=

Combining Global Code and Data Compaction”

Bjorn De Sutter
Bruno De Bus
Koen De Bosschere
Ghent University, Belgium

brdsutte@elis.rug.ac.be

ABSTRACT

Computers are increasingly being incorporated in devices
with a limited amount of available memory. As a result
research is increasingly focusing on the automated reduc-
tion of program size. Existing literature focuses on either
data or code compaction or on highly language dependent
techniques. This paper shows how combined code and data
compaction can be achieved using a link-time code com-
paction system that reasons about the use of both code and
data addresses. The analyses proposed rely only on fun-
damental properties of linked code and are therefore gener-
ally applicable. The combined code and data compaction is
implemented in SQUEEZE, a link-time program compaction
system, and evaluated on SPEC2000, MediaBench and C++
programs, resulting in total binary program size reductions
of 23.6%—46.6%. This compaction involves no speed trade-
off, as the compacted programs are on average about 8%
faster.

1. INTRODUCTION

Computers are increasingly being incorporated in devices
where the available amount of memory is limited, such as
PDAs, set-top boxes, wearables, mobile and embedded sys-
tems in general. The limitations on memory size result from
considerations such as space, weight, power consumption
and production cost. At the same time, there is a desire
to execute increasingly sophisticated applications, such as
encryption and speech recognition, on such devices. This
leads to increasingly large programs, due to the additional
functionality they provide, as well as the use of modern soft-
ware engineering techniques that aim at the use of compo-
nents or code libraries. These building blocks are primarily
developed with reusability and generality in mind. An ap-
plication developer often uses only part of a component or a
library, and because of the complex structure of these build-
ing blocks, the linker often links a lot of useless code and
data into the application. This problem can be considered
as one of the big hurdles to be taken before modern soft-
ware engineering techniques can be used to develop mobile
or embedded applications.

For these reasons, recent years have seen growing interest
in research on code and data compaction, i.e., the transfor-

*The work of B. De Sutter was supported by the Fund for
Scientific Research — Flanders under grant 3G001998. B. De
Bus’s 1s supported by a grant from the ‘Flemisch Institute
for the Promotion of the Scientific Technological Research in
the Industry (IWT). The work of S. Debray was supported
in part by the National Science Foundation under grants
CCR-0073394, EIA-0080123, and ASC-9720738.

Saumya Debray
The University Of Arizona

debray@cs.arizona.edu

mation of programs to reduce their memory footprint while
keeping them directly executable. Work on code compaction
has generally focused on identifying repeated instruction se-
quences within a program and abstracting them into func-
tions [6, 14] or macro-instructions in programmable exe-
cution environments such as the Java Virtual Machine [4].
Work on data compaction is limited to simple literal address
removal from object files [21]. Whereas program compaction
compacts code and data in a program, program extraction
identifies those parts of libraries, classes or run-time envi-
ronments that are not needed for a specific application. To
our knowledge, such proposed techniques [1, 22, 23] are lan-
guage dependent, requiring higher level descriptions of li-
braries, classes or run-time environments and above all type
information. This highly limits their applicability, e.g., on
libraries that are available in object format only.

In the past we have proposed applying code compaction on a
very general program representation: binary programs. The
techniques discussed were limited to code compaction only.
However the elimination of a word of storage from the data
area of a program yields exactly the same overall benefit,
in terms of memory footprint reduction, as the elimination
of a word of storage from the code area of the program.
Moreover, it is not difficult to see that there are significant
dependences between the code and data components of an
executable program. For example, unused library code that
is uselessly being linked with a program will often be accom-
panied by useless data (empirical evidence indicates that 5-
10% of the library code linked with a program is unreachable
[18, 20]). Code optimizations such as dead and unreachable
code elimination can cause data to become unreachable by
getting rid of code referring to that data. Conversely, the
elimination of unused data that contains pointers to code,
such as jump tables and virtual function tables, can cause
code to become unreachable, and hence eliminable. Indeed,
the two optimizations are synergistic: the elimination of
data can enable additional elimination of code, which can
enable the elimination of even more data, and so on.

The main contribution of this paper is to develop a whole-
program analysis that treats data and code elimination from
binary programs simultaneously. We show how this can be
done using a link-time code compaction system that reasons
about both code and data addresses. Conceptually, the idea
is very simple: use constant propagation to determine the
values of addresses in code and data areas, and based on this
reasoning identify code and data values that are not used
and can be eliminated. The link-time program compaction
system SQUEEZE, in which our new algorithms were imple-

Permission to make digital or hard copies of part or al of thiswork or personal or classroom useis granted without fee provided that copies are not made or
distributed for profit or commercia advantage and that copies bear this notice and the full citaion on the first page. To copy otherwise, to republish, to post
on servers, or to redistribute to lists, requires prior specific permission and/or afee.

LCTES 2001, Snowhird, Utah, USA
© ACM 2001 1-58113-425-8/01/06...$5.00


 
Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.


main.c:

#include <stdio.h>

main() {
printf ("hello world\n");
}
pointer.c:  /* contains dead code only */

#include <stdio.h>
void a(void) {

printf ("%1x\n", (void*)&a) ;
¥

(a) Source files

Binary main.o pointer.o main.o
data code data code
original 70848 182432 | 46704 | 58432
code compacted | 68032 102016 | 45680 | 24640
data compacted | 43408 20864 | 43408 | 20864

(b) Executable sizes in bytes

Figure 1: A motivating example

mented and evaluated, achieves size reductions that are sig-
nificantly better than have been reported in the past: we
achieve reductions of about 24.4%-50.7% in the code size,
and 23.6%—46.6% in the total program size (code+data).
Our ideas rely only on general properties of compiled code
and so are not restricted to a particular implementation con-
text. For simplicity of exposition the discussion below will
focus on load-store Harvard architectures, where arithmetic
operations involve only registers, and memory is accessed
only via load and store instructions. However, the ideas
presented here are not limited to such architectures, and can
be readily adapted to architectures supporting more com-
plex addressing modes.

2. MOTIVATING EXAMPLE

During a linking process, the search for necessary library
code and data to be included in the binary is guided by sym-
bol information. If a symbol is referred to in some already
linked-in object file, another object file defining that sym-
bol will be linked with the binary as well, possibly requiring
new symbol definitions. This is an iterative process, that
finishes when all referenced symbols are defined. Whether
the reference to a symbol is going to be used by the program
is not taken into account during this process.

Consider the small example C-program in Figure 1(a), which
consists of two source code files, one of which contains dead
code only. Depending on whether or not the object file con-
taining the dead code is fed to the linker together with the
main program, different binaries are generated, whose data
section sizes and code section sizes are given in Figure 1(b).
The addition of the dead code object file results in a binary
that has more than twice the amount of data and code, al-
though the two object files themselves are only 1KB large.
The sole reason for this is the additional inclusion of object
files from the C-library caused by the call to printf (), in
the dead code, to output an integer number.

30

When code compaction is applied to both the binaries, a
significant amount of code is eliminated from them. Still
one version contains much more code than the other. The
reason is that the dead procedure a() cannot be eliminated,
since its address is stored in the data (for printing it). Un-
less we are able to analyze all the possible uses of this stored
address, we must assume that it can be used as a procedure
pointer and that as a result a() is a potential target of in-
direct procedure calls.

When the analyses proposed in this paper are applied, the
resulting binaries are equal in size and contain the same
(smaller) amounts of code and data.

While this example is admittedly contrived, the point it is
intended to illustrate is that even a very small amount of
unreachable code, with only a small amount of additional
functionality—in the example shown, a request to print an
integer—can have a nontrivial effect on code size. In real
programs, it often happens that such unreachable parts of
library object files are linked with the program, iteratively
causing other code and data to be linked with it as well,
resulting in a significant overall impact on program size.

3. STRUCTURE OF COMPILED CODE

The object module generated by a compiler from a source
module typically consists of several sections, such as the
text section, the constant data section, the literal address
section, etc. The linker combines a number of such object
modules into an executable program: in the process, it puts
all the sections in their final order and location. The sections
of the same type coming from different object modules are
typically combined into a single section of that type in the
final executable. To avoid confusion, in the remainder of this
paper the original sections in the object files will be called
code and data blocks, or blocks for short. A section in an
executable file 1s thus a juxtaposition of blocks from the
object modules from which the executable was constructed.

To access a memory location, the address of that location
has to be loaded or computed into a register (possibly im-
plicitly, as a displacement off a base address). In general,
when generating the blocks in one object module, the com-
piler does not have any information about the blocks in other
object modules, such as their size or the order in which they
will be linked together, so it cannot make any assumptions
about the eventual locations of these blocks in the final exe-
cutable. This means that in the object code, computations
on an address pointing to some block can never yield an
address pointing to some other block in the object file, be-
cause the displacement between the two blocks is not known
at compile time. This property holds for all the blocks in
the final executable program. This means that the data in
a block is dead unless there is a pointer to that block found
in some other block (e.g., a pointer to a data block from a
code block, or vice versa) or explicitly programmed in the
code.! If there are such pointers, but they are not used for

It is possible, in principle, for a program to communicate
such pointers from one point in a program to another in non-
standard ways, e.g., by writing it out to a file at one program
point and reading it back in at another. The discussion here
applies even in such situations. For example, in order to
write out an address, we have to first put the address into a
register, so we can detect that the address is taken; at the
other end, code that attempts to dereference a value that



non-zero initialized data 2552912 bytes
non-zero intialized read-only data | 1115392 bytes
relocatable data 473580 bytes
read-only relocatable data 405412 bytes
block size = 8 bytes 32184 blocks
block size = 16 bytes 3603 blocks
16 bytes < block size < 64 bytes 738 blocks
64 bytes < block size < 256 bytes 882 blocks
256 bytes < block size < 1KB 487 blocks
1KB < block size < 4KB 257 blocks
4KB < block size < 16KB 116 blocks
16KB < block size < 64KB 22 blocks

Table 1: Some numbers on statically allocated non-
zero-initialized data and addresses summed for the
whole SPECint2000 benchmark suite.

stores, the data is read-only.

This property is fundamental to the analyses described later
in this paper, in Sections 4 and 5. Both analyses are ex-
tensions to constant propagation that, based on the propa-
gated addresses and how these addresses are used, are able
to detect dead and read-only memory areas, and each algo-
rithm has its strengths and weaknesses. In Section 6 they
are combined to retain their strengths and overcome their
weaknesses.

Table 1 shows the distribution of the size of the blocks
containing non-zero-initialized data for the SPECint2000
benchmark suite. Note that about one fifth of the statically
allocated data contains code or data addresses, of which
more than 85% is located in read-only data sections. Many
of the data blocks contain at most one or two addresses. In
blocks that are 16 bytes large, the last 8 bytes are very often
padding and so contain no real data or addresses. It is clear
that most of the blocks are small enough to significantly
restrict the possible uses of data addresses.

4. GLOBALLY UNIFORM
CONSTANT PROPAGATION

As shown in [8], aggressive global optimization techniques,
such as constant propagation, achieve good results for code
compaction. One reason is that at link-time, address calcu-
lations are optimization candidates as well. Indirect data
accesses and indirect control flow transfers can often be
transformed into direct data accesses and direct control flow
transfers. This makes behavior of the program more explicit,
thereby creating other optimization possibilities. As a side
benefit, the addresses stored in memory for such indirect
references often become dead and can be eliminated.

As discussed earlier, the detection of unreachable code and
of dead data are closely related. We believe that this relation
is of such a strong nature that a unified approach is required
to obtain good results. The unified approach discussed in
this paper consists of algorithms targeting simultaneously
at

is read in will be considered to be able to access any block
where an address is taken, which will include the location
whose address was passed to it.

31

— the removal of unnecessary data accesses;
— the removal of dead data;

— a more accurate unreachable code elimination.

To achieve these goals to a large extent we use a unified ap-
proach based on constant propagation over the whole pro-
gram. Constant propagation is a well-known data-flow anal-
ysis [2] carried out via a fixpoint computation over the con-
trol flow graph of a program. During the computation,
variables at program points are mapped to lattice elements
modeling the values they can hold. The lattice consists of
all the possible constant values, T (undefined, meaning that
we cannot say whether a variable holds a constant value
or not, since we have not yet seen any definitions of the
variable), and L (non-constant, meaning that we have seen
enough different definitions of a variable to decide that it
may not have a constant value). Throughout this paper, we
assume an optimistic constant propagator, where initially,
the analysis assumes that all variables at all program points
are undefined, i.e., T, (except for the program entry point,
where input values are unknown and mapped to L, i.e., non-
constant). During the calculations, the mappings are low-
ered from T to constants or possibly to L. The algorithm
finishes when the mappings have converged. When two or
more different propagated mappings meet (this can happen
where edges in the control flow graph have the same tail
node), this results in L being propagated from that point
on.

It is well known that extending the basic analysis (a.k.a.
simple constant propagation) to conditional constant propa-
gation can be more effective in eliminating unreachable code
than running unreachable code elimination as a separate
phase [5, 24]. The difference between simple and condi-
tional constant propagation is in the handling of conditional
branches. During simple constant propagation, mappings
are always propagated to both paths following the condi-
tional branch. During conditional constant propagation by
contrast, if a conditional branch’s condition is mapped to a
constant, allowing us to determine which path will be taken,
the values are propagated over that path only. Conditional
constant propagation, being a more effective combination of
control and data flow analysis, is one example of the possi-
ble strength of a unified approach to optimization problems.
The algorithms discussed in this paper build further on this,
by extending conditional constant propagation.

One way to look at the extension to conditional constant
propagation 1s to consider the worst-case assumptions
(WCA) that are made before and during the analysis. These
assumptions are made to guarantee soundness (i.e., correct-
ness of the program transformations following the analysis)
and termination of the analysis. For simple constant propa-
gation, a single a priori worst-case assumption is made with
respect to all conditional branches:

WCA 0 :

viable.

Both paths following conditional branches are

In the extended algorithm, making this assumption is de-
ferred until later and split into separate, less conservative
assumptions. More precisely, a separate assumption is now



made for each conditional branch, at the time appropriate
to make the assumption for that particular branch:

WCA 0’ : Both paths following a conditional branch are
viable when its condition becomes non-constant (L).

This approach of moving and refining worst-case assump-
tions 1s used in the rest of this paper to explain how our
algorithms work. Starting from the worst-case assumptions
necessary for a link-time conditional constant propagator,
we will come to a constant propagator that to a large extent
achieves the goals stated at the beginning of this section. A
more formal description of the algorithms discussed in this
paper can be found in [7].

4.1 Basic Link-Time Constant Propagation
Constant propagation during or after linking differs consid-
erably from constant propagation at compile-time. There
is no notion of variables, but instead registers and memory
locations contain data. Statements in some high-level lan-
guage are replaced by assembly instructions. All the dirty
pointer arithmetic that a programmer uses implicitly is now
explicit and has to be dealt with. As a consequence, alias
analysis on binary programs is very difficult [9], resulting in
a first a priort WCA to be made:

WCA 1 : All loads and stores potentially alias.

The consequence of this assumption is that we cannot prop-
agate constants through memory. Constant propagation is
limited to register contents only?.

Three additional worst-case assumptions are made concern-
ing the statically allocated data of a program:

WCA 2 : Statically (i.e. at compile or link-time) stored
code addresses in live memory locations result in reach-
able code at those addresses.

WCA 3 : All memory locations containing statically allo-
cated data are live.

WCA 4 : All statically allocated data in writable data sec-
tions are non-constant.

WCA 2 results from acknowledging that we do not have a
sound and complete analysis of how these code addresses
will be used by the program once we assume that they can
be loaded. Therefore we conservatively assume that these
code addresses can be used as targets for indirect control
flow transfers. As WCA 3 states that all statically allocated
data is live, and as this includes all the statically stored code
addresses, this has dramatic effects: all statically stored code
addresses result in program points becoming reachable and
as a result not eliminable from the program. Moreover, as
we do not know where the code addresses are loaded into

2There is one exception. Callee-saved register stores and
restores are treated in a special way. The involved register
values are propagated from the store to the restore directly.
A conservative but quite effective stack-behavior analysis
was implemented for this [8].

32

the program and where they are used, the contexts in which
the code at these addresses is executed is unknown. This
means we have to initialize all registers with the value L at
these points.

WCA 3 above is (obviously) overly conservative; how to re-
lax it is precisely the topic of this section.

WCA 4 results in the fact that no data from writable data
sections will be propagated into the program by evaluating
load instructions that load data from these sections. By
contrast, load instructions loading from constant addresses
(i.e. that have constant address operands) in the read-only
sections are evaluated and the constant data these instruc-
tion load is propagated into the program by the constant
propagator. This can later lead to the elimination of the
load instruction and ultimately to the fact that the data
becomes dead and can be eliminated from the program.

WCAs 0" and 1 —4 allow the implementation of a conserva-
tive but relatively good constant propagator. It is described
and evaluated in more detail in [8].

4.2 Globally Uniform Constant Propagation
The constant propagator is now extended by moving and
refining the worst-case assumptions. The refinement process
is split in two steps: in a first step WCAs 3 and 4 are deferred
and refined. In a second step, part of the refined WCAs is
moved ahead in time again.

WCA 0, WCA 1 and WCA 2 will however remain un-
changed as we have not yet found more restricted worst-
case assumptions. WCA 1 is the reason for calling our final
constant propagator the Globally Uniform Constant Propa-
gator (GUCP): the statically allocated data in the program
is either considered constant throughout the whole execu-
tion of the program or not-constant (and thus unknown)
at all. This resembles the uniform division used in off-line
partial evaluation theory [15].

Step 1. Refinement of WCAs 3 and 4

WCA 3 is replaced by three weaker assumptions:

WCA 3.1 : A memory location is live when there is an
instruction loading data from that location.

WCA 3.2 : All memory locations are live if there is a load
instruction that loads from an unknown location.

WCA 3.3 : A data address statically stored at some loca-
tion that is live or contains non-constant data because
of any assumption other than WCA 3.1 causes the en-
tire block containing that address to become live and,
if in a writable section, is assumed to contain non-
constant data.

WCA 3.1 speaks for itself. Whenever there is a load instruc-
tion that is not evaluable during constant propagation, be-
cause it does not load from a known (i.e. constant) address,
we make the straightforward WCA 3.2 that all memory lo-
cations are live.



WCA 3.3 is comparable to WCA 2. Whereas code addresses
statically stored in live memory locations result in reachable
code because the code addresses can be used to transfer con-
trol to, data addresses statically stored in live memory loca-
tions result in other data becoming live and non-constant,
since the statically stored addresses can be loaded and con-
sequently used for load/store operations. In between loading
the address and using it it for loads/stores, there might be
calculations on the address. These calculations can how-
ever only result in addresses from the same data block as
the loaded address. Note that WCA 3.3 has to be made
only for locations that are live because of assumptions other
than WCA 3.1. The reason is that if a location is live solely
because of WCA 3.1, the address statically stored at that
location will be propagated into the program and its use will
be analyzed, during which the necessary assumptions will be
made. This is not the case when the location is live because
of one of the other assumptions or when the data at that
location is non-constant. In the latter case, even if we know
exactly which instructions might load from that location, we
will not evaluate them.

WCA 4 is replaced in a very similar way:

WCA 4.1 : A memory location contains non-constant data
if there is an instruction writing to that location.

WCA 4.2 : All writable memory locations contain non-
constant data if there is an instruction writing to a
unknown (i.e. non-constant) location.

WCA 4.3 : If a constant address is being written to some
(known or unknown) location by some instruction, the
entrie block containing that address becomes live and,
if in a writable section, is assumed to contain non-
constant data.

WCA 4.4 : When a non-constant (unknown) value is writ-
ten to some (known or unknown) location, all memory
locations become live and, if in a writable section, is
assumed to contain non-constant data.

The first three replacements are very similar to the replace-
ment of WCA 3. The reasoning behind WCA 4.4 is straight-
forward: the non-constant value is conservatively assumed
to potentially be any data address. For each of them, a sep-
arate WCA 4.3 should be made, which is expressed by WCA
4.4.

While the original WCAs were all a priori assumptions, this
is no longer the case for their replacements; they are all
made during the constant propagation. As a result, it might
be that at some time during the fix-point calculations of
the constant propagation, the statically stored data at a
specific location is considered constant and propagated into
the program, while at some later moment it might turn out
that that data may not be constant. The instructions that
loaded the original data into the program therefore have to
be reevaluated, now loading L into the program. To be able
to keep track of these instructions efficiently, each writable
memory location of which the data is assumed to be constant
has associated with it a set of instructions. Every time a
load instruction is evaluated and loads data from such a
location into the program, the instruction is added to the
corresponding set. When the location turns out to contain a

33

non-constant, the instructions in its set will be reevaluated,
now propagating L into the program.

The major consequence of these replacements is that upon
intialization of the constant propagation, the statically allo-
cated data is considered dead. This means that the program
entry point is considered the only reachable point upon ini-
tialization. It is only when memory locations containing
code addresses become live that additional program points
have to be assumed reachable (because of possible indirect
control flow transfers) and reached by non-constants.

It 1s however clear no gain is to be expected from the altered
algorithm so far, since WCAs 3.2, 4.2 and 4.4 will have to
be made somewhere during the fix-point calculations for all
non-trivial programs. The main reason is that when a non-
constant is consumed by a load or store instruction, we have
to assume that this could be any address, resulting in very
pessimistic WCAs. Fortunately, they can be avoided by
making WCAs when the non-constant values are produced
rather than when they are consumed.

Step 2. From consumers to producers

At the point where a non-constant value is produced, i.e.
when we loose track of a constant address during the prop-
agation for some reason, the assumptions made about what
that address will be used for can be limited to the address’
data block. There are only a limited number of cases where
constant addresses can get lost:

1. When a live (i.e. that will be consumed by some in-
struction) constant address meets a non-constant or
another constant.

2. When an instruction derives a non-constant address
from a constant address (e.g., when a non-constant in-
dex is added to a constant base address.) The resulting
address will be propagated as a non-constant.

3. If at some indirect control flow transfer, the potential
targets are not known and a constant address reaches
the transfer.

If appropriate WCAs are made on all these occasions, there
is no more need to make assumptions when non-constants
reach load or store instructions. WCAs 3.2, 4.2 and 4.4 can
therefore be replaced by one single assumption that has to
be made if any of the three preceeding cases occurs:

WCA 5 : Whenever a constant address is no longer propa-
gated as a constant, all locations in the address’ block
become live and, if in a writable section, they contain
non-constant data.

Finally all WCAs are converted into much more restricted
assumptions that are limited to single data blocks.

4.3 Discussion
As we put forward some goals for this algorithm, it is useful
to evaluate its performance. It turns out that it performs



int a[3],b[3];

void f(int x,int y) {
int* p;
if (x) p=a; else p=b;
if (y) p+=1; else p+=2;
return *p;

}

Figure 2: A simple code fragment in C-code

far from optimal. The main reason is the first case of the
above enumeration.

Consider the code fragment in Figure 2: Depending on the
argument x an array is selected. Depending on y an ele-
ment from that array is selected. At two program points,
where a and b are assigned to p, constant addresses are pro-
duced. These address are propagated and meet after the
first if-then-else construct. The result is that L is propa-
gated from that point on. This properly captures one aspect
of the computation—that the result is not a fixed constant
address—but at a tremendous cost in precision, since the
whole data block containing the arrays is now considered
not only live, but also containing non-constant data.

In general, the problem is that when an address is lost be-
cause of a meeting, the absolutely worst-case assumption is
made for its whole block with respect to its liveness and
non-constant character. This in turn has a significant ad-
verse effect on the precision of the overall analysis. In prac-
tice, almost all constant addresses propagated through the
program somewhere meet other constants or non-constants.
Assuming the worst-case scenario for such an address, that
there will be loads from and writes to its whole block, is
much too conservative: sometimes the address or derived ad-
dresses are only used by load instructions and not by stores
(this also holds for unknown values calculated from constant
addresses, as in the case of indexing a constant base address
with an unknown index). Even more importantly, the ad-
dress will often not be used to access all the locations in its
block, but only some of them.

Basically, the constant propagator described here is compa-
rable to monovariant partial evaluation. It is well known
that polyvariant partial evaluation is more precise [15]. Tt
is also much harder to implement because of efficiency and
termination issues. In our case, fortunately, it is not neces-
sary to partially evaluate the whole program, since we are
only interested in what happens with the addresses. Fur-
thermore, we know that calculations on addresses can only
result in a fixed number of other addresses: they are always
limited to the block the original address points to. This
greatly simplifies a possible termination problem.

5. PARTIAL EVALUATION OF ADDRESS
CALCULATIONS

The goal of partial evaluation of address calculations is,
again, the detection of dead memory locations and constant
data, avoiding the weak point of the constant propagator,
i.e. the overly conservative assumption made when addresses
meet other values. Avoiding the meeting in the example
code fragment discussed at the end of the previous section

can be done by propagating the two produced addresses in
two completely separate propagations.

Consider the propagation of the address produced by the
statement p=a in Figure 2. A GUCP initialized with this
program point as the virtual program entry point will not
propagate the address of b, so the address of a will not meet
with that of b. After the second if-then-else the address
of a[1] will however meet the address of a[2], producing
exactly the same result as the GUCP. A similar reasoning
holds for a separate propagation of the address of b.

The difference is however that, if we are able to exclude the
propagation of addresses other than those derived from a
during its propagation, we know that the L resulting from
the meeting can only point to the block containing a instead
of to the whole data memory. Propagating this produced L
further and postponing making any assumption until the L
is consumed circumvents the need for conservatively assum-
ing at once that a location is live and holds non-constant
data.

Since this separate propagation is still monovariant 1 can
be produced as a result of addresses that meet, as in the ex-
ample. Such a L will result in a WCA when it is consumed.
While other addresses are not propagated during a specific
separate partial evaluation (to avoid meetings), other con-
stants are still being propagated (e.g. indices). When these
constants meet, the result is a L as well, but in his case the
1 cannot be an address. So when it is consumed by a load
or store instruction, there is no need to make any WCAs. To
be able to differentiate between L possibly being an address
or not, a new tag for each register is used and propagated
along with the lattice elements. This tag indicates whether
or not the propagated lattice element is derived from the
starting address the partial evaluation is performed for.

The partial evaluation of address calculations works as fol-
lows:

1. Mark all instructions directly reachable from the pro-
gram entry point.

2. For each marked instruction producing a constant ad-
dress according to the GUCP, apply a partial evalua-
tion with that instruction as the only starting point.

3. During each single partial evaluation, a number of as-
sumptions may have to be made, as was the case with
the GUCP. How these assumptions differ is discussed
below.

4. If during a single partial evaluation, instructions are
evaluated that produce constant addresses (according
to the GUCP), do not propagate these addreses, but
propagate T instead. This avoids a large number of
meetings, thereby avoiding the corresponding overly
conservative assumptions. For these produced con-
stant addresses, a separate partial evalution will be
performed anyway.

5. During a single partial evaluation, load instructions
might be encountered that now load from a known
address, while the GUCP did not find them to do so.
This can be the case when fewer paths leading to a load
instruction are taken into account, just like meetings
are avoided by not taking some paths into account. In



these cases, the load instructions are only evaluated
when we have the a priori knowledge that the location
they load from contains constant data. The reason for
this is that for time and memory efficiency concerns,
we only allow one partial evaluation per constant ad-
dress producing instruction. This prohibits assuming
data is constant until shown otherwise.

6. As opposed to constant propagation where propaga-
tion of constants basically ends when something be-
comes a non-constant, the partial evaluation contin-
ues with the propagation of register contents as long
as derived (possibly non-constant) addresses are being
propagated and new uses can be detected. This is the
main reason we prefer to call this a partial evaluation:
tags are propagated along with the values and termi-
nation depends on the tags as well as on the values
being propagated. Moreover, only selected values will
be propagated through a limited part of the program.

7. During one partial evaluation, a number of data lo-
cations become live. Code addresses statically stored
at those locations result in additional instructions be-
coming reachable. These are added to the original set
of reachable instructions and a separate partial evalu-
ation is performed for all those additional instructions
producing constant addresses, resulting in an iterative
process.

How are the WCAs affected? It is clear that assumptions
being made during a single partial evaluation can only ef-
fect the block containing the address produced by the start-
ing point of the partial evaluation, since the only addresses
propagated are addresses derived from that specific address.
This means that there is no need to replace WCAs 3.2, 4.2
and 4.4 by WCA 5. Instead they are replaced by

A 3.2’ : All memory locations in the starting address’ block
become live if there is a load instruction loading from
a non-constant address derived from the starting ad-
dress.

A 4.2" : All locations in the starting address’ block contain
non-constant data if there is a store instruction writing
to a non-constant address derived from the starting
address.

A 4.4’ : All locations in the starting address’ block become
live and contain non-constant data if an (constant or
not) address derived from the starting address is writ-
ten to some (known or unknown) location.

The occasions where a non-constant derived address reaches
a load or store instruction are taken care of by the above as-
sumptions. Constant derived addresses reaching loads or
stores are still handled by WCA 3.1 and WCA 4.1. This
is all done when constant or derived non-constant addresses
are consumed, thereby avoiding the overly conservative as-
sumptions for meeting in the GUCP.

What is left are the occasions when derived addresses (con-
stant or not) are no longer propagated for some reason. Con-
sider the cases where addresses were no longer propagated
during a GUCP. These are enumerated at the end of subsec-
tion 4.2. The first two items of that enumeration are taken

35

care of by using the tags: they are still propagated during
a partial evaluation, albeit as tagged non-constants. WCAs
3.2', 4.2' or 4.4’ have to be made when those reach load or
write instructions.

The last case is not yet taken care of, so we still need to
make a WCA in this case:

WCA 5' : Whenever a derived address (constant or not) is
lost during propagation because we don’t know all the
potential targets of an indirect control flow transfer,
the whole starting address’ block becomes live and, if
in a writable section, it contains non-constant data.

Notice that the word “constant” in WCA 5 has been re-
placed by “derived” in WCA 5'.

6. COMBINING THE TWO ANALY SES

Basically, both analyses result in a conservative approxima-
tion of the sets of data that are dead or constant. On the
one hand, the result of the GUCP is hampered by the overly
conservative assumptions made when addresses meet each
other. On the other hand, the performance of the partial
evaluation depends on the results of the GUCP: the more
instructions the GUCP has found to produce constant ad-
dresses, the better the partial evaluation will perform, since
more meetings will be avoided if the single propagation is
being split into more separate partial evaluations.

However, each analysis is sound and stands on itself: that is,
every live memory location is identified as such by each of the
analyses; conversely, if either analysis identifies a location as
being dead, then that location is definitely dead. The same
reasoning holds with respect to some data being constant or
not. To improve precision, therefore, we take the union of
the two sets of dead locations: this results in a much larger
set of dead data. Similarly, taking the union of the two
sets of constant data results in a larger set of constant data.
Since each analysis can benefit from the results of the other
analysis, we iterate the two analyses until they converge.

7. EXPERIMENTAL RESULTS

For evaluating these algorithms, we have implemented them
in SQUEEZE [8], a binary-rewriting tool that compacts bi-
naries for the Alpha architecture. SQUEEZE achieves code
compaction by two means: On the one hand it aggressively
applies some well known interprocedural optimizations such
as interprocedural constant propagation, context-sensitive
liveness analyses, load-store avoidance, dead code elimina-
tion, unreachable code elimination, etc. On the other hand,
SQUEEZE factors out code sequences that occur more than
once in a program. SQUEEZE is based on ALTO [18], a link-
time optimizer oriented at speeding up programs.

The benchmark programs we used for evaluating our algo-
rithms consist of the full SPECint2000 benchmark suite, two
programs from the SPEC{fp2000 benchmark suite: 168.wup-
wise (Fortran 77) and 178.galgel (Fortran 90), five smaller
C-programs from the MediaBench that are typical for em-
bedded applications and 4 additional C4++ programs using
different libraries. Blackbox is a small, but fully functional
window manager, Addressbook is a small GUI address book

as found on PDAs (it is build using the Qt-library), GTL is



1.0+

) - - -
N i Iy N [ B e I O O A O e B = I = e
N ] B a
S 0.8 HHHH - HHHHHHHHHHHH HA —
3 . L -
gO.G——
$ > Hr !
8 04+ HHMHM HHHHHHHHHHF -
@ LI HH T H -
£ 0234 HHHHE HHHHHHHHHHHKF . -
g:j 1 H H H <M 4 H HH HHHHH H H — —
OO r-r—r—r1rr—rr—T1—1 1 "1 " "T " "T1T" "' T T T T "T "T "T"T"T"T "T"°7 |
pﬁﬁ@gasaﬁ@@@&‘aaa@a@aaaa L
QO NS ®OANLWL®ON~OOMNOOANLODN®MN®M®®AO® o
0490089000909 30000S000dmAax o)
scesoeseeseseeceeses2fos 2
o s 9 c x = o o O i
e B RPEBBERESSEsR EEEDE
BO295 6 S s 8a2 06 N o o 8 <
5538828538 22% £5% 7
o 4438 0~ N5 88 N N =
SR A 0 o > n LS el =
og — = K & N Qg S
© & o 9 ®
A e E

Figure 3: Program size reductions achieved
From bottom to top, the blocks in each bar represent the relative size of 1) code in the combined compacted binaries 2)
data in the combined compacted binaries 3) code removed from the base binaries when applying code compaction only (4)
additional code removed due to combined compaction and 5) data removed from the base binaries when using the combined

compaction. Each program is annotated with its full size in MB.

the test program for the Graph Template Library, a C++4 li-
brary with primitives for graph manipulation, and FPT is an
in-house program that automates the process of paralleliz-
ing Fortran programs. FPT is a mixed language program

written in C and C++.

The compilers we used to generate the binaries are Compaq’s
C V6.3-025, C++ V6.3-002 and Fortran X5.3 ECO2. These
compilers use different vendor-supplied standard libraries,
which is useful to show the generality of our techniques.
All binaries were compiled with the -O1 flags (-O2 for For-
tran) resulting in binaries that are optimized for code size.
Our “base” binaries are produced by sending the compiler
generated binaries through a base SQUEEZE version, elim-
inating no-ops and initial unreachable code (i.e. code that
is not directly reachable and that does not have it address
statically stored in the data). This means the base bina-
ries are what might be obtained from a reasonably smart
linker. The same profile-guided code layout and schedul-
ing by SQUEEZE has been applied on all binaries compared
in this section, to allow a fair comparison that is not ham-
pered by differences in code scheduling and layout. The
“combined” compacted binaries are compacted using all of
SQUEEZE’s compaction algorithms. The “code” compacted
binaries are compacted using basically the same SQUEEZE
version, but without performing the partial evaluation of
address calculations and with the basic constant propagator
as discussed in section 4.1 instead of the GUCP. As a result,
no data was removed in the code compacted binaries.

For linking, we used the vendor-supplied linker with flags
to produce statically linked executables containing symbol

36

and relocation information, and to dump a map indicating
where the blocks of the object files are located in the final
binary. It is this map we use to divide the data section into

blocks.

The overall code and program size reductions using our com-
bined analyses are given in Figure 3. While the code com-
pacted binaries were on average 22.9% smaller, program size
reduction is 30.6% when the combined approach is used.
This difference (7.7% on average, ranging from 1.8 to 20.0%
for the individual benchmarks) results largely from the re-
moval of dead data and less from additional elimination of
code, as the additional gain in code size reduction is much
smaller. On average 24.3% of the data is removed from
the program, whereas the code size reduction is on aver-
age 33.6%. Without the combined analysis, this would have
been 30.4%. Remember that these numbers do not take into
account the initial unreachable code removal performed on
all the binaries by the base version of SQUEEZE.

The results for some of the C++4 programs, 252.eon and
GTL, are quite remarkable. The compacted binaries are
less than half the size of the original ones. The result is that
the statically linked, compacted binaries are 17% (252.eon)
and 33% (GTL) smaller than the dynamically linked ones!
The reason 1s that the dynamically linked program consist
for a large part of a dynamic string and symbol table.

Table 2 compares the execution times for the SPECint2000
base programs, the base programs with profile-directed code
layout added, and the programs resulting from SQUEEZE.
The experiments were run on a Compaq DS20E AlphaS-



tation with two 667 MHz 21264 EV67 processors, 8 MB
1.2 DDR cache per processor and 1.5 GB of RAM, running
Tru64 Unix 5.1. It can be seen that the compaction of code
(and data) typically does not come at the cost of speed: e.g.,
for the SPECint-2000 benchmarks both the code and com-
bined compacted programs are, on the average, about 8%
faster than the base programs.

The cost of applying the combined analysis is relatively low:
SQUEEZE on average requires about 10% more time to com-
pact the binaries when the proposed algorithms are invoked,
while the additional memory requirements are modest. In-
formation relating to the dead and read-only character of a
location can be stored in 2 bits. The sets associated with
memory locations that hold instructions are linear in the
program size as well, as each instruction can only be in one
set, since it can load from at most one constant address. The
total amount of additional memory required for these anal-
yses therefore is only a small fraction of the total memory
footprint of the data structures required by other analyses
In SQUEEZE.

8. RELATED WORK

There is a considerable body of work on code compression,
but much of this focuses on compressing executable files as
much as possible in order to reduce storage or transmission
costs [10, 11, 12, 13, 16, 17, 19]. These approaches gen-
erally produce compressed representables that are smaller
than those obtained using our approach, but have the draw-
back that they must either be decompressed to their original
size before they can be executed [10, 11, 12, 13]—which can
be problematic for limited-memory devices—or require spe-
cial hardware support for executing the compressed code
directly [16, 17]. By contrast, programs compacted using
our techniques can be executed directly without any decom-
pression or special hardware support.

Most of the previous work on code compaction to yield
smaller executables treats an executable program as a sim-
ple linear sequence of instructions [3, 6, 14]. They use suffix
trees to identify repeated instructions in the program and
abstract them out into functions. None of these works ad-
dress the issue of reducing the size of the data section within
a program. The size reductions they report are modest, av-
eraging about 4-7%. Clausen et al. [4] applied minor modi-
fications to the Java Virtual Machine to allow it to decode
macros that combine several bytecode instructions. They
report code size reductions of 15% on average. Our tech-
niques do not rely on changing the underlying architecture
on which a program is executed and are not language de-
pendent.

We have recently showed that an alternative approach, using
the conventional control flow graph representation of a pro-
gram and based by and large on aggressive inter-
procedural compiler optimizations aimed at eliminating code,
can achieve significant reductions in code size, averaging
around 30% [8]. However, this work does not take into ac-
count the removal of dead data, and the synergistic effect
this has on the removal of unnecessary code. The work we
have reported in this paper yields code size reductions that
are on average 33.5%. The elimination of unused data from
a program has been considered by Srivastava and Wall [21]
and Sweeney and Tip [22]. Srivastava and Wall, describing
a link-time optimization technique for improving the code

37

binary base | code | combined % %
164.gzip 513 476 483 0.93 0.94
175.vpr 431 414 413 0.96 0.96
176.gcc 270 259 261 0.96 0.97
181.mcf 481 471 468 0.98 0.97
186.crafty 253 218 226 0.86 0.89
197.parser 787 746 730 0.95 0.93
252.eon 379 307 310 0.81 0.82
253.perlbmk | 349 370 381 1.06 1.09
254.gap 421 408 410 0.97 0.97
255.vortex 547 414 407 0.76 0.74
256.bzip2 439 397 390 0.90 0.89
300.twolf 687 638 628 0.93 0.91
geometric mean 0.92 0.92

Table 2: Execution times (in seconds) and ratios for
the base, code compacted and combined compacted
binaries of the SPECint2000 benchmark suite.

for subroutine calls in Alpha executables, observe that the
optimization allows the elimination of most of the global ad-
dress table entries in the executables. However, their focus is
primarily on improving execution speed, and they do not in-
vestigate the elimination of data areas other than the global
address table. The work of Sweeney and Tip is restricted to
eliminating dead data members in C+4 programs, and so
is not applicable to non-object-oriented programs; by con-
trast, our approach, which works on executable programs,
can be applied to programs written in any language. Neither
of these works addresses the close relationship between the
elimination of data and the elimination of code. Sweeney
reports a size reduction of 4.4% on the average; by consid-
ering the elimination of both code and data, by contrast, we
achieve size reductions of 23.6-46.6% overall.

For object-oriented programming languages, several tech-
niques have been proposed for application extraction, where
only the necessary parts of libraries and/or run-time envi-
ronments are linked with the programmer’s code. For Self [1]
such systems obtain higher compaction levels than our sys-
tem. They are however programming-language specific and
start from programs containing the whole run-time environ-
ment of Self applications. For Java [23] similar results to
ours are achieved, but again the techniques used are lan-
guage specific.

9. CONCLUSIONSAND FUTURE WORK

Because of the growing deployment of mobile and embedded
processors with a limited amount of available memory, tech-
niques that reduce the memory footprint of programs are be-
coming increasingly important. Previous work on this topic
has typically focused either on the reduction of data areas
or on reduction of code areas, but not on both, even though
there are obvious dependences and synergies between the
two. This paper describes a low-level analysis that reasons
about the use of code and data addresses within programs,
and thereby is able to exploit these dependences and syner-
gies. The proposed algorithms are generally applicable and
not limited to a specific programming language or a partic-
ular implementation context. Experimental results indicate
that the resulting system achieves significantly better mem-
ory footprint reductions than previous work.

The algorithms proposed in this paper can be refined in a
number of ways. One place where the combined algorithm



loses precision is due to the worst-case behavior when ad-
dresses are stored. This can be improved—at least for stack
saves and restores—by detecting where addresses saved on
the stack can be loaded into the program again. Moreover,
using a polyvariant partial evaluation for each produced ad-
dress will produce more precise results as well.

The algorithms can be applied using whatever kind of data
blocks that conform to the rule that an address pointing to
one block cannot be derived from an address pointing to
another block. Interval-analysis could be used to split the
blocks we use today in smaller blocks. Compilers could as-
sist this process as well, e.g. by indicating borders in the
data sections of object files that are not crossed by address
computations. They might even produce multiple object
files for each source code file. All statically declared objects
that have no overlap with other objects in memory can be
put in another object file. This might occasionally result in
less efficient object code because the compiler does not know
the relation between the addresses of those objects. Link-
time optimizers such as ALTO or SQUEEZE will easily remove
these inefficiencies though. Preliminary research has shown
us that the very similar approach of automatically splitting
source code files into multiple files that define only one ob-
ject, results in no additional compaction. While our link-
time code compaction system was able to remove most inef-
ficiencies introduced by the compiler due to its more limited
view on the program during compilation of one such splitted
file, it was almost never capable of producing significantly
smaller binaries.

10. REFERENCES
[1] O. Agesen and D. Ungar. Sifting out the gold:
Delivering compact applications from an exploratory
object-oriented environment. In Proc. OOPSLA, pages
355-370, Oct. 1994.

A. Aho, R. Sethi, and J. Ullman. Comp:lers,
Principles, Techniques and Tools. Addison-Wesley,
1986.

B. S. Baker and U. Manber. Deducing similarities in
Java sources from bytecodes. In Proc. USENIX
Annual Technical Conference, pages 179-190,
Berkeley, CA, June 1998. Usenix.

L. Clausen, U. Schultz, C. Consel, and G. Muller. Java
bytecode compression for low-end embedded systems.

ACM TOPLAS, 22(3):471-489, May 2000.

C. Click and K. Cooper. Combining analyses,
combining optimizations. ACM TOPLAS,
17(2):181-196, March 1995.

K. Cooper and N. McIntosh. Enhanced code
compression for embedded RISC processors. In Proc.
PLDI pages 139-149, May 1999.

B. De Sutter, B. De Bus, S. Debray, and

K. De Bosschere. Combining global code and data
compaction. Technical Report PARIS 01-02, Ghent
University, 2001.

S. Debray, W. Evans, R. Muth, and B. De Sutter.
Compiler techniques for code compaction. ACM

TOPLAS, 22(2):378-415, March 2000.

38

[9] S. Debray, R. Muth, and M. Weippert. Alias analysis
of executable code. In Proc. 1998 ACM Symposium on
Principles of Programming Languages (POPL-98),
pages 12-24, January 1998.

[10] J. Ernst, W. Evans, C. Fraser, S. Lucco, and
T. Proebsting. Code compression. In Proc. PLDI,

pages 358-365, June 1997.

[11] M. Franz. Adaptive compression of syntax trees and
iterative dynamic code optimization: Two basic
technologies for mobile-object systems. In J. Vitek
and C. Tschudin, editors, Mobile Object Systems:
Towards the Programmable Internet, number 1222 in

LNCS, pages 263-276. Springer, Feb. 1997.

[12] M. Franz and T. Kistler. Slim binaries. Commun.

ACM, 40(12):87-94, Dec. 1997.

[13] C. Fraser. Automatic inference of models for
statistical code compression. In Proc. PLDI, pages

242-246, May 1999.

[14] C. Fraser, E. Myers, and A. Wendt. Analyzing and
compressing assembly code. In Proc. ACM SIGPLAN

Symposium on Compiler Construction, volume 19,
pages 117-121, June 1984.

[15] N. Jones, C. Gomard, and P. Sestoft. Partial

FEvaluation and Automatic Program Generation.
Prentice-Hall International, 1993.

[16] T. M. Kemp, R. M. Montoye, J. D. Harper, J. D.

Palmer, and D. J. Auerbach. A decompression core for
PowerPC. IBM J. Research and Development, 42(6),
November 1998.

K. D. Kissell. MIPS16: High-density MIPS for the
embedded market. In Proc. Real Time Systems 97
(RTS97), 1997.

R. Muth, S. Debray, S. Watterson, and

K. De Bosschere. alto : A link-time optimizer for the
Compaq Alpha. Software Practice and Experience,
31(1):67-101, January 2001.

W. Pugh. Compressing Java class files. In Proc. PLDI,
pages 247-258, May 1999.

A. Srivastava. Unreachable procedures in
object-oriented programming. ACM Letters on
Programming Languages and Systems, 1(4):355-364,
December 1992.

A. Srivastava and W. Wall. Link-time optimization of
address calculation on a 64-bit architecture. In Proc.
PLDI, pages 49-60, June 1994.

P. Sweeney. and F. Tip. A study of dead data
members in C++ applications. In Proc. PLDI, pages
324-323, June 1998.

F. Tip, C. Laffra, and P. Sweeney. Practical
experience with an application extractor for Java. In
Proc. OOPSLA, pages 292-305, Nov. 1999.

M. Wegman and F. Zadeck. Constant propagation
with conditional branches. ACM TOPLAS,
13(2):181-210, April 1991.



