
he computational science com-
munity has long been at the
forefront of advanced comput-
ing, due to its need to solve
problems requiring resources

beyond those provided by the most pow-
erful computers of the day. Examples of
such high-end applications range from
financial modeling and vehicle design
simulation to computational genetics and

weather forecasting. Over the
years, these considera-

tions have led com-

putational scientists to be aggressive and
innovative adopters of vector computers,
parallel systems, clusters, and other novel
computing technologies. 

More recently, the widespread availabil-
ity of high-speed networks and the grow-
ing awareness of the new problem-solving
modalities made possible when these net-
works are used to couple geographically
distributed resources have stimulated
interest in so-called Grid computing 
[6]. The term “the Grid’’ refers to an
emerging network-based computing infra-
structure providing security, resource
access, information, and other services that

enable the controlled and coordinated
sharing of resources among “virtual

organizations’’ formed dynami-
cally by individuals and institu-
tions with common interests [7].
A number of ambitious projects

are today applying Grid comput-
ing concepts to challenging prob-

lems like the distributed analysis of
experimental physics data, community
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The result is a promising programming approach for enabling, controlling,
and coordinating resource sharing in computational Grids. 
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access to earthquake engineering facili-
ties, and the creation of “science portals,’’
or thin clients providing remote access to
the information sources and simulation
systems supporting a particular scientific
discipline. 

Underpinning both parallel and Grid
computing is the common need for coor-
dination and communication mechanisms
allowing multiple resources to be applied
in a concerted fashion to these complex
problems. Scientific and engineering
applications have for the most part
addressed this requirement in an ad hoc
and low-level fashion, using specialized
message-passing libraries within parallel
computers and communication mecha-
nisms among networked computers. 

While low-level approaches have let
users achieve their application perfor-
mance goals, an unfortunate consequence
is that the computational science commu-
nity has not benefited to any great extent
from the advances in software engineering
that have occurred in industry over the
past 10 years. In particular, the Java pro-
gramming environment, which seems
ideal for multiparadigm communications,

is hardly exploited at all. Java’s platform-
independent “bytecode” can be executed
securely on many platforms, making the
language an attractive basis for portable
Grid computing. In addition, Java’s per-
formance on sequential codes, a prerequi-
site for developing such “Grande’’
applications, has increased substantially
over the past few years [4] (see the sidebar
“Java Grande”). Inspired originally by cof-
feecup jargon, the buzzword Grande is
now also commonplace for distinguishing
this emerging type of high-end applica-
tions when written in Java. Java also pro-
vides a sophisticated graphical user
interface framework, as well as a paradigm
for invoking methods on remote objects.
These features are of particular interest for
steering scientific instruments from a dis-
tance (see the sidebar “10 Reasons to Use
Java in Grid Computing”).

The rapid development of Java tech-
nology now makes it possible to support,
in a single OO framework, the various
communication and coordination struc-
tures in scientific applications. Here, we
outline how this integrated approach can
be achieved, reviewing in the process 
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the state-of-the-art in communication paradigms
within Java. We also present recent evaluation results
indicating this integrated approach can be achieved
without compromising performance. 

Communication requirements. Communication
and coordination within scientific and engineering
applications combine stringent performance
requirements (especially in Grid contexts) with
highly heterogeneous and dynamic computational
environments. A number of communication frame-
works have been introduced over the years as a result
of the development of computer networks and dis-
tributed and parallel computing systems (see Figure
1). The pioneering framework—the remote proce-
dure call (RPC)—has been around for at least 20
years. The message-passing paradigm arrived along
with distributed memory parallel machines. More
recently, other frameworks have been developed
based on the RPC concepts: remote method invoca-
tion (RMI) and component frameworks. Three
communication and coordination programming
approaches have emerged, each of which can be
expressed effectively in Java: 

Message passing. Within parallel computers and
clusters, communication structures and timings are
often highly predictable for both senders and
receivers and may involve multiparty, or “collec-
tive,’’ operations. Efficiency is the main concern,
and message-passing libraries, such as the Message
Passing Interface (MPI) [8], have become the tech-
nology of choice. 

Remote method invocation. When components of a

single program are distributed
over less tightly coupled ele-
ments or when collective opera-
tions are rare, communication
structures may be less pre-
dictable, and such issues as asyn-
chrony, error handling, and ease
of argument passing become
more prominent. In this con-
text, such technologies as
CORBA and Java’s RMI have
benefits. 

Component frameworks. When
constructing programs from sep-
arately developed components,
the ability to compose and dis-
cover the properties of compo-
nents is critical. Component
technologies, including 
JavaBeans, and their associated
development tools become very

attractive, as do proposed high-performance com-
ponent frameworks [2]. 

Message Passing 
Java includes several built-in mechanisms allowing the
exploitation of the parallelism inherent in a given pro-
gram. Threads and concurrency constructs are well
suited for shared-memory computers, but not for
large-scale distributed-memory machines. For distrib-
uted applications, Java provides sockets and the RMI
mechanism. For the parallel computing world, the
explicit use of sockets is often too low-level, while RMI
is oriented too much toward client/server-type systems
and does not specifically support the symmetric model
adopted by many parallel applications. Obviously,
there is a gap within Java’s set of programming models,
especially for parallel programming support on clusters
of tightly coupled processing resources. A solution
inevitably builds on the message-passing communica-
tion framework, one of the most popular parallel pro-
gramming paradigms since the 1980s. 

The architecture of a message-passing system can
generally follow one of two approaches: implicit or
explicit. Solutions taking the implicit approach usually
provide the programmer a single shared-memory sys-
tem image, hiding the message passing at a lower level
of the system hierarchy. Thus, a software developer
works within an environment often called the distrib-
uted shared memory programming model. Translating
the implicit solution to Java leads to development of
cluster-aware Java virtual machines (JVMs) providing
fully transparent and truly parallel multithreaded pro-
gramming environments [1]. This approach preserves
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Figure 1. Multiple communication frameworks help program the 
diverse infrastructure in Grids. Remote procedure calls, message
passing, remote method invocation, and component frameworks

are the technologies of choice for building Grid applications.
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full compatibility with the standard Java bytecode for-
mat. However, these advantages result from adopting
a complex nonstandard JVM that introduces addi-
tional overhead to the Java runtime system. This extra
complexity makes it difficult for such JVMs to keep up
with the continuous improvements and performance
optimizations of the standard technology.

Unlike sockets and RMI, explicit
message passing supports symmetric
communications directly, including
point-to-point and collective opera-
tions, such as broadcast, gather, all-
to-all, and others, as defined by the
MPI standard. Programming with
MPI is relatively straightforward
because it supports the single pro-
gram multiple data (SPMD) model
of parallel computing, wherein a
group of processes cooperate by
executing identical program images
on local data values. 

With the evident success of Java as a programming
language, and its inevitable use in connection with par-
allel, distributed, and Grid computing, the absence of a
well-designed explicit message-passing interface for
Java would lead to divergent, nonportable practices.
Indeed, in 1998, the message-passing working group of
the Java Grande Forum was formed to agree on a com-
mon MPI-like application programming interface
(API) for message passing in Java (MPJ) [5]. An imme-
diate goal was to provide an ad hoc specification for
portable message-passing programming in Java that
would also serve as a basis for conversion between pro-
grams written in C, C++, Fortran, and Java. 

MPJ can be implemented in one of two ways: as a
wrapper to existing native MPI libraries or as a pure
Java implementation. The former provides a quick
solution, usually with negligible runtime overhead
introduced by the wrapper software. However, using
native code breaks the Java security model and does
not allow work with applets (advantages of the pure
Java approach). Unfortunately, a direct MPJ imple-
mentation in Java is usually much slower than wrap-
per software for existing MPI libraries. One solution
to this problem is to employ more sophisticated
design approaches. For instance, the use of native
conversion into linear byte representation, often
called “marshaling,’’ and advanced compilation tech-
nologies for Java can make the two design options
comparable in terms of performance. Our experi-
ments have used the statically optimizing IBM High-
Performance Compiler for Java (HPCJ), which
generates native code for the RS6000 architecture, to
evaluate the performance of MPJ on an IBM SP2 dis-
tributed-memory parallel machine. The results show
that when using such a compiler, the MPJ communi-
cation component is as fast as the native message-
passing library (see the table). 

Closely modeled on the MPI-1 standard, the exist-
ing MPJ specification should be regarded as a first
phase in a broader program aimed at defining a more
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JVM + MPJ

HPCJ + MPJ

C + MPI

2

48.04

23.27

24.52

Number of Processors

4

24.72

13.47

12.66

8

12.78

6.65

6.13

16

6.94

3.49

3.28

Execution time (in seconds) for the Integer Sort kernel from 
the NAS Parallel Benchmarks on the IBM SP2. Use of JVM and MPJ 

here is approximately two times slower than the same code 
written in C and using MPI.  When using HPCJ and MPJ, the

difference disappears, and Java and M PJ perform as well as C and
MPI for this experiment. This result confirms that the extra

overhead introduced by MPJ is negligible, compared with MPI.

T he notion of a Grande application is familiar to
researchers, but the term itself is relatively

new. Such applications might require any combina-
tion of high-end processing, communication, I/O,
and storage resources to solve one or more large-
scale problems. For the past four years, Java—as
both a language and a platform for solving this type
of problem—has been the focus of the international
Java Grande Forum (www.javagrande.org), whose
main goals are to: 

• Evaluate and improve the applicability of the Java
environment for Grande applications; 

• Unite the Java Grande community to develop con-
sensus requirements and act as a focus for inter-
actions with the larger Java community; 

• Create prototype implementations, benchmarks,
API specifications, and recommendations for
improvements to make the Java environment use-
ful for Grande applications. 

The Forum organizes open public meetings, the
annual ACM Java Grande Conference, workshops,
symposia, and panels. A large portion of the 
Forum’s scientific work has been published in Con-
currency: Practice & Experience, and, since 1999, the
conference proceedings have been published by ACM
Press. c

Java Grande 



Java-centric high-performance message-passing envi-
ronment. We can expect future work to consider
more high-level communication abstractions and,
perhaps, layering on other standard transports, as well
as on Java-compliant middleware. A primary goal
should be to offer MPI-like services to Java programs
in an upward-compatible fashion. Middleware devel-
oped at this level should allow a choice of emphasis—
performance or generality—while always supporting
portability. 

Fast Remote Method Invocation 
Remote invocation is an established programming
concept behind both the original RFC [3] and Java’s
RMI. To implement a remote invocation, the proce-
dure identifier and its arguments are encoded (mar-
shaled) in a wire format understood by both the caller

and the code being called, or the
callee. The callee uses a proxy
object to decode, or unmarshal,
the stream of bytes and then per-
form the actual invocation. The
results travel in the other direction,
from callee to caller. 

Although RMI inherits this
basic design, it has distinguishing
features beyond the original RPC.
In addition, RMI is no longer
meant to bridge OO and proce-
dural languages or to bridge lan-
guages with different kinds of
elementary types and structures.
The main advantages of RMI are
that it is truly object-oriented,
supports all Java data types, and is
garbage collected. Since most
practitioners agree that, for
sequential code, garbage collection
saves programmer time, it is likely
the same is true for distributed
code as well. These features also
allow the caller and the callee to be
developed separately, as long as
they agree on interfaces. As a
result, software development and
maintenance of distributed sys-
tems becomes much easier. 

To illustrate these advantages,
consider the remote invocation of 
a method add(Atom name). The
OO nature of RMI allows the caller
to pass objects of any subclass of
Atom to the callee. The object is
encoded into a machine-indepen-

dent byte representation (Java calls it “object serializa-
tion’’) that also includes information on the class
implementation. More precisely, if the callee does not
know the concrete class implementation of name, it
can load the class implementation dynamically. When
the caller invokes an instance method on name, say,
name.bond, the bond code of the particular subclass
of Atom is executed on the side of the callee. Thus, one
of the main advantages of OO programming—reuse of
existing code with refined subclasses—can also be
exploited for distributed code development. 

These novel features come at a cost in terms of run-
time overhead. With the regular implementation of
RMI on top of Ethernet, a remote invocation takes
milliseconds; concrete execution times depend on the
number and the types of arguments. About a third of
the time is needed for the RMI itself, a third for the
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Figure 2.  The bottom three benchmark plots each show 2 X 64 
measured results; 64 points represent measurements on 

PCs connected by Ethernet; 64 stand for DEC Alphas 
connected by FastEthernet. The first (bottommost) 

plot is the runtime improvement achieved with regular 
RMI and fast serialization.  The second plot is the 

improvement fast RMI achieves when used with Java's 
regular serialization. The third plot is the combined 

effect.  The topmost plot (64 measured results) 
demonstrates what happens when the Alphas are connected

by Myrinet, in addition to the fast serialization and 
fast RMI. In all plots, the small circles are individual 

data points; the fat dot is the median; the box indicates the 
25% and 75% quantiles; the whiskers indicate the 10% and 90%

 quantiles; and the M and dashed lines indicate the mean 
plus/minus one standard error of the mean.
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serialization of the arguments, and another third for
the data transfer (TCP/IP-Ethernet). While such
latency might be acceptable for coarse-grain applica-
tions with limited communication needs, it is too
slow for high-performance applications running on
low-latency networks, such as a closely connected
cluster of workstations. 

Several projects are under way to improve the per-
formance of RMI, including Manta [9] and JavaParty
[10]. In addition to improving the implementation of
regular RMI by, say, removing layering overhead, they
employ a number of novel optimization ideas:

Precompiling marshaling routines. The goal is to save
the runtime overhead for generating these rou-
tines via dynamic type inspection. 

Employing an optimized wire protocol. For type
encoding, detailed type descriptions are needed
only if the objects are stored into persistent stor-
age. For communication purposes alone, a short
type identifier may be sufficient.

Caching, or replicating, objects. The related tech-
niques help avoid retransmission if the object’s
instance variables do not change between calls.

Minimizing memory copy operations. When effi-
ciency is important, there should be as few mem-
ory copies as possible in either direction between
the object and the communication hardware. 

Minimizing thread switching overhead. Because Java
is inherently multithreaded, traditional RPC opti-
mizations are generally insufficient for minimiz-
ing runtime. In addition, optimized RMI
implementations in Java cannot be as aggressive as
native approaches because the JVM concept does
not allow direct access to raw data and hides the
way threads are handled internally. 

Using an efficient communication subsystem. Java-
Party’s RMI is implemented on a Myrinet-based
library (ParaStation.ira.uka.de) employing user-
level communication, hence avoiding costly ker-
nel operations. 

The JavaParty project has optimized both RMI and
the object serialization in pure Java. Remote invoca-
tions can be completed within 80 microseconds on a
cluster of DEC Alpha computers connected by
Myrinet (see Figure 2). With similar optimization
ideas, the Manta group compiles to native code and
uses a runtime system written in C, making it less
portable compared to JavaParty (see Kielmann et al.’s
“Enabling Java for High-Performance Computing” in
this issue). Nevertheless, both projects report similar
remote invocation latencies of 40 microseconds on
clusters of Pentium machines. 

Adaptive Grid Computing 
Besides making these communication paradigms
available and efficient in Java, further advances are
needed to realize the full potential of emerging Grids
in which users deal with heterogeneous systems,
diverse programming paradigms, and the needs of
multiple user communities. Adaptive services are
needed for security, resource management, data
access, instrumentation, policy, and accounting for
applications, users, and resource providers. 

Java eases this software engineering problem.
Because of its OO nature, ability to develop reusable
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Language. The Java programming language 
includes features beneficial for large-scale software
engineering projects, including object-orientation,
single inheritance, garbage collection, and unified
data formats. Since threads and concurrency-control
mechanisms are part of the language, parallelism can
be expressed directly at the user level. 

Class libraries. Java provides a variety of addi-
tional class libraries, including functions essential
for Grid computing, such as the ability to perform
secure socket communication and message passing. 

Components. A component architecture is pro-
vided through JavaBeans and Enterprise JavaBeans
to enable component-based program development. 

Deployment. Java’s bytecode allows for easy
deployment of the software through Web browsers
and automatic installation facilities. 

Portability. Besides the unified data format,
Java’s bytecode guarantees full portability as repre-
sented by the concept “write once, run anywhere.’’

Maintenance. Java contains an integrated docu-
mentation facility. Components written as Jav-
aBeans can be integrated within commercially
available integrated development environments. 

Performance. Recent research results prove the
performance of many Java applications can come
very close to that of their C and Fortran counterparts. 

Gadgets. Java-based smart cards, PDAs, and
smart devices will expand the working environment
for scientists. 

Industry. Scientific projects are sometimes required
to evaluate the longevity of a technology before it can
be used. Strong vendor support helps make Java a
technology of current and future consideration.

Education. Universities all over the world are
teaching Java to their students. c

10 Reasons to Use Java in 
Grid Computing 



software components, and integrated packaging
mechanism, Java offers support for all phases of the
life cycle of a software engineering project, including
problem analysis and design and program develop-
ment, deployment, instantiation, and maintenance. 

Java’s reusable software-component architecture,
called JavaBeans, allows users to write self-contained,
reusable software units (see the sidebar “Components
and JavaBeans”). Using commercially available visual
application builder tools, software components can be
composed into applets, applications, servlets, and
composite components. Components can be moved,
queried, and visually integrated with other 
components, enabling a new level of convenient com-
puter-aided-software-engineering-based program-
ming within the Grid environment. 

Component repositories, or containers, allow a
number of engineers to work collectively on similar
tasks and share the results with the community of sci-
entific users and engineers. Moreover, the Java frame-
work includes a rich set of predefined Java application
protocol interfaces, libraries, and components support-
ing access to databases and directories, network pro-
gramming, sophisticated interfaces to XML, and more. 

We’ve been evaluating the feasibility of using these
advanced Java features for Grid programming as part

of our development of several
application-specific Grid portals. A
portal defines a commonly known
access point to the application
reachable via a Web browser. Many
portal projects use the Java Com-
modity Grid, or CoG, Kit [11],
allowing access to services provided
by the Globus Toolkit
(www.globus.org) in a way familiar
to Java programmers. Thus, the
Java CoG Kit is not a simple one-
to-one mapping of the Globus API
into Java; instead it uses features of
the Java language not available in
the original C implementation. For
example, it includes both the OO
programming model and the Java
event model. 

Another important Java advan-
tage is a graphical user interface
for integrating graphical compo-
nents into Grid-based applica-
tions. Our experience with
collaborators from various scien-
tific disciplines, including struc-
tural biology and climatology, has
shown that development of

graphical components hiding the complexity of the
Grid lets the scientist concentrate on the science,
instead of on the Grid’s inherent complexity [12] (see
Figure 3).

Besides simplifying program development, Java
eases development and installation of the client soft-
ware accessesing the Grid. While trivial for a Java soft-
ware engineer to install client libraries of the Java
CoG Kit on a computer, installation of client software
written in other programming languages or frame-
works, including C and C++, is much more involved
due to differences in compilers and operating systems.
Another advantage of using the bytecode-compiled
archives is they can also be installed on any operating
system supporting Java, including Windows. Using
the Java framework allows development of drag-and-
drop components enabling information exchange
between the desktop and the running Grid applica-
tion during a program instantiation. Thus, it is possi-
ble to integrate Grid services seamlessly into the
Windows and the Unix desktops.

Using a commodity technology like Java as the
basis for future Grid-based program development
represents yet another advantage. The committed
support for Java by major vendors in e-commerce
allows scientists to exploit a greater range of computer
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technology—from supercomputers to state-of-the-art
commodity devices like cell phones, PDAs, and Java-
enabled sensors—all within a Grid-based problem-
solving environment. 

Conclusion 
Advanced applications like those in science and engi-
neering can require multiple communication
abstractions, ranging from message passing to
remote method invocation and component frame-
works. We’ve sought to show how a mixture of exist-
ing Java constructs and innovative implementation
techniques allow Grid-based software engineers and
Java programmers to use these communication
abstractions efficiently within a single integrated
Java framework. The result is a programming
approach that appears particularly advantageous for

dynamic and heterogeneous Grid environments.
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Asoftware component is a unit of composition.
Its design is restricted by a contract requiring

a specific set of interfaces. Software components
can be reused, interchanged, and deployed inde-
pendently and are subject to composition into big-
ger systems by third parties. For instance, builder
tools can extract design information, determine a
component’s capabilities, and reveal them conve-
niently to the software engineer to encourage
reuse. 

JavaBeans. A Bean is a reusable software compo-
nent that can be visually manipulated through builder
tools (see java.sun.com/products/javabeans/).
JavaBeans include:

Dynamic type inspection (often called “introspec-
tion” in Java terminology). Allows other programs
to analyze at runtime how the defined Bean
works.

Customization. Allows users to alter Bean appear-
ance and behavior. 

Events. Allows Beans to fire events and provide
(through dynamic type inspection) information to
builder tools concerning both the events they can
fire and the events they can handle. 

Properties. Allows Beans to be manipulated and
customized programatically.

Persistence. Allows the state of a customized Bean
to be saved and restored. 

Beans are especially useful for computational scien-
tists and application experts reusing components
designed for Grid computing. c

Components and JavaBeans


