�

���
�����������������
�� !��"��#��

$%&

'%	&

D
em

ul
tip

le
xe

r
de

pu
nc

tu
re

r

elementary
Decoder I

elementary
decoder II

deinterleaver

interleaver

info

parity I

parity II

extrinsic I

extrinsic II

a priori I

a priori II

decoded

channel
values

co
m

pa
ra

to
r com

paratorth
re

sh
ol

d

AND

counter

co
nt

ro
l

comparator

te
rm

in
at

io
n

threshold

threshold

extrinsic iterations 

occurences 

329



 

 

With a maximum value of 512, the requantized extrinsic will be an 
element of the set {0, 2x} where x has a range of [0,9]. With this 
encoding set, the 10 bit extrinsic can be requantized into a 5-bit 
sign magnitude number, where the lower 4 bits represent that 11 
possible values of the extrinsic from 0 to 512. This provides an 
extremely simple and fast encoding and decoding circuit, further 
shrinks the extrinsic memory. Similar work for max-log-MAP was 
recently published in [14]. 

Figure 4 Extrinsic companding function  

The companding function has additional benefits not identified in 
[14] in that in some cases, the encoding provides better 
performance than the regular extrinsic system. Figure 5 
demonstrates a complete system simulation of a turbo system with 
and without the companded extrinsics (block size of 840, 6 
iterations, and 8-bit input symbols).   

Figure 5 Turbo performance with encoded extrinsics 

For SNR higher than 1 dB, the encoding provides an average of 
0.2 dB over the conventional system. We hypothesize that this 
relates the optimality of the extrinsic information. Several papers 

have discussed scaling of the extrinsics, and have reported better 
performance in the turbo system by reducing the value of the 
extrinsic [15]. This seems analogous to any feedback system where 
reducing the system gain can allow for better performance. 
Inherently the floor function of our extrinsic encoder provides 
scaling of the extrinsic value (an extrinsic of 275 would be 
reduced to 256). Although the scaling is not uniform across the 
range of extrinsics, it still provides the advantage of extrinsic 
scaling. 

2.3. Optimal Window Sizing 
The window approach to implementing logMAP trades the total 
amount of memory required in the system for extra processing 
power. The original logMAP algorithm must process the entire 
forward pathmetrics, α (which requires storing pathmetrics for 
every state and time slot in the trellis), before computing the 
backward pathmetrics, β, and the LLR. The window approach 
takes a small block of information, and the starts the backwards 
recursion a small distance away from the block in order that the βs 
have converged to a reasonable distribution for processing on the 
sub-block (this metric is typically 4-5 times the encoder memory 
size plus one). Along the same lines, the approach in [7] was to 
store only incremental portions of the β values to reduce memory 
cost, and then use logic to regenerate the sub-block β values. The 
goal for minimum energy in a window logMAP decoder is to 
maximize the window size (which reduces computation overhead) 
without increasing the read and write power of the pathmetric 
memory and other components of the system. Equation (1) 
represents the average power dissipation for the decode operation, 
represented by the average energy for each phase, the α 
calculation, β calculations and the dummy β calculations, 
multiplied by the clock frequency required to maintain the same 
throughput as the block logMAP algorithm (no windows or 
dummy βs).  

block

dummy

avg

f
wE

w
mwEwE

wP

















 +++

=

2

)()1(5)()(

)(

ββα  (1) 

Consider two important data rates for turbo coded channels in 3G 
wireless systems, 384 kbs and 2 Mbs. The windowed logMAP 
algorithm needs approximately 2.15 cycles/bit to process the 
logMAP algorithm with a window size of 128. With 2 decoders 
running at 6 iterations, this requires 25.8 cycles/bit for the 
complete decoder operation. Using this metric along with an 
overhead of 10%, the system with a window size of 128 must run 
at 11 MHz and 57 MHz for the 384 kps and 2 Mbs data rates 
respectively, roughly 8% faster than the non-window logMAP 
algorithm. 

2.4. Branch Metric Cache 
The logMAP algorithm is different from the traditional trellis-
based convolutional codes in that it performs both a forward and 

2

4

8

16

8 1642

-8

-16

-4
-2

-8 -4-16 -2

� ��� ��� ��� ��( � ��� ��� ��� ��( �
��

)#

��
)�

��
)�

��
)�

��
)�

��
)�

��
)�

��
�

	
���

�
	
*

���'�*������

+��,����-������ ��).��������������
����

+��,�-������ ��).�������������
����

330



 

 

backward recursion over the trellis. Consider the logMAP branch 
metric equation as seen in equation (2), where i represents the path 
(0 or 1), d and c are the expected data and parity bits, and ys, yp 
and Le represent the soft information for data, parity and extrinsic 
information respectively. 

( ) ki
ps

ii
k cyLeyd ,++=γ  (2) 

With a rate ½ trellis code, there are only 4 possible combinations 
of this equation given the input soft information: (ys+Le+yp), 
(ys+Le-yp), (-ys-Le+yp), and (-ys-Le-yp). Of the four combinations, 
two can be generated from the other two.  

During the forward recursion stage, both the input symbol and 
extrinsic memory must be accessed to compute the branch metric, 
γ. In order to reduce the memory access power, the first two 
products, (ys+Le+yp) and (ys+Le-yp), can be computed, and then 
can be written into a local γ memory which stores the values over 
the window size. When the backward recursion starts, the branch 
metric can be retrieved from the small local memory, thus 
preventing a memory access to the two large input symbol history 
and extrinsic memories. The approach in [5] was to also 
precompute the γ values, but this was not done in a reduced form. 
In that design, the same memory bank was re-used as an 8-state 
pathmetric storage, thereby not realizing the power savings from 
the small, dedicated γ cache. 

2.5. Reduced LLR computation 
The extrinsic encoding from Section 2.2 provides an opportunity 
for further power reduction. It was observed that as the turbo 
iterations progress, the extrinsics do not decrease once they have 
reached their highest clamped value. Therefore once the individual 
extrinsics have reached the clamped value, there is no reason to 
keep updating their values in memory because the new extrinsics 
will also be the clamped value. The output extrinsic is computed 
by subtracting the input extrinsic from the output LLR for each bit 
in the block. Unless the LLR information is needed outside of the 
turbo decoding block, it does not need to be computed for the 
extrinsics that are already clamped. Based on the clamping, the 
decoder can reduce power through two mechanisms: 

• If the extrinsic is clamped still calculate the forward α 
trellis computation, but no longer store the α results for 
that particular bit. 

• Compute the backward recursion for β, and whenever the 
corresponding extrinsic is clamped, disable computation 
of LLR. 

Although the local pathmetric memory only has a depth equal to 
the window size, it has a wide input word in order to store the 8-
states simultaneously, so this is effective in reducing the write 
power. The LLR calculation uses two sets of logsum trees to 
compute the LLR0 and LLR1 results and disabling them results in 
further savings in the logic power. Table 1 shows the percentage of 
extrinsic that were clamped in the turbo system (rate 1/3, with 
extrinsic companding) on a per iteration basis. In the later 
iterations, most of the pathmetric memory writes and the LLR 
computations can be disabled. 

 Signal to noise ratio 

Iterations 0.0 dB 0.5 dB 1.0 dB 1.5 dB 2.0 dB 

1 0.000 0.000 0.000 0.000 0.002 
2 0.000 0.002 0.008 0.073 0.318 
3 0.000 0.011 0.089 0.552 0.880 
4 0.001 0.078 0.370 0.879 0.963 
5 0.004 0.234 0.631 0.944 0.970 
6 0.005 0.486 0.775 0.953 0.970 

Table 1. Percentage of Clamped Extrinsics 

2.6. 3GPP Interleaver Address Computation 
The standard for turbo decoding for 3GPP systems involves a 
complex address generation algorithm for interleaving between 
constituent decoders [2]. The interleaver algorithm is based on a 
block interleaver with intra-row and inter-row permutations of the 
patterns based on a set of prime numbers. The most 
straightforward method of implementing the address interleaving 
is to generate all the possible addresses, and store the interleaver 
address table in a memory. The memory requires 5114 by 13 bits. 
A better solution for low power operation is to build a dedicated 
address interleaving datapath to generate the addresses on the fly. 
Instead of storing the entire address list, the interleaving simply 
needs to store the intra-row and inter-row permutation patterns. 
The intra-row pattern, S, can have up to 256 entries with 8-bit 
indices, while the inter-row permutation pattern can have up to 20 
entries with 5-bit indices. The actual computation logic is minimal 
compared with the table memories. 

Table 2 shows the configuration overhead and the estimated power 
consumption for the two methods of obtaining interleaver 
addresses for a 5114 turbo block. The address datapath saves 54% 
of the power of the full address table, while the overhead needed 
to update the tables when the block sizes change is just 0.22% of 
the entire decoder operation. 

Interleaver 
Addressing options 

Configure overhead  
(% of cycles) 

Power dissipation 
(µµµµW/MHz) 

Address table in 
SRAM 

4.16% 60.3 

2 register files + 
MOD operation 

0.22% 27.5(-54%) 

Table 2. Address interleaving overhead and power 

In the second decoder, the interleaved address is used in two 
places, first to retrieve the second interleaved parity from the input 
symbol history, and then to store the new extrinsic back into the 
de-interleaved extrinsic memory. In order to further reduce power, 
the extrinsic addresses can be stored in a local cache once they are 
calculated for this first operation. Then, instead of recomputing the 
addresses to write the extrinsic information back into the block, 
they can be retrieved in reverse order from the local cache. The 
cache is only the size of the window, so its power consumption 
will be even lower than the interleaver address datapath unit. 

331



 

 

2.7. LogMAP Correction Factor 
The logMAP correction factor is important is recovering some of 
the performance loss due to calculating numbers in the logarithm 
domain [16]. The difference between max-logMAP and logMAP 
is the addition of an SNR dependent correction factor for the max 
operation in the add-compare-select (ACS) circuit. We have found 
that a single value (scaled based on SNR) is sufficient in 
recovering a significant portion of the performance loss of max-
logMAP and is within 0.05 dB of a full 8-entry logMAP 
correction table. The logMAP ACS is modified to compare the 
absolute value of the pathmetric difference in order to decide 
whether or not to inject a single value into the output pathmetric. 
Figure 6 demonstrates the low power logMAP ACS unit. It saves 
the logic of a full 8-entry LUT and yet achieves similar 
performance.   

Figure 6 ACS unit with one-value logsum correction 

3. POWER ESTIMATES 
All of the power savings techniques presented in the previous 
sections were evaluated by generating a model of the power 
dissipation for the system using the memory and register file 
power dissipation numbers for the system, along with an estimate 
of the average power dissipation for the logic [13]. For the 
datapath units, the power was estimated by synthesizing the basic 
cells and then using the cell count and average gate capacitance to 
extrapolate to the full 8-state ACS unit and logsum trees power 
dissipation. The average signal activity for the logic was estimated 
to be 0.20.  

Once the parameterized power model was in place, the optimal 
window size for the window logMAP algorithm was determined 
by balancing the size of the memories with the computational 
overhead as seen in equation (1). For this particular system, the 
optimal window size was found to be 128. Thus, the actual sizes of 
the memories were set to handle the maximum block size of 5114 
and the window size of 128. 

Figure 7 shows the overall effectiveness of the power reduction 
techniques. The first line represents the baseline system with full 
size memories for extrinsics and ISH operating with the window 
logMAP algorithm, and using a LUT for the interleaver address.  
The next variant changes the extrinsic encoding from 16 bits to 5 

bits, which results is an 7% overall power savings in the decoder. 
When the branch metric caching is added on top of the extrinsic 
encoding, this results in a further 11% power reduction. The 
address interleaver datapath reduces power by another 1%. The 
next chart represents the power savings due to the stopping the 
LLR computation (using the SNR of 2 dB data), which increases 
the overall power reduction in the system to 61% of the original 
system without early termination. Without even attempting early 
termination, these techniques significantly reduce system power 
consumption. Finally, the early termination with SDEA 
significantly drops the overall system power dissipation down to 
33% of the original system. It is interesting to note that by 
combining early termination with the other techniques provides a 
7% further decrease in power consumption over early termination 
alone (at 2dB SNR). Early termination tends to limit the 
effectiveness of techniques like the reduced LLR computation 
which have their highest power savings in the later iterations. 

 

 

 

 

 

 

 

 

 

Figure 7 Distribution of power savings  

4. SIMULATIONS 
While some of the techniques like branch metric caching, and 
interleaver address calculation have no impact on the algorithm, 
techniques like clamping the extrinsic, early termination and one-
value logMAP correction can affect the system performance. In 
order to validate the power reduction techniques, all the ideas were 
incorporated into a system simulation in order to compare with the 
floating point logMAP algorithm, and the system with an 8-entry 
LUT. The simulation used a rate 1/3 code with a block size of 840, 
and 8-bits of input quantization. The simulations use the SDEA 
early termination method to restrict the number of iterations.  As 
can be seen in Figure 8, there is only a slight overall degradation 
from the full floating point logMAP performance, even with all the 
power savings techniques incorporated into the system. 

>

msb

PM+
NormalizationPM0

PM1

BM0

BM1

+

+

+

-
threshold

abs()

correction
(snr dependent)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1

2

3

4

5

6 Baseline 6 Iteration system

+ Extrinsic encoding (93%)

+ Branch metric cache (82%)

+ Interleaver datapath (81%)

+ no LLR computation (61%)

+ Early termination (33%)

 
Figure 7    Distribution of power savings 

332



 

 

Figure 8 BER performance comparisons among systems. 

5. CONCLUSIONS 
The turbo decoding algorithm allows significant coding gain in the 
wireless channel, but at the cost of computation. We have shown 
that we can achieve significant power savings by both trimming 
unnecessary computations (early termination using SDEA, no LLR 
calculation, optimal window sizing), as well as restructuring the 
actual decoder architecture (γ cache, address interleaving and 
cache, extrinsic encoding, one-value LUT). The net result of all 
these techniques is almost a 70% decrease in power consumption 
for the 6-iteration turbo decoding for 3G wireless data services.  

6. ACKNOWLEDGEMENTS 
The authors would like to thank Mark Bickerstaff, Linda Davis 
and Graeme Woodward for all the interesting discussions on turbo 
coding. 

7. REFERENCES 
[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near 

Shannon limit error-correcting coding and decoding,” 
International Conference on Communications, 1993, pp. 
1064-1070. 

[2] 3rd Generation Partnership Project: Technical 
Specification Group Radio Access Network: Multiplexing 
and channel decoding  (FDD), Technical Specification, 
Release 1999. 

[3] C. Berrou, P. Combelles, and B. Talibart, “An IC for 
Turbo-Codes Encoding and Decoding,” IEEE 
International Solid-State Circuits Conference, February 
1995, pp. 90-91. 

[4] S. Pietrobon, “Implementation and Performance of a 
Turbo/MAP Decoder,” International Journal of Satellite 
Communications, 16, pp 23-46, 1998. 

[5] G. Masera, G. Piccinini, M. Roch, M. Zamboni, “VLSI 
Architectures for Turbo Codes,” IEEE Transactions on 
VLSI Systems, Vol 7, No. 3, September 1999, pp. 369-379. 

[6] M. Jezequel, C. Berrou, C. Dillard, and P. Penard 
“Characteristics of a Sixteen-state Turbo-Encoder/Decoder 
(TURBO4),” International Symposium on Turbo Codes, 
1997, pp. 280-283. 

[7] Franky Cathour, “Energy Efficient Data Transfer and 
Storage Organization for a MAP Turbo Decoder Module”, 
International Symposium on Low Power Electronics and 
Design, August 1999, pp. 76-81. 

[8] D. Garrett, M. Stan, “A 2.5 Mbp/s, 23 mW SOVA 
Traceback Chip for Turbo Decoding Applications”, 
International Symposium on Circuits and Systems,  May 
2001. 

[9] H. Suzuki, Z. Wang, and K. Parhi, “A K=3, 2Mbps Low 
Power Turbo Decoder for 3rd Generation W-CDMA 
Systems,” Proceedings for Custom Integrated Circuits 
Conference, May 2000, pp. 39-42. 

[10] O. Leung, C. Yue, C. Tsui, R. Cheng, “Reducing Power 
Consumption of Turbo Code Decoder Using Adaptive 
Iteration with Variable Supply Voltage”, International 
Symposium on Low Power Electronics and Design, 1999, 
pp. 36-41. 

[11] J. Haganauer, E. Offer, L. Papke, “Iterative Decoding of 
Binary Block and Convolutional Codes,” IEEE 
Transactions on Information Theory, Vol. IT-42, March 
1996, pp. 429-445. 

[12] R. Y. Shao, S. Lin, and M. P. C. Fossorier, “Two Simple 
Stopping Criteria for Turbo decoding”, IEEE Trans. 
Comm., vol. COM-47, pp. 1117-1120, Aug. 1999. 

[13] LV160C 1.5V Standard-Cell Library Databook, Lucent 
Microelectronics, Sept. 2000. 

[14] J. Vogt, J. Ertel, and A. Finger, “Reducing bit width of 
extrinsic memory in turbo decoder realisations”, Electronic  
Letters, 28th September 2000, Vol. 36, No. 20. 

[15] Z. Wang, H. Suzuki, and K. Parhi, “Efficient Approaches 
to Improving Performance of a VLSI SOVA-Based Turbo 
Decoders,” IEEE International Symposium of Circuits and 
Systems, May 2000, pp. I287-I290. 

[16] R. Robertson, E. Villebrun, and P. Hoeher, “A 
Comparison of Optimal and Suboptimal map decoding 
algorithms operating in the log domain,” International 
Conference on Communications, 1995, pp. 1009-1013. 

 

 
 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Rate 1/3 Turbo Performance in AWGN − Block size 840

SNR (dB)

B
E

R

logMAP
LP TURBO

333


	Main Page
	ISLPED'01
	Front Matter
	Table of Contents
	Author Index




