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ABSTRACT 
Dictionaries have often been used for query translation in cross-
language information retrieval (CLIR). However, we are faced 
with the problem of translation ambiguity, i.e. multiple 
translations are stored in a dictionary for a word. In addition, a 
word-by-word query translation is not precise enough. In this 
paper, we explore several methods to improve the previous 
dictionary-based query translation. First, as many as possible, 
noun phrases are recognized and translated as a whole by using 
statistical models and phrase translation patterns. Second, the 
best word translations are selected based on the cohesion of the 
translation words. Our experimental results on TREC English-
Chinese CLIR collection show that these techniques result in 
significant improvements over the simple dictionary approaches, 
and achieve even better performance than a high-quality 
machine translation system.   
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1. INTRODUCTION 
With the explosion of on-line non-English documents, cross-
language information retrieval (CLIR) systems have become 
increasingly important in recent years.  
Research in the area of CLIR has focused mainly on methods for 
query translation. In particular, dictionary-based translation has 
been a commonly used method because of its simplicity and the 
increasing availability of machine readable bilingual 
dictionaries. However, besides the problem of completeness of 
the dictionary, we are also faced with the problem of ambiguity 
in translation, i.e. the selection of the correct translation word(s) 
from the dictionary.  
In this paper, we explore several methods to improve query 
translation for English-Chinese CLIR. First, we try to identify 
noun phrases (NP) in a query and translate them as units. 
Phrases usually have fewer senses, thus the translation of a 

multi-word concept as a phrase is more precise. In addition to 
the NPs stored in the dictionary, new multi-word NPs are 
identified automatically using a statistical model. They are 
translated using translation patterns and a language model. 
Second, to deal with the translation ambiguity problem, we 
propose a method based on statistics of co-occurrences. The 
method tries to select the best translation according to its 
coherence with the other translation words. Finally, to increase 
the coverage of the bilingual dictionary, additional words and 
translations are automatically generated from a parallel bilingual 
corpus. We tested our methods using TREC Chinese documents. 
Our results show that each of the methods can bring significant 
improvement over simple dictionary approaches. A combination 
of the methods achieves even better retrieval performance than a 
high-quality machine translation (MT) system.  
The remainder of this paper is organized as follows. In Section 
2, we provide a brief survey on related work. In Section 3, we 
describe in detail our techniques for NP identification and 
translation. In Section 4, we describe the method of translation 
selection. In Section 5, experimental results are presented. 
Finally, we present our conclusion in Section 6. 

2. DICTIONARY-BASED QUERY 
TRANSLATION 
Bilingual dictionaries have been used in several CLIR 
experiments. However, previous work showed that English-
Chinese CLIR using simple dictionary translation yields a 
performance lower than 60% of the monolingual performance 
[14]. The main problems observed are: (1) the dictionary may 
have a poor coverage; and (2) it is difficult to select the correct 
translation of a word among all the translations provided by the 
dictionary. 
For the first problem, much effort has been spent on collecting 
larger lexical resources either manually or automatically [14, 16, 
20]. The coverage of the dictionary can be increased to some 
extent.  
A technique often used to deal with the second problem - 
translation ambiguity - is to identify phrases in the query and 
translate them as a whole using a phrase dictionary. It has been 
shown that this technique can improve IR performance. Hull and 
Grefenstette [13] showed that the performance achieved by 
manually translating phrases in queries is significantly better 
than that of a word-by-word translation using a dictionary. 
Davis and Ogden [7] showed that by using a phrase dictionary 
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extracted from parallel sentences in French and English, the 
performance of CLIR is improved. Ballesteros and Croft [3] 
performed phrase translation using information on phrase and 
word usage contained in the Collins machine readable 
dictionary. They demonstrated that translations of multi-word 
concepts as phrases are more precise. However, a critical 
problem remains: if a phrase is not stored in a lexicon, how can 
one identify it in a query and translate it correctly? It is 
unrealistic to expect a "complete" phrase dictionary. New 
phrases are constantly created. Therefore, we will always face 
the problem of identification and translation of unknown 
phrases, no matter how complete a phrase dictionary may be. 
This problem is one of the foci of this paper. 
Another possible solution to the problem of translation 
ambiguity is by using word sense disambiguation. The impact of 
disambiguation for CLIR is debatable. Xu and Weischedel [19] 
estimated an upper bound on CLIR performance. They 
concluded that even if the translation ambiguity were solved 
correctly, only limited improvement can be obtained. In 
contrast, Ballesteros and Croft [3] showed that using co-
occurrence statistics from corpora can help with reducing 
translation ambiguity. Other studies including [1, 10, 12] also 
used similar approaches to select the best translation(s). In this 
paper, by extending the work in [1, 3], we present a 
disambiguation method, which can be combined with phrase 
translation and achieves further improvement. 
Our query translation process may be summarized as follows: 
- NPs are first identified in English (source language) queries 

using a statistical method; 
- The translation of the identified phrases is determined by 

both a set of phrase translation patterns and probabilities of 
the translated phrases obtained from a Chinese language 
model; 

- The remaining words in the query are translated as words. 
Our problem is to determine the best word translation 
among all that are stored in the dictionary. 

3. PHRASE IDENTIFICATION AND 
TRANSLATION 
Although the translation of multi-word phrases is usually more 
precise than a word-by-word translation, many significant NPs 
are not stored in the dictionary. For instance, in TREC-9 
queries, more than 50% of noun phrases, which can be detected 
by our method described in this section, are not in our 
dictionary.  
In the previous IR research, NPs have been identified using a set 
of syntactic patterns [2, 8]: Sequences of nouns and adjective-
noun pairs were taken as phrases. However, this simple method 
has not produced consistent improvement. Fagan [8] reported a 
decrease in performance, while Ballestero and Croft [2] did not 
obtain a significant improvement over single words. One of the 
problems is that this simple approach often over-generates NPs: 
non-NPs may be identified as NPs. This may negatively affect 
the monolingual IR performance (because of a deformed 
distribution of occurrences of these items). In addition, the 
identified phrases are still translated word-by-word in [2].  
In our approach, we try to translate NPs as units as much as 
possible. To do so, we first identify English NPs, and translate 
them as units. If the translations have been used as document 

indexes (i.e. they are stored in our Chinese dictionary), then the 
translated NPs can directly match documents. Otherwise, these 
translations will be segmented into several words which can also 
match document indexes. So NP identification and translation 
are means to suggest possible long Chinese NPs. This is a query 
processing compatible with the longest-matching segmentation 
method used for document pre-processing. 
Unlike previous methods, our approach uses a more 
sophisticated NP identification process. It is carried out in a 
bottom-up manner: we first identify base NPs, and then complex 
NPs. The reason to separate the process into two steps lies in the 
fact that base NPs can be identified with high accuracy, while 
the complex NPs cannot be. Therefore, we only use a small set 
of syntactic patterns in the second step in order to select 
sufficiently reliable complex NPs.  

3.1 Identification of base NPs 
3.1.1 Principle 
A base NP is a simple noun phrase that does not contain other 
noun phrases recursively. For example, the elements within [...] 
in the example shown in Figure 1 are base NPs. The part-of-
speech (POS) tags NNS (plural noun), IN (preposition), and 
VBG (verb-ing) etc. are those defined in [15]. 
 

[Measures/NNS] of/IN [manufacturing/VBG activity/NN] fell/VBD 
more/RBR than/IN [the/DT overall/JJ measures/NNS] ./. 
Figure 1: An example sentence with base NP brackets. 

 
The identification of base NPs usually involves two steps: (1) 
POS tagging, and (2) base NP chunking.  
In classical statistical approaches [6, 17], these two steps have 
been separated. POS tagging often serves as a precursor, and 
noun phrase chunking uses POS patterns (e.g. DT-JJ-NNS) that 
are learnt from a tagged corpus.  
By separating the two steps, the solution of the first step is used 
in the second step as if it is certain. The uncertainty involved in 
the first step is no longer taken into account in the second step. 
In fact, the correct solution of the first step may be ranked 
second, third, etc. This is particularly the case when the 
probabilities of these solutions are close to that of the first 
solution. Therefore, a too early selection in the first step may be 
an important source of error. 
In our approach, we try to integrate the two steps and their 
uncertainties together, and use a unified statistical model to 
choose the globally optimal solution [22]: We keep the N-best 
(N>1) ranked POS assignments in the first step. Then, in the 
second step, we determine the best base NPs by considering 
both the probability of POS tagging and that of base NP pattern. 
The value of N is chosen empirically to obtain the optimum 
balance between efficiency and accuracy.  

3.1.2 Mathematical formulation 
Let us formulate the above two steps in mathematical terms. 
Given an English sentence E={e1,…,en}, its POS tag sequence is 
denoted by T={t1,…,tn}. The most probable base NP sequence 
B*={b1,…,bm} (m<=i) is expressed as Equation (1). 
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In this formula: P(T|E) aims to determine the best POS tags for a 
sentence E, and P(B|T,E) aims to determine the best base NP tag 
sequences from them. In practice, in order to reduce the search 
space, only N-best POS tagging of E are retained in the first step 
(N=4 in our experiments).  
To determine the N-best tags from P(T|E), we make use of 
Bayes’ rule as follows: 
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We now assume independence among the relationships between 
tags and English words; and we use a tag trigram model to 
approximate P(T). Then P(E|T) and P(T) can be evaluated as 
follows:  
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In the Viterbi search algorithm, P(ei|ti) is called the output 
probability of a word given the POS tag, and P(ti|ti-2,ti-1) is called 
the transition probability whose value is determined by a POS 
trigram model. Both probabilities can be estimated from a POS 
tagged corpus. 
In the second step, we determine the best base NP sequence, 
given the N-best POS sequences. A similar approach to the first 
step is used. According to Bayes’ rule, we have 
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For a given E and its T, we have P(T)P(E|T)=P(E,T)=constant. 
By assuming words in E to be independent, we have 
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P(B|T, E) ∝ P(E|B, T) × P(B) (6) 

 
The two elements on the right side can be estimated as follows 
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where bj is the element in the base NP sequence corresponding 
to ei. 

Similarly, P(ei|ti,bj) is called the output probability of a word 
given the POS tag and the base NP tag, and  P(bi|bi-2,bi-1) is 
called the transition probability whose value is determined by a 
base NP trigram model. Again, both probabilities can be 
estimated from a base NP tagged corpus.  
Finally, substituting Equations (2) and (6) in Equation (1), we 
have  
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In summary, for a given input English sentence E, in the first 
step, the Viterbi N-best searching algorithm is applied for POS 
tagging. Every resulting T is assigned a probability Pt by 
Equation (2). In the second step, for each T, the Viterbi 
algorithm is applied again to search for the best base NP 
sequence. Every resulting B* is assigned another probability Pb 
by Equation (6). The final integrated probability of a base NP 
sequence is determined by Pt

αPb, where α is a normalization 
coefficient (α = 2.4 in our experiments).  

3.1.3 Model estimation and evaluation 
The models used in this study are trained on Penn Treebank 
[15]. We used the section 20 as test data, while the other 24 
sections are used as training data. 
At first, all possible base NP patterns are extracted from the 
tagged training corpus. There are more than 6000 patterns in the 
Penn Treebank. After being filtered by linguistic rules described 
in [21], 1169 patterns are kept. Then, all parameters in our 
statistical model are estimated using MLE (maximum likelihood 
estimation) from the training corpus. These parameters are: 
(1)P(ti|ti-2,ti-1), (2)P(ei|ti), (3)P(bi|bi-2,bi-1), and (4)P(ei|ti,bj). A 
detailed description can be found in [22].  
Our tests showed that our integrated approach achieves 92.3% 
in precision and 93.2% in recall. The result is slightly better than 
the current state of the art.  

3.2 Identification of complex NPs 
Unlike base NP, there is not a widely accepted definition of 
complex NP. It is even worse in Chinese. In addition, a lot of 
complex NPs in English cannot be translated into Chinese as a 
unit. Therefore, with the help of a linguist, we selected 40 
frequently used English NP patterns, which can be translated 
into Chinese as a unit. Some examples are shown in Figure 2. 
Any sequence of words or base NPs corresponding to one of the 
patterns is identified as a complex NP.  
 

Complex NP patterns Examples 
Base NP of Base NP [the sales] of [Chinese ships] 

Base NP in Base NP [human rights violations] in [China] 

Base NP and Base NP [China 's Panda bear population] 
and [research organizations] 

Figure 2: Examples of complex NP patterns from TREC-9 
CLIR queries 
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3.3 NP translation  
3.3.1 Principle 
The dictionary contains a certain number of NPs and their 
translations. However, many more NPs that we identified are not 
stored in the dictionary. Then, how can we translate these NPs 
better than a word-by-word method? 
We observed that there are some translation patterns between 
English NPs and Chinese NPs. For example, a [NN-1 NN-2] 
phrase is usually translated into a [NN-1 NN-2] sequence in 
Chinese, and a [NN-1 of NN-2] phrase is usually translated into 
a [NN-2 NN-1] sequence in Chinese. So for an English phrase 
corresponding to such a pattern, if its translation is not stored in 
the dictionary, we can still generate its possible translation. For 
instance, we can derive the translation of the multi-word phrase 
“drug sale” as 毒品(drug)/ 买卖 (sale), and the translation of 

“security committee of UN” as 联合国(UN)/安理会(security 
committee).  
Possible translation patterns can be extracted from a word-
aligned bilingual corpus. We first used the NP identification 
method described above to tag POS, base NP, and complex NP 
for English sentences. Then, for each English NP pattern (EPT), 
we extracted its Chinese translation patterns (CPT). An example 
is shown in Figure 3. For an English sentence, each word is 
marked its POS tag and position. Elements within […] are base 
NPs, or complex NPs. The aligned Chinese sentence is 
segmented into a sequence of words, which are associated with 
their positions. A word alignment (x, y) indicates that an English 
word in position x is connected to a Chinese word in position y. 
When an English word is connected to no Chinese words, it is 
denoted by (x, e). Some examples of translation pattern we can 
extract are also illustrated in Figure 3. The estimation of the 
probability of translation patterns will be described in section 
3.3.3. 

 

English 
Sentence 

[[The/DT/1 natural/JJ/2  language/NN/3 
computing/NNP/4  group/NNP/5]  at/IN/6 
[Microsoft/NNP/7  Research/NNP/8 
China/NNP9]]  … 

Chinese 
Sentence  

微软/1 中国/2 研究院/3 自然/4 语言/5 计算/6 

组/7 … 

Aligned 
word-pair 

(1,e) (2,4) (3,5) (4,6) (5,7) (6,e) (7,1) (8,3) (9,2) 
… 

Translation 
Patterns 

[DT JJ NN NNP-1 NNP-2]  
     [JJ NN NNP-1 NNP-2], P=0.48 
[NNP-1 NNP-2 NNP-3]  
      [NNP-1 NNP-3 NNP-2], P=0.26 
[Base NP-1 at Base NP-2]  
      [Base NP-2 Base NP-1], P=0.67 

Figure 3: English NP patterns and their Chinese translation 
patterns 
 
As we mentioned earlier, the obtained NP translations do not 
always correspond to document indexes. If they do not, the 
segmentation process will break them down into several words. 

Even in this case, we can still benefit from the word selection in 
this process that solves part of the translation ambiguity problem.  

3.3.2 Mathematical formulation 
Given an English NP, ENP={e1,…,en}, with its NP pattern, EPT; 
for each English term ei in ENP, we retrieve all the possible 
Chinese translations from the bilingual dictionary. We also get 
all the possible translation patterns CPT for EPT. Then the best 
Chinese translated phrase, CNP*={c1,…,cm},  is the one that 
maximizes the Equation (10) below.  
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where P(ENP|CNP) is the translation probability. P(CNP) is a 
priori probability of words of the translated Chinese NP. 
We consider an NP (ENP or CNP) as a set of words (E or C) 
assembled by an NP pattern (EPT or CPT). Assuming that the 
translation of words and NP patterns are independent, we have 
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Substituting Equation (11) in Equation (10), we have 
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where P(E|C) is the translation probability from Chinese words 
C in CNP to English words E in ENP. P(EPT|CPT) is the 
probability of the translation pattern EPT (i.e. the order of 
translation words), given the Chinese pattern CNP.  
These probabilities are estimated as follows: 
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where C(CPT) represents the number of occurrences of CPT in 
the Chinese portion of the aligned bilingual corpus, and 
C(EPT,CPT) represents the number of times EPT corresponds to 
CPT in the aligned sentences.  
P(CNP) is determined by the Chinese trigram language model as 
follows: 
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3.3.3 Model estimation 
As described in section 3.3.2, for NP translation, there are three 
probabilities to be estimated: (1) P(EPT|CPT), (2) P(ci|ci-2,ci-1), 
and (3) P(E|C). 

P(EPT|CPT) is estimated from a bilingual corpus. In our cases, 
we used a word-aligned bilingual corpus containing 
approximately 100,000 English-Chinese sentence pairs. 
Translation patterns are first extracted automatically from the 
corpus, and then filtered by a linguist. The probability is then 
estimated according to Equation (13). For each Chinese NP 
pattern, there are 4.53 translation patterns on average. 

The Chinese trigram language model is trained on a Chinese 
corpus consisting of approximately 1.6 billion Chinese 
characters. It contains documents of different domains, style, 
and period of time [9]. 
For P(E|C), we simply assumed a uniform distribution on a 
word’s translation in our experiments. If a Chinese word c has n 
translations in our bilingual dictionary , each of them will be 
assigned equal probability, i.e. P(e|c)=1/n. There are two reasons 
for this. First, there are no translation probabilities in our 
original bilingual dictionary. Second, we do not have enough 
parallel corpora for its accurate estimation. 
At this stage, it is interesting to compare our translation method 
to the methods proposed in [2, 3, 4]. Ballesteros and Croft used 
a word-by-word strategy for phrase translation [2, 3]. It is based 
on two assumptions that are sub-optimal. First, they assume that 
there is a one-one mapping between words in English NP and 
words in Chinese N. However, in our experiments, we found 
that only 56% NP translation patterns have such one-one 
mappings. Second, they assume that the translation words in a 
phrase will remain in the same order as in the source language 
phrase. In our experiments, we found that 35% of translation 
patterns change word order. On the other hand, The IBM 
statistical models incorporate very little linguistic knowledge 
[4]. It is hard to capture non-local dependencies of the language 
with “local” models such as n-gram models. So even if the 
translation model generates the correct set of words, the 
language model will not assemble them correctly. In our 
method, we incorporate the language model with translation 
patterns. While the language model captures the “local” 
dependency, the translation patterns provide information on 
global dependency within a phrase. Although the method is not 
powerful enough for sentence-level translation, it performs well 
for NP translation. 

4. THE SELECTION OF WORD 
TRANSLATION 
Words that are not included in phrases are translated word-by-
word. However, this does not mean that they should be 
translated in isolation from each other. Instead, while translating 
a word, the other words (or their translations) form a "context" 
that helps determine the correct translation for the given word. 

This is the principle of our translation selection process. Our 
assumption is that the correct translations of query words tend to 
co-occur in target language documents and incorrect translations 
do not. Therefore, given a set of original English query words, 
we select for each of them the best translation word such that it 
co-occurs most often with other translation words in Chinese 
documents.  
Finding such an optimal set is computationally very costly. 
Therefore, an approximate greedy algorithm is used. It works as 
follows: Given a set of n original query terms {s1,…,sn}, we first 
determine a set Ti of translation words for each si through the 
dictionary. Then we try to select the word in each Ti that has the 
highest degree of cohesion with the other sets of translation 
words. The set of best words from each translation set forms our 
query translation. 
The cohesion is based on term similarity. The EMMI weighting 
measure [18] has been successfully used to estimate the term 
similarity in [1, 3]. We take a similar approach. However, we 
also observe that EMMI does not take into account the distance 
between words. In reality, we observe that local context is more 
important for translation selection. If two words appear in the 
same document but at two distant places, it is unlikely that they 
are strongly dependent. Therefore, we add a distance factor in 
our calculation of word similarity. Formally, the similarity 
between terms x and y is  
 

),(log)
)()(

),((log),(),( 22 yxDisK
ypxp

yxpyxpyxSIM ×−
×

×=

 

(14) 

 where  

)(
),(

)(
),(),(

yc
yxc

xc
yxcyxp +=  (15) 

 

∑
=

x
xc

xcxp
)(

)()(  (16) 

 

 
c(x,y) is the frequency that term x and term y co-occur in the 
same sentences in the collection, c(x) is the number of 
occurrence of term x in the collection, Dis(x,y) is the average 
distance (word count) between terms x and y in a sentence, and 
K is a constant coefficient, which is chosen empirically. (K=0.8 
in our experiments). 
The cohesion of a term x with a set X of other terms is the 
maximal similarity of this term with every term in the set, i.e. 
 

   Cohesion (x, X) = Max y∈X SIM (x, y) (17) 

 
Figure 4 depicts a left-to-right greedy algorithm for the selection 
of the best translation. Term-similarity is estimated using the 
same 1.6 billion character Chinese corpus mentioned earlier. 
 
 

100



For each source query word si (i = 1 to n), retrieve a set of 
translations Ti from the lexicon; 
 For each set Ti (i = 1 to n), do 
  For each term tij in Ti, do 
   For each set Tk (k = 1 to n & k≠i), compute the cohesion 

Cohesion(tij, Tk); 
  Compute the score of tij as the sum of Cohesion(tij, Tk) (k = 1 

to n & k≠I); 
  Select the term tij in Ti with the highest score, and add the 

selected sense into the set T. 

Figure 4. Greedy algorithm to find the best translations 

5. EXPERIMENTAL RESULTS AND 
DISCUSSION 
In this section, we present the results of our CLIR experiments 
on TREC Chinese corpora. The TREC-9 corpus contains articles 
published in Hong Kong Commercial Daily, Hong Kong Daily 
News, and Takungpao. They amount to 260MB. A set of 25 
English queries has been set up and evaluated by people at NIST 
(National Institute of Standards and Technology). The TREC 
5&6 corpus contains articles published in the People's Daily 
from 1991 to 1993, and a part of the news released by the 
Xinhua News Agency in 1994 and 1995. A set of 54 English 
queries (with translated Chinese queries) has been set up and 
evaluated by people at NIST. 

Each of the TREC queries has three fields: title, description, and 
narratives. In our experiments, we used two versions of queries, 
short (only titles) and long (all the three fields). 
The bilingual lexical resources we used include three human 
compiled bilingual lexicons and a bilingual lexicon generated 
from a parallel bilingual corpus automatically [16]. The 
resulting combined dictionary contains 401,477 English entries, 
including 109,841 words, and 291,636 phrases.  

For our experiments, we used a slightly modified version of the 
SMART system [5]. We used the ltc weighting scheme. The 
main evaluation metric is interpolated 11-point average 
precision. Statistical t-test [11] and query-by-query analysis are 
also employed. To decide whether the improvement by method 
X over method Y is significant, the t-test calculates a p-value 
based on the performance data of X and Y. The smaller the p-
value, the more significant is the improvement. Usually, if the p-
value is small enough (p-value<0.05), we can conclude that the 
improvement is statistically significant. 
We first carried out a set of preliminary experiments to 
investigate the impact of lexicon sources, phrase, and ambiguity 
on query translation. Our results confirmed our intuition. 
Results showed that larger lexicon sources, phrase translation, 
and disambiguation techniques improve CLIR performance 
significantly and consistently on TREC-9 corpus. 

5.1 Impact of NP translation and translation 
selection 
The following methods are compared to figure out the impact of 
NP translation and translation selection:  

1. Monolingual: retrieval using the manually translated 
Chinese queries provided with the corpus. 

2. Simple translation: retrieval using query translation 
obtained by look up the bilingual dictionary. 

3. Best-sense translation: retrieval using query 
translation selected manually. 

4. Machine translation: retrieval using translation 
queries obtained by a machine translation system. 

5. Our methods that incorporate NP detection and 
translation, as well as word translation selection. 

For simple translation, phrase entries in the dictionary are first 
used for phrase matching and translation, and then the remaining 
words are translated by their translations stored in the 
dictionary. 
For best-sense translation, we manually disambiguated the 
queries in order to get an upper bound of performance using 
dictionary look-up and disambiguation. In this method, a native 
Chinese speaker selected one translation from the dictionary for 
each English word or phrase. If no translation is correct, the first 
one is randomly chosen. 
For machine translation, a commercial English-Chinese 
machine translation system - IBM HomePage DictionaryTM 
2000 - is used. This system was released recently by IBM. It 
contains an English-Chinese dictionary with 480,000 entries, 
including words, frequently used phrases (such as "information 
retrieval"), acronyms (such as "IBM"), and proper nouns (such 
as "Microsoft"). According to our survey, this system is one of 
the best machine translation products currently on the market. 
The result of query translation by the IBM system seems 
reasonable; less than 3% of the words are left untranslated, most 
phrases are translated as a whole, and the translation ambiguity 
problem is solved to some degree for most of the words. 
The average precision of this series of experiments on query 
translation is summarized in Table 1. The precision-recall (P-R) 
curves using short and long queries are shown in Figures 5 and 
6. It is interesting to compare the results of our NP translation 
method (in row 4 in Table 1) with that of phrase translation 
using dictionary look-up (in row 2). It turns out that by using 
NP identification and translation, we obtained better 
performance. For example, in short query retrieval, in 25 
queries, only 11 multi-word phrases are stored in the dictionary, 
and translated as a phrase, while using our method, 26 NPs are 
identified and translated. It thus results in a 102.6% 
improvement, which is statistically significant (p-value = 0.015).  
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Short queries Long queries   
Translation 

method 
 
Avg. P. 

% Mono. 
IR 

Avg. P. % Mono. 
IR 

1 Monolingual 0.2684  0.3099  

2 Simple 
translation 

0.1174 43.74% 0.1823 58.83% 

3 Best-sense 
translation 

0.1611 60.02% 0.2618 84.48% 

4 2 + NP 
translation 

0.2379 88.64% 0.2398 77.38% 

5 4 + Translation 
selection 

0.2468 91.95% 0.2956 95.38% 

6 Machine 
translation 

0.1303 48.55% 0.2466 79.57% 

7 5 + 6 0.2395 89.23% 0.3280 105.84% 

Table 1: Average retrieval precision results, using TREC-9 short 
queries and long queries 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: P-R curves, using TREC-9 short queries 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: P-R curves, using TREC-9 long queries 
 

Row 5 shows that further improvement can be obtained using 
our translation selection technique. We obtain 23.3% 
improvement for long queries and 3.7% improvement for short 
queries. It is not surprising the improvement in the first case is 
statistically significant (p-value = 0.05), but the improvement in 
the second case is not. The reason is that long queries provide 
much richer context information for translation 
disambiguation/selection.  
Our results in row 5 are even better than best-sense translation 
results in row 3 (although it is not statistically significant), 
which are regarded as the upper bound on performance of any 
disambiguation techniques. This shows again the positive 
impact of our NP identification and translation methods. 
Row 6 shows that the using the MT system, we can achieve 
79.57% of monolingual effectiveness for long queries. This 
performance is comparable to those reported by others using an 
MT system. We can see that our method outperforms the MT 
system. This confirms that there may be better ways for query 
translation than MT systems. 
The best performance is achieved by combining linearly two sets 
of translation queries obtained by machine translation method 
and our method. While using long query retrieval, it is over 
105% of monolingual effectiveness. The intuition of 
combination of different translation methods is that different 
translation systems would complement each other. This result 
confirms the intuition. It also shows that monolingual 
performance is not necessarily the upper bound of CLIR 
performance. An important reason for this is that there is an 
implicit query expansion effect during translation because 
related words/phrases may be added.   

In summary, the improvement by using NP translation for short 
queries is statistically significant (p-value = 0.015). The addition 
of translation selection is also statistically significant for long 
queries (p-value = 0.05). The improvement obtained with the 
combination of both approaches (i.e. NP translation and 
translation selection) are statistically significant for both short 
queries (p-value = 0.03) and long queries (p-value = 0.001). The 
comparison with the MT approach shows that at least for short 
queries, the improvement brought by our methods is statistically 
significant (p-value = 0.02). 
Due to the limited number of the TREC-9 queries, we also 
tested our methods on TREC 5&6 Chinese collection. The 
results are similar, as shown in Table 2. This further confirms 
our conclusions made above. 

5.2 Analysis 
In order to analyze the effectiveness and remaining problems of 
our query translation approach, for the 25 queries of TREC 9, 
we display in Figure 7 a comparison of the long query retrieval 
results of row 1 and row 5 in Table 1. We observe that the 
queries may be classified into three categories: 
1) 5 queries that have both monolingual and CLIR result of 
average precision lower than 0.1 (#58, #61, #67, #69, and #77). 
The bad effectiveness in these cases is not due to translation, but 
to the high difficulty of query topics. 
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No. Translation Method Avg.P. % Mono. 
IR 

1 Monolingual 0.5150  

2 Simple translation 0.2722 52.85% 

3 Best-sense translation 0.3762 73.05% 

4 2 + NP translation  
+ translation selection 

0.3883 75.55% 

5 Machine translation  0.3891 75.40% 

6 4 + 5 0.4400 85.44% 

Table 2: Average retrieval precision results, using TREC-
5&6 long queries 

 

Figure 7: TREC-9 results for 25 queries: monolingual IR vs. 
CLIR using long queries 
 
2) 11 queries with monolingual average precision lower than 
CLIR. There might be two possible reasons. One is that by 
accepting several translations for a key concept, we are in fact 
making query expansion. Some examples are: "public key" in 
query #68 is translated to 公共密钥  as well as 公共密码 , 

"Olympics" in query #71 to 奥林匹克 (Olympic) and 奥运会 

(Olympic games), and "Panda bear" in query #76 to 大熊猫 and 

大 猫 熊 , etc. The second reason is that sometimes, the 
translations obtained are more natural expressions than those 
given in the original Chinese queries. For example, "violation" 
in query #56 is translated to a more common word 侵害 rather 

than 违反 in the manually translated Chinese query (provided 
with the corpus). 
3) 9 queries with monolingual average precision higher than 
CLIR. Most of them are due to the bad translations of key 
concepts, which are not stored in the dictionary as a phrase. We 
divide NP into two types: compositional NP and non-
compositional NP.  
Compositional NP is the phrase whose translation can be 
assembled by translations of words within the phrase, such as 

"computer hacker" (电脑黑客), "public key" (公共密钥), and 

"environmental protection laws" (环境保护法), etc. Generally 
speaking, our method is good for compositional NP translation. 
For some domain-specific NPs, it failed. For example, "stealth 
technology" (隐秘技术) and "stealth countermeasure" (反隐秘

技术) in #59, and "synthetic aperture radar" (合成孔径雷达) in 
#66 have special terminology in Chinese and are not translated 
correctly.  
A non-compositional NP is a phrase whose translation cannot be 
assembled by translations of its component words. Our method 
is unable to deal with the translation of non-compositional NPs. 
Examples include "three-links" ( 三 通 ) in #65, "vehicle 

fatalities" (车祸) in #68, "most-favored nation" (最惠国), and 

"World Conference on Women" (世妇会), etc. A large portion 
of non-compositional NPs in queries are political abbreviations. 
If these NPs are not stored in the dictionary, they are most likely 
to be translated incorrectly. This indicates that the coverage of 
the dictionary is still an important problem to be solved to 
improve the performance of CLIR. 

6. CONCLUSION 
Dictionary-based query translation has been widely used in 
CLIR because of its simplicity and the increasing availability of 
machine-readable bilingual lexicons. However, besides the 
problem of completeness of the lexicon, we are also faced with 
the problem of selecting the best translation word(s) from the 
dictionary.  
In this paper, we proposed several approaches to improve 
dictionary-based query translation for CLIR. We focused on 
translation of phrases, which has been demonstrated to be one of 
most effective ways to obtain more accurate translations. We 
presented a method to identify and translate unknown NPs. 
English NPs in queries are first identified statistically, and then 
translated into Chinese phrases using a new method that 
combines translation patterns and a Chinese language model. 
We also presented a method of translation selection based on the 
cohesion among translation words.  
Through our experiments, we showed that each of the above 
methods leads to some improvement, and that the combined 
approach significantly improves CLIR performance. The fact 
that our approach outperformed one of the best commercial MT 
systems indicates that some specific translation tools designed 
for query translation in CLIR may be better than on-the-shelf 
MT systems. The combination of our approach with the MT 
system leads to a high effectiveness of 105% of that of 
monolingual IR. This shows that even if a high-quality MT 
system is available, our approach can still lead to additional 
improvement. 
Though our method shows very promising improvement in 
experiments, we are faced with some unsolved problems. First, 
the lack of large amount of word/phrase-aligned parallel corpus 
prevents us from extracting more reliable translation patterns. 
Second, to translate queries in a specific domain, it would be 
better to use a domain-specific translation and language model. 
This could help with selecting the correct domain-specific 
translations. Then there come the problems of building domain-
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specific translation/language models, and activating the 
corresponding model when a specialized query is submitted. 
These are some of the topics of our future work. 
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