
On Computational Properties of Chains of Recurrences

Eugene V. Zima *
Department of Computer Science

University of Waterloo
Waterloo, Canada

ezima @ scg.uwaterloo.ca

ABSTRACT
Backward and mixed chains of recurrences are introduced.
A complete set of chains of recurrences manipulation tools is
described. Applications of these tools, related to the safety
and numeric stability of chained computations are given.

1. INTRODUCTION
The chains of recurrences (CR) technique to expedite func-
tion evaluation over regular intervals was introduced in [12].
Algorithms to construct and interpret linear, two-dimensio-
nal and multi-dimensional chains of recurrences have been
considered in [2, 3, 4, 9, 12, 14] together with implementa-
tions within different computer algebra systems (CAS) and
as standalone C and Java libraries. It was shown in [14]
that the CR-based representation of expressions is a canon-
ical representation of polynomials and rational functions.

We briefly recall the main idea behind the CR-technique in
the univariate case along with an introduction of backward
chains of recurrences. Let F(i) be a closed form function
which we need to compute for i -- 0, 1 , . . . , n (assume that
F(i) is defined for all these values of the argument i). The
CR-method is based on the conversion of F(i) into a faster
scheme ¢(i) , i = 0, 1 , . . . , n, which involves chains of recur-
rences of the form

f j (i) = { ~oj, if i = 0,
f j (i - 1) ®j+l f j+ l (i - 1), if i > 0, (1)

j = O , l , . . . , k - 1 ,

where ~oo,... ,~o~-1 are constant expressions, ®j E {+,*},
j = 1 , . . . , k and fk (i) is a closed form function which can ei-
ther be a constant expression or be defined via other chains.
For example,

F(i) = i ! (n - i)i i = 0,1,

*Supported in part by the Natural Sciences and Engineering
Research Council of Canada.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC 2001, 7/01, Ontario, Canada
@2001 ACM 1-58113-417-7/01/0007 $5.00

can be represented by a CR

1, i f i = O ,
f o (i) = f o (i - 1) * f l (i - - 1) , i f i > O ,

where ft (i) is an expression with two other CRs as operands
(CR-expression) f l (i) = g(i) /h(i) :

1, i f i = O ,
g(i) = g (i - 1) + l , if i > 0 ,

n, if i = 0,
h(i) = h (i - 1) + (- 1) , if i > 0 ,

For chains (1) we use the linear notation

f o (i) -= q~(i) ---- {~o0, C)I, ~Ol, C)2, ~02, • . • C)k, fk } (i) (2)

and recursively write operands of f k (i) (if it is not constant)
in linear form. Therefore, CR for F(i) above can be written
as

{1, + , 1} " 'c (I)(i) ---- {1, * , {~-, _tU ,----i-) t t), (3)

and F(i) = ~(i) , i = O, 1, . . . , n.

It is clear that problems of the form "compute F (x) for
x = a, a + h, a + 2h, . . . " (typical for plotting or numeric
integration) can be easily reformulated in the form "com-
pute F(i) for i --- 0, 1, 2, ..." after substi tuting a + ih for x
in F. That is why we will keep the simplest formulation of
the problem in this paper. We also do not specify (unless it
is necessary) the computational domain (Z, l~, C, Zp,. . .),
because all the results hold without loss of generality for any
commutative ring.

CR-based evaluation yields algebraically the same result as
a straightforward evaluation of the original formula. How-
ever, depending on the arithmetic in use, natural concerns
about results of evaluation arise.
E x a c t a r i t h m e t i c : although ~(i) = F(i) , i = 0 , . . . , n (and
therefore is defined for all values of i), some of the subchains
of the CR • (i.e. some fj (i) from (1)) could be undefined
at the last several points of evaluation. This can happen
because CR (1) is based on forward differences (quotients),
which involves at the last evaluation points values of F(i)
for i > n, and those values (or their quotients) are not guar-
anteed to be defined in advance.
F l o a t i n g p o i n t a r i t h m e t i c : since the CR technique is
based on the use of previously computed values to compute
the next value, any computational error in the previous step
will be passed on to the new value in addition to any error

345

in the current step, i.e. the i terative computat ions using the
CR. technique possess a cumulative error effect.

The goal of this paper is to extend CR-technique by chains
of recurrences based on backward differences (quotients),
also by mixed (forward/backward) chains and to define a
complete toolkit of CR-manipulations. Another goal is to
demonstra te tha t the CR-representation is self-contained:
since both CR-construction and CR-interpretat ion (as it will
be shown) are based on the same algebraic tools, one does
not need to change this representation in order to analyze,
for example, the numeric stabil i ty of CR-computations. I t
is enough to use CR simplification properties in order to
obtain the result of such analysis.

The section "Tabulating polynomial values" in [10] gives a
caution on the accumulation of rounding errors when a ta-
ble of finite differences (CR) is used for the evaluation of
polynomial values. However it does not indicate the accu-
mulative error effect quantitatively. On the other hand, very
pessimistic bounds for the accumulated error of CR-based
polynomial evaluation are given in [4] and repeated in [6].
These bounds involve the degree of the evaluated polynomial
(because of mistakes in reasoning). We will show tha t the
accumulated error does not depend on the degree, which
means tha t the numeric stabil i ty of CR-based polynomial
evaluation is much bet ter than it was previously thought.

The rest of the paper is organized as follows. In section
2 we introduce backward and mixed chains of recurrences
and s tudy their properties related to the safety of computa-
tions. Section 3 is devoted to the analysis of numeric stabil-
ity of chains of recurrences. Section 4 contains concluding
remarks.

2. FORWARD, BACKWARD AND MIXED
CHAINS AND THEIR PROPERTIES

For chains of recurrences (CR) of the form (1) we use the
linear notat ion (2) and call by UR-expression an expression
with CRs of the form (1) as elementary operands. The CP~
¢I'r = {~or ,O,+l ,~o~+l , . . .®k,f~}, (0 < r < k) is called an
r-order subchain of the CR e2. The CR (1) of length k is
called simple if fk is a constant and pure-sum or polynomial
(respectively pure-product or exponentia 0 if @j = + , j =
1 , . . . , k (Oj = * , j = 1 , . . . , k) . For example, the function
F(i) = i s, i = 0, 1 , . . . is defined by the pure-sum simple CR
¢ (i) = {0, d- , 1, d- , 6, + , 6} of length 3. When it is conve-
nient we use the notat ion ~ = {~o0,O1,Ol} instead of (2),
dropping also (i) if it does not lead to misunderstandings.

The definition of backward chains of recurrences (BURs) al-
most exactly repeats the definition of CRs [14]. Given a
constant ~oo, a function f l defined over N U {0}, and an op-
erator O equal to either + or *, we can consider a first-order
recurrence

{ ~ o , if i = 0,
fo(i) = fo(i - -1) Ofx(i) , i f i > 0, (4)

which is called a Base Backward Recurrence (BBR) and is
denoted by f0 = (~o, O, f l) in linear form.

Given constants ~ o , . . . , ~ k - 1 , a function fk defined over
NU{O}, and operators ® t , . . . , 0~ equal to either + or *, we

recursively define a Backward Chain of Recurrences (BUR)
as the set of functions fo, f l , . . . , f ~ - l , f~ connected in such
a way, tha t for 0 _< j < k

(i) = ~ ~oj, if i = O, f~ f j (i - -1) Oj+lf j+l(i) , i f i > 0. (5) (

Further, to denote the BCR (5), we will use the shor thand
notat ion fo(i) = ¢ (i) = (~oo, O1, ~al, 02, ~a2,... Ok, fk).
Such terms as length of the BCR, simple BCR, pure-sum
(or pure-product) BCR, r-order subchain, BUR-expression
and so on, are similar to those for CRs. For example, the
function F(i) = ia,i = 0, 1 , . . . can be defined by the pure-
sum simple BCR. ~(i) = {0, + , 1, d- , - 6 , + , 6) of length 3.
Note, tha t simple BUR of length 1 defines the same function
as simple CR of length 1 when their elements are equal:
(~0, o, ~1)(i) - {~o, o, ~1}(i).

2.1 Chains manipulation toolkit
The operators V (value) and E (shift with respect to i:
E(g(i)) = 9(i + 1)) form the basic toolkit for interpreta-
t ion of CR(BCK)-expressions:

c, if • is a constant expression c;
V (¢) = ~oo, i f cI, = {~00,(~1,¢I}1} or ¢ = (~ o o , ® 1 , 0 1) ;

p(v(~Cl)) , . . . , v(~C~))),
if • = p (o O) , . . . , ~(-~));

c, if ff~ is a constant expression c;
{~o o l v(¢1), o l , E(~l)},

if • = {~o0,O1, ¢1};
E(¢) = <voOi V(E(¢l)) ,Ol ,E(~l)) ,

if ~ = (~0,O1,~1);
P(E(O0)) , . . . , E(O("~))),

if (~ = P (O O) , . . . , O('~)).
Note the difference in the shifting of a CR and a BCR: for
a BCR • the subchain #1 has to be shifted before its value
is used to produce the result of E (¢) . This difference in the
shifting is the reason of differences in features of computa-
tional schemes based on CRs and BCRs.

Given a closed form function F (i) , i = 0, 1 , . . . , n, after ob-
taining its CR(BCR)-representat ion ¢ (i) the values of F(i)
are generated by V (E i (~)) , i = 0 , 1 , . . . , n. This leads to the
following s tandard interpretat ion scheme:

Initialize (~) ;

V (~) ;
for i:= 1 to n do

: =E(~) ;
v (~)

od;
Here I n i t i a l i z e (¢) initializes the components of ~. The
function V (¢) returns the value of F(i), and ¢ : = E (¢) up-
dates the CR-expression for the next evaluation point. Ob-
serve that the above loop has n i terations instead of n + 1.
This is the nature of CR-computat ions: the value of F(0) =
¢(0) is available as the result of CR-construction.

The number of operations to be performed at each step
of the above loop is called the Cost Index (CI) of a CR-
expression q) and is defined as:

346

0, if • is a constant;
k + C I (f a) , i f ¢ = {~Po,®~,~, •. • ,®~, f~}

CI (O) = ,~ or • = (~oo, ®1, ~o~,..., ®~, A) ;

q + E C I (¢ ,) , if • = P((Ih, O 2 , . . . , O,~).
j----1

Here q is the number of operations in the expression P . The
cost index of a CR-expression • gives an indication of its
evaluation cost (it counts the number of operations needed
to compute V(E(O))) . For example, for a simple CR • the
cost index is equal to the length of the CR. For the CR-
expression (3) C I (O) = 4.

The application of the inverse shift operator E -1 (E - l g(i) =
g(i - 1)) to CR-expressions is defined as follows:

c, if • is a constant expression c;
{qoo (Dr I V(E-~(O1)) ,®I , E - ' (O 1) } ,

if • = {~0, ®1, (Ih};
E - I (O) = (qoo (D~ -I V(O1),®~, E-I((I)~)),

if • = (~oo, ®1, O1);
p (E - I (O 0)) , . . . , E - I (O ("))),

if • = P(O(1) , . . . ,O('O).

Here + -1 denotes subtraction and * -~ denotes division.
I t is easy to find a symmetry in the definition of E and E-1
for C1% and BCR-expressions: an inverse shift acts on a BCR
in the same manner as a shift acts on a C1%, and vice versa.

2 . 2 C h a i n s s i m p l i f i c a t i o n a n d i n t e r p r e t a t i o n
Elementary subexpressions of F(i) are constants or simple
pure-sum CRs for variable i: {0, + , 1}. Conversion of F(i)
into CR-expression O(i) is based on algebraic operations
(simplifications) defined for CRs. We list some simplifica-
tions which will be used further (here c is a constant):

s l : c + { ~ o , + , o l } = {c + ~ o , + , o l }

s~ : c{~o, + , ~ i } = { ~ o , + , ~o,}

& : ~{~o,* ,¢1} = {c~o,* ,Ol}

S4 : c{~o,+ ,*~} = {c ~°, * ,c*~}
s~ : { ~ o , + , o l } + { ¢ 0 , + , ~ } = {~o + ¢ , + , o l + ~ I }

& : {~o, * , o~} • / { ¢ o , * , ~ } = {~o * /¢o , * , o l • / ~ 1 }
s~ : {~o ,+ ,o~} • { ¢ 0 , + ,~1} =

= {~0" ¢ 0 , + , 0 ~ 1 + O1E(~)}

Most of the CR-simplification rules from [14] (or from $1 -
$7) turn into BCR-simplification rules by subst i tut ing (and
) in place of { and }. For example,
e* (~o ,+ , o i) = (c , ~o, + , ~ , o i) ,
(~o, + , o~) + (¢o, + , ~1) = (~o+¢0, + , o ~ + ~) ,
c<~O,+ ,~> = (c ~o, • , c*~),
and so on. There are only two rules where CR and BCR
construction are different. Only in these rules forward (resp.
backward) nature of the CRs (resp. BCR) is apparent. Let
O(i) = {qoo, + , O~(i)} and ff2(i) = {¢0, + , ~1(i)} be two
CRs. Then

o(i) • ,I,(i) = {~o¢0, + , o (i)v l (i) + o l (1)E(e(i))}

where E is the shift operator. Now let O(i) = (~o, + , Ol(i))
and ~(i) = (¢ o , + , ~1(i)) be two BCRs. Then

~(i) * ~ (i) = (~o¢o, + , O (i) ~ (i) + 01 (i) E - l (~ (i)))

where E -1 is the inverse shift operator. The rules to con-
struct the CR (BCR) for {~o, * , O1(i)} (¢ ° ' + ,~1(i)}

(resp. for <~o, * , 01(i)) (¢° '+ ,~,,(i))) differ in the same way.

R e m a r k . Observe tha t when we construct BCRs by means
of the rules above we will not encounter problems with ap-
plications of E -1, because this operator will be applied only
to pure-sum BCRs.

In other parts the construction of BCRs looks exactly as the
algorithm Cl~ake described in [14]. Given the closed form
function F(i) , which we need to compute for i = 0, 1 , . . . ,
this algorithm replaces occurrences of i by BCR {0, + , 1),
applies BCR.-simplification rules recursively and returns the
BCR-expression O(i) of the same Cost Index as Cl~ake does.

The tight relationship between CR-simplifications and CR-
interpretat ion is best seen for a simple pure-sum CR

O (i) : {~00, -}- , ~O1, -9 l- , ~Ok_l , -3[- , ~Ok} ,

which defines a polynomial of degree k with the set ~o0, ~Ol,
• .. , ~k of finite differences at i = 0. Using the definition of
E and CR-simplifications we can write

E (¢ (i)) =

= { ~ O 0 , - ~ , ~01,'J[- , . . . , ~ k - - 1 , ~ - , (~k}'~-

+ {~1, + , ~k-1, + , ~k} =

= ¢(i) + ¢1(0,
(6)

where ¢1(i) is first-order subchain of ~(i) . Similarly for a
simple pure-sum BCR

O (i) = (~00, "J[- , ~ 1 , "~ , . . . , ~Ok--1, -~- , (~k) ,

which defines a polynomial of degree k with the set ~o, ~1,
. . . , ~ok of backward finite differences at i = 0, using the
definition of E and BCR-simplifications we can write

E(O(i)) =

= (~o + ~1 + . . . + ~ k , + ,~ol +~o~ + . . . + ~ k , + , . . .

• . . ,~ok- t + ~ k , + ,~k) =

= (~0, + , ~1, + , ~ - 1 , + , ~) + (7)
"~" (~O1, "~- , . . - , qOk-- l , ' -~ , ~ k) @ - - .

• .. + (~k-1, + , ~) + (~) =

= o(i) + ol (i) + o~(i) + . . . + o~_l(i) + ¢~(i),

where Oi(i) is j th -order subchain of O(i). This gives a
connection between chains interpretat ion and simplification
which will be used in section 3.

2 .3 S a f e t y o f c h a i n e d c o m p u t a t i o n s
Here we will give an example which shows why the BCR-
representation might be preferred to the CR-representation.
We first introduce another useful measure of a CR-expression
which is called the effective length and is defned recursively
as follows:

0, if • is a constant expression c;
1 + e l (01) , if ¢ = {~o, ®1, ¢1};

~z(~)= m~(~z(~(~)),...,~1(~(~))),
if @ = P((I) (1) ¢('~)).

347

Informally, el(tip) is the length of the longest path (counted
in the number of chain operations (Dj) from the root of CR-
expression • to the last component of any subchain found
in ~. This value gives two impor tant characteristics of com-
putat ional scheme based on Cl~-expression ~: the size of
the potentially unsafe region at the end of computations,
and the size of the longest "error-accumulation" chain in the
computat ion of ~(i) which will be used for estimating a pri-
ori error-bounds in section 3.

Suppose we are to compute values of F(i) -- ~']~k=o f (k) for
kl(~-k)!

i = 0 , 1 , . . . , n , where f (k) ---- ~: . The values F(i) are
defined by a CR:

1 , , {2,-5 ,1}
(I) = (1 , -5 , n ' {n ---i__-5" ,--1} }(i)"

The s tandard scheme of interpretat ion will compute a se-
quence of values V((I,), V(E((~)) , V(E2((I ,)) , . . . Note tha t

E " - : (~) = { c ~ , - 5 f~,* {n+1,-t-,1},.,.,
{0,+

for some rational constants ~ and /L Application of the shift
operator to E ~ - I (~) will fail because of division by 0:

E ~ (f f) = (~ + l g , - 5 , f ~ . n + l , { n + 2 , - 5 , 1 }
o ' ' (- 1 , ¥

although (~ + f~) is correct value of F(n).

As we mentioned before, although F(i) is defined for all
values of i, some subchains or subexpressions of (~ can be
undefined at several last evaluation points. The region i =
0, 1 , . . . , n -e l (~I ,) is absolutely safe for computing the values
F(i) using the general CR.-interpretation scheme. Computa-
tions at points i = n - el((I,) + 1 , . . . , n should be organized
in such a way which avoids the evaluation of unnecessary
(thus potentially undefined) values. This can be achieved at
the stage of program generation simply by split t ing compu-
tat ions into two loops: for i = 0, 1 , . . . , n - e l (C) and for
i = n - e l (¢) + l , . . . , n, unfolding the second one and getting
rid of unnecessary computations. If the CR-representation
is being interpreted, the s tandard interpretat ion scheme has
to undergo similar t ransformation (it has to consist of two
loops, where the second loop implements "careful" interpre-
tat ion of a CR-expression: dropping .all subchains of the
order n - i after i - th iteration).

The number of i terations to split can be reduced if instead
of e l (c) we use the longest pa th from the root of CR-
expression to potentially "dangerous" operation in CR-re-
presentation (such as division, tan, cot or log function calls
and so far). In our example it would be sufficient to split
just one iteration, although e l (~) = 3. In such case we still
have some unnecessary computat ions at the end of the loop,
but they do not lead to division by zero.

Now, let us consider BCR-based evaluation of the same val-
ues. Values F(i) can be defined by BCR

(0, + , 1)
= <1,-5 ,1 ,* ' (n 7 i _ - 5 " , -1>)(i)"

Standard scheme of interpretat ion will compute sequence of
values V (~) , V (E (~)) , V (E ~ (~)) , . . . flawlessly. The ex-
planation of this fact is very simple. Because of symmetries

between CRs and BCRs, some subchains or subexpressions
of ~l, can be undefined at several first evaluation points. To
cure this we would need to split several first i terations from
the s tandard interpretat ion loop. In this part icular exam-
ple it suffices to split one iteration, but this spli t t ing (of the
first iterations) is always done due to the nature of chained
computations.

Generally, BCRs allow us not to worry about the end of the
evaluation interval: a t t empts to compute undefined values
can be made only at the s tar t ing points i = 0, 1, ..., e l (~) - I
of the loop when computing the values of BCR-expression
• (i). This is important , because an a t t empt to compute un-
defined values will happen now during the BCl%-construction
(if construction is done numerically). The BCR-construct ion
procedure can t rap such event and dynamical ly split the first
step of the interpretat ion loop generating the loop for E(q,)
(or E2(~)) instead t. This means tha t at the end of the
BCR-construction we will have a safe computat ional scheme
and the BCR-interpreter would not need to take special care
about the last evaluation points, which generally makes in-
terpreter simpler and faster.

2.4 Properties of polynomial chains
As it was shown in [3], there exists simple relationship be-
tween simple pure-sum CRs and falling factorial powers ([7])
i£ = i (i - 1) . . . (i - j + 1). For BCRs there exists simple rela-
t ionship between simple pure-sum BCRs and rising factorial
powers ([7]) i 7 = i(i + 1) . . . (i + j -- 1). The following equal-
ities hold

(o , + , 0 , + , . . , 0 , + , k!},

t imes
i ~ = (0 , + , 0 , + , . . . , 0 , + , k!).

Y
t imes

From which we derive using rules $1-$7
~k .k

{ ~ 0 , "[- , <Pl , - - - , "[- ,qOk} = qtgO + ~lil-- + . • • + -~-.i z-- ----

~- ~0 -~ ~O1 "~ ~O2 2 "~ . . . "~ ~k

and

,%61,...,-5 ,¢~) = %bo + %bli Y + . . . + ~ i F = (¢o, -5

The last equation means tha t a simple pure-sum BCR of
length k is a polynomial of degree k in i.

From (8) and i - 1 j [1 : k + l ~-~j=0 = ~ - - we obtain

i--1
=

5=0 (10)

= {0,-~- , ~O0,'gff , ~ 1 , - . . ,"~- , ~ k } (i)

or ~ ' - o ~(J) = {0, + , (I,}(i) for simple pure-sum CR (I,.

1more precisely, for Em(~2), where m < el(k9) is the dis-
tance in the number of chained operations from the root
of BCR expression to the subexpression which caused the
event.

348

• r - . , , i - -1 . k 1 p , , - - l (, , . k -] - l l Similarly, from (9) and 2_~j=0) = K4-~-- ~' ! we obtain

i--1

X~(~o0, -]-, ~ol , . . . , -}-, Vk)(J) = (11)
j = 0

= E-l((0, + , ~o, + , ~ , . . . , + , ~) (i))

or ~-~i.- ~ ¢ (j) = E-1 ((0, - t - , ¢) (i)) for simple pure-sum BCR
¢. T~ese formulae are respectively CR and BCR analogs of
summation formula for polynomials.

R e m a r k . The relationship between pure-sum CRs and
BCRs is even tighter. Consider, for example, the function
i ~ which is defined by a CR {~0, + , ~ 1 , . . . , ~ok-1,-{- , ~k}.
Writ ing the same function as a BCR gives

((-1) '~Po,- t - , (- 1) ' ~ - I~a l , . - . , (- -1)1~ /~ - -1 , -J r - , (P/~).

This follows from the above equations and from the following
conversion formulae between powers (see [7]):

i k = i t = (- 1) k-y i~-,
j = 0

where {~}, j = 0 , . . . , k are the second kind Stirling num-
bers.

With the help of equations (8),(9) we define two special poly-
nomials which will be used in section 3:

Ak(i) = {1,-[- , 1, + , . . . , 1 , - [- , 1}(i)

k t i ne s

and

Bk(i) = (1 , - [- , 1 , + , . . . , 1 , - { - , 1)(i) .

k t i n e s

(12)

(13)

Observe, that Ak (i) _< Bk (i) for all natural k and i and that

.A~(i) < Bk(i) (14)

for all k > 2, i > 1. Furthermore, lc(.Ak(i)) = lc(Bk(i)) ,
therefore for any fixed k

lim /~k (i) ~-¢¢ A k (i) ---- 1. (15)

2.5 L o o p o p t i m i z a t i o n too l s a n d m i x e d c h a i n s
The operators V, E and E -1 and the C R / B C R simplifica-
tion rules form a toolkit for loop optimization [6, 13]. Con-
sider the following loop:

z := g(0) ;
f o r i : = 1 r o n d o

y := f (x) ; . . . x :=g(i) ; . . . z : = h (x) ; . . .
od

After constructing a CR ¢(i) = g(i) one can t ry to use the
chained nature of the values of x, subst i tute ¢ (i) in place
of x into f (x) and h(x) , and obtain the CR representation
for these expressions with the help of CR-simplifications. In
order to preserve the semantics of the loop one has to substi-
tute ¢(i) into h(x) and E - l (¢ (i)) into f (x) . The reasonable
question about the existence of E -1 (¢(i)) arises here. I t is
easy to see for example that for ¢ defined in (3) E -1 (¢(i))
is not defined at i = 0 because of division by zero. This

does not mean that the optimization connected with substi-
tut ion can not be performed for g(i) = ¢ (i) from (3). I t is
still possible by simply spli t t ing the first s tep of the loop,
and applying substi tut ion to the body of the shortened loop.
This will be valid, because the loop without the first s tep
computes values of E (¢ (i)) and now E - I (E (¢ (i))) ---- ¢ (i) is
defined. Such a split t ing is not necessary in the cases when
g(i) is defined by a simple CR ¢(i) . It is easy to show [13]
tha t in such a case either E - 1 (¢ (i)) is defined, or the loop
degenerates (computes x ---- 0 for most of the values of i).

Sometimes the loop already implements some chained eval-
uations rules, and they can have either forward or backward
nature. In order to handle such situations properly we need
C R / B C R conversion tools, which are defined as follows

c, if ¢ is a constant expression c;
(~o, ®1, CRtoBCR(E- 1 (~1))),

CRtoBCR(~) = if ¢ = {~oo, ®1, ¢1};
P(CRtoBCR(¢(D), . . . , CRtoBCl~(¢(~))),

if ¢ = p(¢(1) , ¢(m)).
and

c, if ¢ is a constant expression c;
{~0, (~1, BCRtoCR(E(¢I))},

BCRtoCR(¢) = if ¢ = (~o, Q1, ¢1);
P(BCRtoCR(¢ (1)) , . . . , BCRtoCR(¢ (m))),

if ¢ = p (¢ O) ,¢(m)).
During the CR-based loop optimization we have different
choices:
1) convert all computat ions to forward chains;
2) convert all computations to backward chains;
3) preserve as much of the loop semantics (in part icular
chains already existing within a loop) as possible.
The first two goals are achieved with the help of conversion
tools, subst i tut ions and C R / B C R simplifications. The third
goal leads to the consideration of mixed chains of the form
{1/)0, * , ~)1, ~- , (¢ 2 , ~- , {~)3, "~ , . . . , - ~ - , ~)k})} ,
with different orders of (,) and {, } brackets. Computat ions
based on mixed chains of recurrences have the same general
scheme of interpretation. Moreover, the operators V, E and
E -1 were defined to allow mixed chains as input. Part ia l
conversion might also be needed during mixed chains sim-
plification, for example for simplification of an expression of
the form {~oo, + , ¢1} + (¢o,-}- , ~1). Consider for example
the following loop:
x : = 0 ; t l : = O ; y ' = O ;
f o r i := l t o n d o

x : = x + 2 ; (0 , + , 2)
t l : = t l + x ; (0 , + , 0 , -] - , 2)
t2 := 4. t l . (4. t l + x) -- x 4 ; (0, -t- , 16, -[-, --192, - t - , 240)
y := y + t2; (0, -{-, 0, -{- , 16, -~ , --192, - t - , 240)

od
This loop is annotated by BCRs which were constructed for
x and then by substi tutions and simplifications for other
variables. If the only variable used after the loop is y, we
would have optimizied loop performing only 4 additions at
each iteration. We constructed BCRs because the first two
assignments in the loop already implement a BCR-like com-
putations. If the order of these two assignments was differ-
ent, we would end up with mixed CR/BCR. scheme, imple-
menting evaluation of t2 with a CR and evaluation of y with
a mixed chain.

R e m a r k . The need for mixed computat ions can also appear

349

because BCRs have some disadvantages in comparison with
CRs with regard to numeric stability. A skillful choice of the
mixed scheme could keep advantages of CR-representat ion
with regard to stabil i ty and advantages of BCR-representa-
t ion with regard to "avoiding unsafe computat ional steps."
Returning to the example in section 2.3 we can define F(i)
by the mixed chain

{i, + , 1} , , ' i ' , A ---- (1, --[- ,{1,* , (' ~ , ~ ,---~}))()

which gives a safe scheme of computations, and most of com-
putat ions are based on forward chains.

3. STABILITY OF CR-COMPUTATIONS
Since the CR-technique is based on the use of previously
computed values to compute the next value, any computa-
tional numeric error in the previous steps will be passed on
to the new value in addit ion to any error in the current step.
In general, this error is within reasonable limits, but for a
large number of iterations, the error can become significant.
In this section we first analyze the propagated error and
then show an approach to improve the error characteristics
of CR computations.

3.1 Error analysis for simple CRs
The errors in function evaluation using CRs could arise due
to several sources:
1) representation error (error caused by loss of information
at the t ime of initialization due to the finite word size);
2) CR-computat ion error (floating point roundoff error tha t
occurs when we compute the successive values of the simple
CRs contained in CR-expression (I)(i));
3) "usual" error (the error of evaluation of the operations
from initial expression F(i) which remain in the CR-expres-
sion obtained by F(i)) and so on.
We will be interested mostly in the characterization of the
relative errors and will use the s tandard model [8], assuming
tha t representation error of exact quanti ty v is defined by

f l (v) = v(l + 6), 161 < u,

and floating point operations roundoff error is defined by

fl(t ® v) = (t ® v)(1 + 6), 161 < ~, e e {+, - , , , / } ,
where u is a hardware dependent unit of roundoff. We also
assume in this section tha t i5 << 1 and k5 << 1.

We first show how representation error influences the CR-
computat ion error under the assumption that ar i thmetic is
exact. Consider a simple pure-sum CR

¢(i) = (~0, + , ~1, + , . . . , + , ~A(i)

and the approximate simple pure-sum CR

¢(~) = {~o,+ ,~1,+ , . . . , + , ~A(i),

obtained after floating point initialization of ~. Using the
model mentioned above and CR-simplification rules from
section 2 we can write

~(~) =
: {~o(1 - l - 6) ,+ ,~o1(1 + 6) , + , . . . , + ,~k(1 + 6) } (i) =

---- (1 --b 6){cpo,-{- , ~oz,-{- , . . . , -[-- , (p,'~ } (i) = (I -'F 6)~(i),

or @(i) - ¢(i) = 6~(i).

The last equali ty suggests tha t if ari thmetic is exact then
pure-sum CR evaluation is numerically stable with respect
to small per turbat ions in values of elements ~ j of a CR.

Consider now a simple pure-product CR

¢(i) = {~0 ,* , ~1, * , . . . , * , ~}(~)

and the approximate simple pure-product CR

@(i) = {~o,* ,~1,* , . . . , * , ~}(~) ,

obtained after initialization of (I,. Wi th previous assump-
tions and ~j > 0 we get ~Sj = (1 + 6)~oj,j = 0, 1, ...k. Using
CR-simplification rules we can rewrite

(~(i) - (I)(i) -- {1 -I- 5, * , . . . , 1 + 5, * / 1 -F 5}¢(i) - (I)(i) ----

k t~mes

= ((1 + 6) Ak(0 -- 1)(I)(i).

Since $ <(1 we deduce (1 + 6) `%(0 _~ 1 +SAc(i) and finally
get (~ - (I) _~ $Ak(i)~(i).

This means tha t pure-product CR evaluation is unstable,
since relative error grows proport ionally to the values of
polynomial .Ak(i) when i increases.

Now we describe the influence of roundoff error at every step
of CR-computat ions. Let (I) be an exact pure-sum CR and

denotes the shift in floating point environment. Then,
using (6) twice we get

E(¢I)) = fl((I) + (I)1) = ((I) + fPl)(1 + 6) = E((I))(1 + 6).

Evaluation of a CR (~ over consecutive i points corresponds
to the evaluation o f / ~ ¢ . Noting tha t E and E commute
under the s tandard floating point model, we have

k ' (~) ---- E ' - ' (E (~) (1 + 5)) ---- (1 + 5)E(E'- ' (¢))

. . . . (1 + $)'E'(~).

From here we get

~: i(¢) _ E ' (~) ----. iSE'(~), (16)

which means tha t relative error grows linearly in the number
of evaluation points i. This is more optimistic than [4] which
suggests tha t the relative error accumulates proport ional ly
to i • k • 6 for polynomial CR of length k. Formula (16)
can also be used to est imate absolute error behavior in case
when ~i((~) is close to 0 (i.e. when relative error analysis
can not be used).

Observe tha t the analysis above estimates worst case accu-
mulation when all roundings are done in the same direction.
In real life floating point environment the accumulated er-
ror grows much slower. I t is interesting to note also tha t
the accumulated error for high degree polynomials can be
less than tha t for low degree polynomials. Figure 1 shows
the result of an experimental evaluation of two polynomials
over 10000 points: f(x) ---- x a / l l and g(x) = xT/l10000 for
x = 0 .0 ,0 .001, . . . ,10 .0 (note that f(10) = g(10)). Com-
putat ion was performed in Maple's hardware floating point
environment and the figure shows the accumulated relative

350

5e'141 / : /

4e'141 ,/'f

F i g u r e 1: A b s o l u t e v a l u e o f r e l a t i v e e r r o r o v e r 1 0 0 0 0
e v a l u a t i o n p o i n t s f or f(x) (l i g h t) a n d g(x) (d a r k) .

error for both polynomials against the number of the eval-
uation point. Although both curves are under the line 6 • i,
g(x) has a smaller accumulated error at the end point.

This somewhat surprising fact has a very simple explana-
tion. In real life floating point environment rounding is
done in different directions and accumulated errors in longer
chains have bet ter chances for mutual cancellation than in
shorter chains.

Now consider a pure-product CR • of length k. Then

J~(~)) = f l (¢ * ¢1) = (~ * ¢1) (1 + 6)-4k (,) = E(¢) (1 + 6) A~ C0.

After i steps of evaluation

E/(O) = / ~ ' - 1 (E (~) (1 + 5) -4~c')) =

= (1 + 5)-4~(~)E(/~-t (~)) = . . .
i .4 " (1 + ~) ~ = ~ ~ 0) . E ' (~)

6 i • and (since (1 + 6)E~ --~ "%(J) ~ 1 +)"~q=t Ak(3) for 6 << 1)

ki(~) - Ei(~) ~-- Ck(i)6Ei(¢),

where Ck(i) = ~ = t Ak(j) = { 0 , + , 1 , + , . . . , 1 , + 2 1 } is a

tithes
polynomial of degree k + 1 in i. The function Ck (i) describes
the cumulative error effect in pure-product chains.

We summarize this section by a description of the "express"
method of getting a priori worst case bounds for accumu-
lation of relative error for CR-expressions. Given a CR-
expression ~(i) we define the error indicator to be

2;~(i) = { i, if • has no pure-product subchains,
Cel(~) (i), if • has pure-product subchains.

(17)
The value ~Zv(i) roughly describes the accumulation of the
relative error after i steps.

All the reasonings of this subsection can be repeated for
exponential BCRs by substi tut ion Bk from (13) in place of
.4~. Obvious disadvantages of BCRs in comparison with
CRs here follow immediately from (14). But due to (15)

the difference in accumulated error in exponential CRs and
BCRs for the same expressions becomes less significant as i
grows. For polynomial BCRs this difference is even less sig-
nificant. Similarly to the way we obtained (16) it is possible
to show tha t for a polynomial BCR ~ of length k

E (~) -- E (~) + ~E~(~)

and

k ' (~) Ei(~I,) ~ ~(i + ~E'(¢1))
E ' (~) - E i (9) "

Here iEi(~Pl) is a polynomial of the degree k with the lead-
ing coefficient k times larger than the leading coefficient of
E ' (~) . If computed values are not close to 0 (i.e., relative
error analysis is relevant) the last fraction above is bounded
by a constant on the evaluation interval. This means tha t
the relative error accumulation for a polynomial BCR will
be very close to the one for CR. Running BCR evaluation
for f(x) and g(x) shown in Figure 1 gives the same result as
CR evaluation.

3.2 I m p r o v e m e n t o f the error characteris t ic o f
the C R s

As shown in the previous subsection, for a large number of
iterations the cumulative error effect of the CR-computa-
tions can become significant. I t is not surprising, since we
t rade off accuracy for efficiency when we pass from the initial
computat ional scheme F(i) to the CR-expression ~(i) . I t
looks quite reasonable to pay a lit t le bit back, i.e. to lose
some efficiency in order to get more accurate computat ional
scheme. This can be rectified by "refreshing" the CR, i.e.,
by reinitializing the value of components periodically.

If the refreshing is done over the regular number of points,
we find that this is analogous to a well known program op-
timizing transformation, called "loop unrolling" [1]. In the
general case we will use multidimensional loop-unrolling [9],
but here we s tar t with a two-dimensional one as an example.

Given F(i) which has to be evaluated for i = 0 , . . . , n , as-
suming that n + 1 -- m • q, we can compute the required
values using inner unrolling

F(j . q + l - 1) , j = 0 , . . . , m - 1;l = 1 , . . . , q ;

or outer unrolling

F((l - 1) . m + j) , j = O , . . . , m - 1;l = 1 , . . . , q .

In both cases we can construct a two-dimensional CRs. I t
is easy to see tha t while in linear CR technique the error is
accumulated through n + 1 = m • q steps of computation,
after unrolling it is accumulated through no more than m + q
steps.

Several features can be noted here:
1. If linear CRs are constructed symbolically the main part
of the work to obtain two-dimensional CRs can be done by
means of substitutions. It follows from the fact ([9, 14]) tha t
components of CRs (as expressions) are constructed almost
from the same set of constants, operation-signs and variables
as initial expression F(i). Here we can essentially use the
remember tables feature of the M a p l e system [11].
2. The efficiency of the computations in two-dimensional

351

unrolled loop will decrease by a factor of two at most. In-
deed, let the CR (I)(i) have a Cost Index k. Then the outer
CR ~(j) will have the same Cost Index and its components
(as CRs w.r.t, variable l) will have Cost Index not greater
than k. The total complexity for linear CR-computations
will be equal to tl = (n + 1)k = mq • k. The total complex-
ity for two-dimensional CR-computations will be not greater
than t2 = mq • k + m • k 2 (here mq • k is the complexity of
computations in the inner loop, and m. k 2 bounds the com-
plexity of computations in the outer loop). In most practical
cases we can reasonably assume that m _~ q _~ ~ 1 and
k < ~ . Thus, we get t2 < 2tl.
3. Function evaluation in loops using recurrence relations is
inherently parallelizable. This transformation allows us to
exploit both parallelization and CR-based improvement of
the code generated [5].

In the general case we assume that we are provided with
the closed form function F(i) , i = O, 1 , . . . ,n , the value of
initialization error 6 and the user-predefined bound e of ac-
cumulated relative error (it is assumed that 6 < e). Af-
ter constructing the CR-expression (I)(i), the function Iv (i)
from (17) simulates cumulative error effect. We can find m
such that Z~(m) < ~, Z ~ (m + l) > ~. If such an m does not
exist, there is no point in using CR-technique for given F(i).
Otherwise, the value m provides us with the number of steps
over which we can use CR, while remaining within the user
predefined error bounds. If m > n we can use the linear CR-
scheme. Otherwise we have to find the minimal natural p,

such that [mJP > n and use p-dimensional loop unrolling

of (~(i). The obtained p-dimensional CR will be about p
times slower than the linear CR, but will accumulate error
not more than over m steps. It is worth to mention that
in applications such as plotting 2 or 3 dimensional unrolling
typically suffice.

4. CONCLUSION
The method to estimate the worst-case CR-caused accu-
mulated error described above can be useful when the CR-
technique is applied to expedite numeric computations "on
the flight" (i.e. in the interpretation mode). If we use this
technique to generate numerical programs, it is possible to
employ other (more careful) techniques to analyze an accu-
mulated error. For example, there are no restrictions for
combining the above method with the run-time analysis ap-
proach considered in [8].

As mentioned above, in plotting applications the error accu-
mulation effect is not very dramatic, because of the modest
number of evaluation points. The live demo of the Java CR
engine is available from
http : / / s c g l . uuaterloo, ca/JMCR, him1.
It is possible to run and compare times for different compu-
tational tasks with the SurfacePlotter interpreter and Java
CR engine. As well, the SurfacePlotter with its computa-
tional part replaced with JMCR can be run to compare the
plotting quality. Our C implementation [9] is recently ported
to Maple 6 [11] using new Maple external call facilities. This
expedites our earlier internal Maple implementation by an
order of magnitude. Relevant Maple wrappers and dynamic
link library are available from the author by request.

5. ACKNOWLEDGEMENT
The author would like to thank Howard Cheng (University
of Waterloo) for his help in the preparation of this paper.

6. REFERENCES
[1] AHO, A., AND ULLMAN, J. The Theory of Parsing,

Translation and Compiling, Vol.2. Englewood Cliffs,
N.J.: Prentice-Hall, 1972.

[2] AVITZUR, R., BACHMANN, O:, AND KAJLER, N.
From Honest to Intelligent Plotting. In International
Symposium on Symbolic and Algebraic Computation
(1995), Montreal, Canada, ACM Press, pp. 32-41.

[3] BACHMANN, 0 . , WANG, P.S., AND ZIMA, E.V.
Chains of Recurrences - a method to expedite the
evaluation of closed-form functions. In International
Symposium on Symbolic and Algebraic Computation
(1994), Oxford, UK, ACM Press, pp. 242-249.

[4] BACHMANN, O. Chains of recurrences. PAD thesis,
Kent State Univ., Kent, OH - 44240, USA, December
1996.

[5] CASAVANT, T. , VADIVELU, K., AND ZIMA, E.
Mapping Techniques for Parallel Evaluation of Chains
of Recurrences. In International Parallel Processing
Symposium (1996), pp. 620-624.

[6] VAN ENGELEN, R. Symbolic Evaluation of Chains of
Recurrences for Loop Optimization. Technical Report
TR-000102, Department of Computer Science, Florida
State University, 2000.

[7] GRAHAM, R., KNUTH, D., AND PATASHNIK, 0 .
Concrete Mathematics. Addison-Wesley, 1994.

[8] HIGHAM, N.J. Accuracy and stability of numerical
algorithms. SIAM, 1996.

[9] KISLENKOV, V., MITROFANOV, V., AND ZIMA, E.V.
Multidimensional of Chains of Recurrences. In
International Symposium on Symbolic and Algebraic
Computation (1998), Rostock, Germany, pp. 199-206.

[10] KNUTH, D.E. The art of computer programming. V.2.
Seminumerical Algorithms. Second edition.
Addison-Wesley, 1981.

[11] MONAGAN, M.B., GEDDES, K.O. , HEAL, K.,
LABAHN, G., VORKETTER, S., AND McCARRON, J.
The Maple Programming Guide, Springer-Verlag, 2000.

[12] ZIMA, E.V. Automatic Construction of Systems of
Recurrence Relations. USSR Comput. Maths. Math.
Phys., Vol.24, N 6, 1984, pp. 193-197.

[13] ZIMA, E.V. System of Recurrence Relations and
Loops Optimization. PAD thesis, Moscow State
University, 1985.

[14] ZIMA, E.V. Simplification and Optimization
Transformations of Chains of Recurrences. In
International Symposium on Symbolic and Algebraic
Computation (1995), Montreal, Canada, ACM Press,
pp. 42-50.

352

