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The connection between probability theory and computer-aided geometric design is explored further. 
Markov chains are shown to be associated with solutions to the following three geometric problems: 
(1) Given a curve B[P](t), alter the shape of the curve by changing the control points P. (2) Given a 
curve B[P](t), alter the shape of the curve by changing the blending functions B(t.). (3) Given a curve 
B[P](t) and blending functions D(t), find control points Q so that D[Q](t) = B[P](t). Constraints 
imposed on these Markov chains by computer-aided geometric design are also derived. 
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1. INTRODUCTION 

To construct a free-form shape with the aid of a computer, a designer generally 
specifies only a relatively small collection of control points. The burden then 
shifts to the computer to blend these points together to form the desired free- 
form curve or surface. If the user is dissatisfied with the initial shape generated 
by the computer, he can alter the number and the location of his control points. 
The computer will then generate a new shape from this new data. Typically a 
designer will iterate this procedure many times before he is completely satisfied 
with the final shape. 

To blend an array of control points P -- (Po . . . . .  Pn) into a free-form parametric 
curve, the system is endowed internally with a collection of blending functions 
B (t) = (B0(t), . . . ,  B,(t)). These blending functions are not arbitrary; they must 
satisfy certain very specific conditions to ensure that  the corresponding curves 
defined parametrically by the equation 

S [ P ] ( t )  = Y~ B j ( t )P j ,  0 <_ t <_ 1, 
J 
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are well-behaved. Minimally, the blending functions are generally required to 
satisfy the following two conditions: 

(1) ~, B j ( t )  = 1, 0 <_ t ": 1, 
J 

(2) Bi ( t )  >- O, 0 <_ t <_ 1. 

The first condition ensures that the curve is well defined, that is, that it depends 
only on the choice of the points P and not on the location of the coordinate 
origin. The second condition forces the curve to lie somewhere in the general 
proximity of the control points, specifically, within their convex hull. 

Conditions (1) and (2) are the defining characteristics of discrete probability 
distributions. Thus in computer-aided geometric design the blending functions 
are often discrete probability distributions. For example, the blending functions 
for the Bezier curves are simply the binomial distribution. Since blending 
functions are often probability distributions, there is, of necessity, a deep and 
fundamental connection between classical probability theory and computer-aided 
geometric design [5-8, 10]. Markov chains play an important role in the theory 
of discrete stochastic processes. This suggests that they too may have a prominent 
place both in approximation theory and in computer-aided geometric design. 
Indeed, in [14] the authors use Markov chains to study iterates of Bernstein and 
B-spline operators. In this paper we shall explore some possible applications for 
Markov chains in the field of computer-aided geometric design. 

Because of its length, this paper is divided into two parts. In Part  I we discuss 
some standard problems in computer-aided geometric design whose solutions 
lead to Markov chains, and we derive some analytic constraints that computer- 
aided geometric design imposes on these Markov chains. Part  II is devoted to 
examples of Markov chains that either satisfy the constraints or solve the 
problems posed in Part  I. 

2. PROBLEMS 

A Markov chain is a square matrix M = (Mjk) such that 

(1) T, Mih = 1, 
k 

(2) M~., _ 0. 

If a matrix M satisfies these conditions but has more rows than columns, we 
shall, when necessary, simply annex additional columns of zeros to form a square 
matrix. The standard probabilistic interpretation of a Markov chain is that the 
indices j represent a set of physical states and the entries Mjh represent the 
probability of a direct transition from state j to state k independent of any history 
of past states [2]. Since probabilities are always positive and the probabilities of 
a collection of mutually exclusive events one of which must occur necessarily 
sum to 1, the entries of M must be positive and the rows of M must sum to 1. 
Thus probabilistic models naturally generate conditions (1) and (2). We shall 
not be too concerned with this probabilistic interpretation here except to note 
that because of this interpretation Markov chains arise naturally in many 
physical situations (see Example 1 of Part  tI [9]). 
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Let us return now to the context of computer-aided geometric design. Consider 
a collection of control points P = (P0 . . . . .  P , )  and a collection of blending 
functions B( t )  = (Bo(t) . . . . .  B, ( t ) ) .  Let tp denote the transpose of P, and let • 
denote matrix multiplication. Then the curve determined by the control points 
P and the blending functions B (t) is defined parametrically by the equation 

B[P](t)  = Y~ Bj( t )Pj  = B ( t )  . tp. 
J 

If a designer is dissatisfied with the curve B[P](t) ,  he has two options: he can 
change the control points P, or he can change the blending functions B (t). 

Suppose he decides to change the control points. How should he proceed? He 
can, of course, simply replace each point Pj by a new point Qj. In fact, this is 
typically what designers do today. However, this procedure has several drawbacks. 
First, it is certainly tedious to alter each control point individually. Second, 
changing a single control point is a local operation, but  the affect on the curve is 
not local. A new control point may achieve a desirable result locally only to have 
unwanted effects globally. This fact accounts for the recent popularity of B- 
spline curves in which the overall affect of individual control points is clearly 
localized. Third, altering each control point independently takes no account of 
the shape of the current curve even though this shape may have been arrived at 
only after many laborious iterations. Fourth, it is hard to achieve good global 
effects with this technique. 

There is another way. We can alter all the points at once and at the same time 
achieve both good global and good local effects. The technique is simply to define 
all the new control points Q = (Qo, • • •, Q,) simultaneously as linear combinations 
of the old control points P = (P0, • • •, Pn). That is, simply set 

Qj = Z MihPk, tQ = M *  tp  
h 

for some predefined matrix M = (Mih). In order for the points Q to be well 
defined--that  is, independent of the coordinate origin--the matrix M must satisfy 

(1) Y~ Mj~ = 1. 
k 

If, in addition, we insist that the new control points Q lie within the convex hull 
of the old control points P- -which  is certainly reasonable, since we have already 
insisted that the curve itself lie inside this convex hull-- then the matrix M must 
also satisfy 

(2) Mjh >- O. 

Thus the matrix M that transforms the old control points P into the new control 
points Q must be a Markov chain. 

Rather than alter the control points P, it is possible to achieve the same effect 
by changing the blending functions B( t ) .  Define a new collection of blending 
functions D(t )  = (Do(t), . . . ,  D,( t ) )  by setting 

Ok(t) = ~, M~kB~(t), D( t )  = B ( t )  . M.  
J 
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Since M is a Markov chain, D(t )  is a distribution. In fact, all the terms in the 
summation formula for D (t) are positive, and 

Ok(t) = ~ ~ MjkBj(t) 
k k j 

Therefore D (t) satisfies 

Dk(t) = 1, 0_< t_< 1, 
k 

Dh(t) >-- O, 0 <_ t < 1. 

Moreover, by construction, 

D[P](t) = D( t )  . t p  = [B(t) . M ]  . t p  
= B ( t )  • [ M *  tp] = B ( t )  • tQ 
= S[Q](t). 

Therefore the D-curve with control points P is identical to the B-curve with 
control points Q. Thus it is really just a matter of convenience whether we decide 
to alter the control points P or the blending functions B(t) .  The final effect is 
the same, though different users may prefer one approach over the other. 

So far we have considered only Markov chains M whose entries M/h are 
constants. Suppose, however, that the entries, and hence the matrix, depend on 
some scalar parameters r = (rl . . . .  , rm). We could then alter the curve simply 
by varying these scalars. The new control points, or alternatively the new blending 
functions, would then vary automatically with r. Thus once we understand 
precisely how the choice of r affects the general shape of the curve, we would 
have an elementary technique for changing this shape simply by adjusting some 
scalar parameters. This is a very exciting prospect; we shall return to this topic 
again in Part II [9]. 

In our previous constructions, we altered only the position of the control 
points. However, sometimes we wish to achieve greater control simply by increas- 
ing the number of control points. We then need to change the distribution as 
well as the control points, since each distribution allows only a fixed number of 
control points. The problem then is this: Given a curve B[P](t)  and a distribution 
D (t) that  allows a greater number of control points than B (t), find control points 
Q such that 

D[Q](t) = B[P](t).  

If we can duplicate B-curves B[P](t)  with D-curves D[Q](t), then later we can 
manipulate the additional control points Q to alter the shape of the original 
curve. This type of problem arises naturally in many situations in computer- 
aided geometric design. For Bezier curves it is equivalent to the problem of 
increasing the degree of the Bernstein polynomials [4]; for B-splines it is 
equivalent to the problem of expanding the knot vector [3]. 

Let D(t)  = (Do(t) . . . . .  D,~(t)) be a distribution consisting of m 4- 1 linearly 
independent functions, and let span[D(t)] be the set of all functions that are 
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linear combinations of D0(t), . . . ,  Din(t). If 

span[D (t)] D B (t), 

then it is always possible to solve the preceding problem. In fact, in this case 
there is a matrix M = (Mjk) that 

Bk(t)  = ~ MihDj(t), B ( t )  = D ( t ) ,  M. 
J 

Moreover, by construction, 

2 Dj(t)  = 1 = 2 Bh(t) = 2 2 Mj~Dj(t) 
j h k j 

Now since the functions Do(t), . . . ,  Din(t) are, by assumption, linearly indepen- 
dent, it follows that the coefficients of Dj(t) on both sides of this equation must 
be identical. Therefore the matrix M = (Mjh) must satisfy 

2 = 1. 
k 

(1) 

Define 

Qj = ~, MjkPk, tQ __ M * tp. 
h 

Because the matrix M = (Mjk) satisfies condition (1), it follows that the points 
Q --- (Qo, . . .  , Qm) are well defined. Moreover we again have 

D[Q](t) = D( t )  , tQ = D(t )  * [M,  tP] 
= [ D ( t ) , M ] , t P  = B ( t ) , t p  
= B[P](t) .  

Thus the points Q are indeed the required control points. Furthermore, the 
problem of finding these control points has been reduced to finding the matrix 
M that transforms the distribution D(t )  into the distribution B( t ) .  Hence if 
span[D(t)] D B(t),  appropriate points Q always exist, in theory. However, a 
practical technique for constructing Q or M may still be hard to find--see Part  
II [9], ]~xamples 6 and 7. 

We have not yet insisted that  the entries of M satisfy 

(2) Mih >- O. 

Thus M is not necessarily a Markov chain. However, if this condition is satisfied, 
then M is a Markov chain and the D control points Q will necessarily lie inside 
the convex hull of the B control points P. Since the curve is automatically 
confined to the convex hull of its control points, this construction further restricts 
the exact location of the curve. Narrowing the convex hull in which a curve lies 
is useful for determining whether two curves actually intersect, for clearly two 
curves cannot intersect if the convex hulls of their respective control points fail 
to intersect. 
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If  two B curves do intersect, then subdivision algorithms may be used to locate 
their  points of intersection. A subdivision algorithm is a technique for generating 
control points Q(r), R(r) for any parameter  r such tha t  

B[Q(r)](t) = B[P](rt), 0 <_ t <_ 1, 
B[R(r)](t) = B[P](r + [1 - r]t), 0 _< t ___ 1. 

By repeatedly subdividing two curves and determining which segments have 
intersecting convex hulls, the actual intersection points may be computed to any 
desired accuracy. We would like to know under what  conditions control points 
Q(r), R(r) tha t  subdivide the curve B[P](t) at r are guaranteed to exist. In 
addition, when these control points do exist, we would like to know how to find 
them. 

Actually, we have already solved this problem. If  we regard B(rt), B(r  + 
[ 1  - r]t) as the old blending functions and B(t)  as the new blending functions, 
then what we seek to do is to duplicate B(rt) and B(r + [1 - r]t) curves with 
B(t)  curves. But  we have just  shown tha t  this can be done whenever 

span[B(t)] D B(rt), B(r  + [1 - r]t). 

In this case, there are matrices M(r),  N(r)  such tha t  

Bk(rt) = E Mik(r)Bi(t), 
B(rt) = B(t)  .M(r ) ,  

and 

Bk(r + [1 -- r]t) = ~ Njk(r)Bi(t), 
B(r  + [1 - r]t) = B ( t )*N(r ) ,  

and the matrices M(r), N(r) satisfy the identi ty 

(1) ~ Mjh(r) = Z Njk(r) = 1. 
k h 

The required control points are given by 

Q1(r) = ~, Mi~(r)Pk, 

and 

tQ(r) --- M(r) * tp, 

Ri(r) = • Njk(r)Pk, tR(r) = N(r)*  tP. 

Thus the problem of finding the desired control points Q(r), R(r) has been 
reduced to finding the matrices M(r), N(r)  tha t  respectively t ransform the 
distribution B(t)  into the distributions B(rt), B(r  + [1 - r]t). Although this 
argument  shows tha t  if span[B (t)] D B (rt), B (r + [1 - r]t), subdivision is always 
possible in principle, practical subdivision algorithms may still be hard to find. 

Again we have not  yet  insisted tha t  the matrices M(r), N(r)  satisfy the relation 

(2) Mjk(r), Nik(r) >-- O. 

Thus these matrices are not  necessarily Markov chains. However, if this condition 
is satisfied, then these matrices are Markov chains and the new control points 
Q(r), R(r) will necessarily lie in the convex hull of the original control points P. 
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Now this condition is actually critical for our application. Indeed, if the new 
control points fail to lie in the convex hull of the original control points, then 
the subdivision algorithm will not necessarily narrow the convex hull. Such 
curves do exist [1], and for these curves subdivision algorithms are not particu- 
larly useful for locating points of intersection. We will return to the subdivision 
problem again in Part II [9]. 

To recapitulate, Markov chains arise in computer-aided geometric design in 
three types of problems: 

Problem 1. Given a curve B[P](t), alter the physical shape of the curve by 
changing the control points P. 

Problem 2. Given a curve B[P](t), alter the physical shape of the curve by 
changing the blending functions B (t). 

Problem 3. Given a curve B[P](t) and a discrete distribution D(t), find new 
control points Q so that  the curve D[Q](t) is identical to the curve B[P](t). 

A solution to the last problem is called a conversion algorithm, since it allows 
the user to convert B-curves into D-curves. In this context, subdivision algo- 
rithms are simply algorithms for converting B (rt) and B (r + [1 - r]t) curves into 
B (t) curves. 

These three problems are summarized schematically in the following table: 

Curve Blending Functions Control Points 
(1) New Old New 
(2) New New Old 
(3) Old New New 

To solve the first two problems, we must define a new curve by changing either 
the control points or the blending functions of the original curve. These two 
constructions are equivalent. In one, a Markov chain is applied to transform the 
control points; in the other, the same Markov chain is applied to transform the 
blending functions. The method that  is actually used will depend on what is more 
sacred to the designer--his control points or his curve type (blending functions). 
If, in addition, the Markov chain is a function of some scalar parameters r, then 
these constructions open up the possibility of changing the shape of the curve 
simply by varying some scalar parameters. 

To solve the third problem, we seek a conversion algorithm; that is, we wish 
to change the curve type without actually altering the shape of the curve. This is 
usually done to give the designer additional flexibility by increasing the number 
of control points. However, it might be done just because the new curve type is 
more convenient, or more natural, or simply more well known. In any event, we 
assume in this case that  the original control points as well as both the old and 
the new blending functions are known, and we seek only the control points 
corresponding to the new blending functions. To find these control points, we 
need only find the Markov chain that  transforms the new blending functions 
back into the original blending functions. By applying this matrix to the old 
control points, we generate the new control points. This converts the curve type 
without affecting the actual curve. We can then alter these new control points to 
change the shape of the original curve. 
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Surfaces in computer-aided geometric design are created in much the same 
way as curves. Given a square array of points P = (Pjh) and a distribution B ( t )  
= (Bo(t) . . . . .  Bn(t)),  we define the tensor product surface B[P](u,  v) by 

B[P](u,  v) = ~ B~(u)Bk(v)Pjk = B ( u ) * p * t B ( v ) .  
j , k  

If M is a Markov chain, then we can alter the control points or the blending 
functions of this surface simply by inserting M into this product. This generates 
the new surface 

B ( u )  * ( M .  p * tM) • tB(v) = (B(u)  * M )  * P * t (B(v)  * M) .  

By using two distinct distributions and two distinct Markov chains, this technique 
can easily be generalized to arbitrary rectangular arrays of points. Since the 
theory for tensor product surfaces is much the same as the theory for simple 
curves, we shall not pursue this topic explicitly any further in this paper. 

3. CONSTRAINTS 

Suppose we adopt the perspective of Problem 2 of Section 2; that is, we wish to 
alter the curve B [P](t) by changing its blending functions B (t) but not its control 
points P. We can do this by introducing a matrix M = (Mjk) and defining new 
blending functions D (t) by setting 

Dk(t) = ~ MjkBi(t) ,  D( t )  -- B ( t ) . M .  

As we have seen, B( t ) ,  D( t )  must both be discrete probability distributions. 
However, to generate really well-behaved curves, we must assume that B (t), D (t) 
satisfy some additional conditions; completely arbitrary discrete distributions do 
not always generate very well-behaved curves. The list of properties in Table I is 
adapted from [8], where the reader will find detailed explanations and derivations 
of each of these conditions. 

The properties of the blending functions listed in this table are not all 
independent. Indeed, it is easy to show that 

Properties 1, 2, 5 ~ Property 3, 
Property 6 ~ Property 7. 

Again for details see [8]. 
The question we now pose is this: Suppose that  the original curve B[P](t) and 

the original blending functions B(t)  are known to satisfy some property on this 
list; if we insist that the new curve D[P](t) and the new blending functions D(t) 
also satisfy this same property, what constraint does this impose on the trans- 
formation matrix M? We have already seen in Section 2 that, if the blending 
functions Bo(t) . . . .  , Bn(t) are linearly independent and F,k Bk(t) = 1, then 

(1) ~ Ok(t) = 1 ¢* Y, Mik = 1. 
k h 

Moreover, it is certainly true that, if Bk(t) >- 0, then 

(2) Dk(t) >- 0 ~ Mjk >-- O. 

ACM Transactions on Graphics, Vol. 3, No. 3, July 1984. 



212 • Ronald N. Goldman 

Table  I 

Curve Blend ing  func t ions  

1. B[P](t)  is well defined 

2. B[P](t)  c convex hull  (P) 
3. B[P](t)  in terpola tes  P0, P ,  

4. B[P](t)  is symmet r i c  
5. B[P](t)  exact ly  reproduces  

s t ra igh t  l ines 
6. B[P](t)  is var ia t ion d imin i sh ing  

7. B[P](t)  = B[R](t)  iff P = R 

¢~ 2 Bk(t)  = 1 
k 

¢~ Bk(t)  >-- 0 
jo, k ~ o  

¢=~ Bk(O) = / 1 ,  k = 0 

]0, k ~ n  
Bk(1) = I1, k = n 

¢~ Bk(t)  = B.-k(1 -- t) 

¢~ ~ kBk(t) = nt  
k 

B( t )  satisf ies Descar tes '  
Law of  Signs 

¢* Bo(t) . . . . .  B . ( t )  are l inearly 
independen t  

Notice, however, tha t  this second implication is only valid in one direction; in 
Par t  II [9] we shall give a counterexample to show tha t  the reverse implication 
is not  necessarily valid. These two conditions together assert tha t  M is a Markov 
chain. We shall now explore what  other conditions are imposed on this Markov 
chain by the other properties in our list. 

To begin, suppose tha t  Bo(t) . . . . .  Bn(t) are linearly independent  functions. 
Since 

De(t) = ~ MieBi(t), D(t) = B(t)  * M, 

it follows tha t  the functions Do(t) . . . . .  D , ( t )  are linearly independent  iff the 
t ransformat ion matrix M is nonsingular. Thus 

Do(t) . . . . .  D~(t) are linearly independent ¢ ,  Det(M) ~ 0. 

Throughout  the remainder of this discussion, we shall always assume tha t  the 
functions B 0 ( t ) , . . . ,  B~(t) are linearly independent.  

Now suppose tha t  B (t) satisfies property 3. Then  

Moe = ~ MjeBi(O) = De(0), 
J 

M,e = ~ MieBi(1) = De(l). 
J 

Therefore 

0, k ¢ O  ~0, k ~ O ,  
f 

Dh(0) = 1, k = 0  ¢* Mob= ~1, k = 0 ;  

~0, k ~ n  ~0, k ~ n ,  
] Moe = De(l) = 1, k =  n 1, k =  n. ] 

This condition can be interpreted in the following manner.  Let  

u0 = (1, 0, . . . , o ) ,  u , =  ( 0 , . . . , o ,  1). 
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Then 

0, k # 0  
M ° k =  1, k = O  ¢~ 

Mn~ = {0, k ~ n  ¢* 
1, k = n  

uo .  M = uo, 

u n . M  = Un. 

Thus Uo, u ,  are eigenvectors of M corresponding to the eigenvalue 1. In the 
language of Markov chains, these conditions assert tha t  0, n are absorbing states 
of the Markov chain M because the probability of a transit ion out of these states 
is 0. 

Next suppose tha t  B ( t )  satisfies property 4. Then 

Ok(t )  = ~ MjhBj(t), 
J 

Dn-k(1 -- t)  = ~ Mn-j ,n-aBn-j(1 - t) --- ~ Mn-j ,n-kBj( t) .  
J J 

Since the functions Bo(t)  . . . .  , B , ( t )  are linearly independent,  it follows imme- 
diately tha t  

Dk(t )  = Dn-k(1 - t) ¢~ M~-i,n-k = Mj, k. 

Now suppose tha t  B (t) satisfies property 5. Then 

j B j ( t )  = nt, 
J 

k k j " 

Again since Bo(t)  . . . . .  B , ( t )  are linearly independent functions, it follows 
immediately tha t  

Z kDh(t)  = n t  ¢~ ~ kM~k = j. 
k k 

This constraint  on M can be interpreted in the following manner.  Let  v = (0, 1, 
. . . .  n); then 

Z kMjk = j ¢~ M *  tv = tv. 
k 

Thus tv is an eigenvector of M corresponding to the eigenvalue 1. Analogously, 
if w = (1, 1 . . . . .  1), then the first condition is equivalent to the s ta tement  tha t  
tw is also an eigenvector of M corresponding to the eigenvalue 1. Tha t  is, 

Mjk = 1 ¢~ M * t w  ~-~ tw. 
k 

Finally, suppose tha t  B ( t )  satisfies property 6; what can we say about the 
matrix M ?  To begin, we recall Descartes' Law of Signs. 

Descartes '  L a w  of Signs. A collection of functions B ( t )  = (Bo(t) . . . . .  Bn ( t ) )  
is said to satisfy Descartes' Law of Signs in the interval (a, b) iff for every set of 
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constants  C = (Co . . . .  , cn), 

zeros in (a, b ) [~  ckBk(t)]<sign al ternat ions (Co , . . . ,  Cn)- 

It  is well known, for example,  tha t  the power functions satisfy Descartes '  Law 
of Signs in the interval  (0, oo), and tha t  the Berns te in  polynomials satisfy 
Descartes '  Law of Signs in the interval  (0, 1) [8]. Notice too tha t  any collection 
of functions B(t) tha t  satisfy Descartes '  Law of Signs is necessarily l inearly 
independent .  

Now let M = (Mjk) be a matrix.  For  jo < j l  < • "" < J~ and ko < kl < • . .  < k~, 
define 

J:)= Oet 
M j o k  o • . . M j o k  m 

M j ~ k o  • • • M j m k , ~  

We shall say tha t  M is a Descartes matrix,  or simply a D-matr ix,  iff 

(1) for each m the de terminants  M ( ~  ::: J~) are all of  one sign s~ = _1; 

(2) for each jo . - .  jm there  exists a ko . - -  k~ such tha t  

• " " " j m  

(3) for each ko --- km there  exists a jo - . -  jm such tha t  

The  identi ty matr ix  is clearly a D-matr ix.  Additional examples of D-matr ices  are 
given in Par t  II [9] and in [11]. 

Now let T = (to, • • . ,  t ,) ,  and define 

IBo(to) ... B,(to) 

B(T) =|Boit .)  ... Bn(t,) 

= 

A collection of funct ions B (t) = (Bo(t), . . . ,  Bn(t)) is called a Descartes system, 
or simply a D-system, on the interval  [a, b] iff for each m the de terminants  

B ( ~  "'" t,m) km are all nonzero and of one strict sign sm +1 whenever  a _ to < tl 

<. . .  <tn<_b. 
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THEOREM 1 (GANTMACHER-KREIN). A set o[ /unctions B (t ) satisfy Descartes' 
Law of Signs iff B ( t )  is a D-sys tem.  

PROOF. See [13]. [] 

THEOREM 2 (CAUCHY-BINET). Let  M = M~ * M2. Then  

. . . .  jm io . .  

PROOF. See [12]. [] 

COROLLARY 1. Let  M = M1 * M2. Then  

M1 and M2 are D-matrices  ~ M is a D-matr ix .  

COROLLARY 2. Let  D( t )  = B ( t )  * M.  Then 

B ( t )  is a D-sys t em and M is a D-matr ix  ~ D( t )  is a D-sys tem.  

Now suppose tha t  the distr ibution B (t) satisfies Descartes '  Law of Signs. Then,  
by Theorem 1, B ( t )  is a D-system. If  we want the distribution D( t )  -- B ( t ) , M  
also to satisfy Descartes '  Law of Signs, then  D(t )  must  also be a D-system. By 
Corollary 2 we can guarantee tha t  D( t )  is a D-system if M is a D-matrix.  Thus  
we conclude tha t  

M is a D-matr ix  ~ D(t )  satisfies Descartes '  Law of Signs. 

Notice, however, tha t  the converse is not  necessarily valid (see Par t  II [9], 
Example 6). 

We summarize our results in Table II. Notice again tha t  the conditions on the 
t ransformat ion matr ix  listed in this table are not  all independent.  Indeed 

Condit ions 1, 2, 5 ~ Condit ion 3, 
Condit ion 6 ~ Condit ion 7. 

The  second implication follows directly from the definition of a Descartes matrix.  
t h e  first implication follows because if 

Y~ Mjk = 1, ~ kMik = j,  
k k 

then multiplying the first equat ion by j and subtract ing the result from the 
second equation, we obtain 

(k - j )Mjk  = O. 
k 

Now i f j  = 0, n, then  by Condit ion (2) the terms in this summat ion are ei ther  all 
nonnegative or all nonpositive. Therefore  for j = 0, n the only way to satisfy this 
equation and Condit ion (1) is for {o, 

M ° ~ =  1, 
k ~ O ,  
k = O ,  

k ~ n ,  
k = n .  
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Table II 

Blending functions Transformat ion  matrix 
= distribution = Markov chain 

1. 

2. 
3. 

4.  

5. 

6. 

7. 

Dh(t) = 1 ¢~ E Mih = 1 
h k 

Dk(t) >-- 0 ~ Mik >-- 0 
/0, k #  0 

0, k # 0 Mok = ] 1, k 0 Dh(O) = / 1 ,  k = 0 = 

~0, k # n 
10, k # n M. ,  = ]1, k n Dh(1) = ~1, k = n = 

Dh(t) = D.-k(1 - t) ¢~ M.- j , . -k  = Mjk 
kDk(t) = nt  ¢~ Y. kMih = j 

k k 

D(t )  satisfies Descartes '  
law of signs ~ M is a Descartes matrix 

Do{t) . . . . .  D.( t )  are 
linearly independent ¢~ Det(M) # 0 

Let  us now change our perspective to tha t  of Problem 1 of Section 2; tha t  is, 
we want  to al ter  the curve B [P](t)  by changing the control  points P. We already 
know tha t  the same Markov chain M tha t  solves Problem 2 also solves this 
problem. Indeed, we can define new control  points Q simply by sett ing 

Qj = ~ M 1 k P k ,  tQ = M ,  t p .  
k 

We now ask: How do the additional constraints  on M, which are summarized in 
Table  II, affect the new control  points Q? 

We have already seen tha t  

M j k  = 1 ¢~  Q i s  w e l l  defined, 
k 

and 

Mik___ 0 

In addition, it is obvious tha t  

¢~ Q _ convex hull (P). 

0, k # 0  
Mok=  1, k = 0  ¢~ Q o = P o ,  

Mn~= ~0, k # n  ¢~ Q =p~.  
]I, k= n 

Thus  this condit ion implies tha t  P and Q share the same end points.  
The  next  condition, 

M n - j , n - k  = M j k ,  

has a more subtle affect. Let  

P~ = P , -k ,  
P '  = (P~, . . . ,  P~') = (P  . . . . . .  Po). 

ACM Transactions on Graphics, Vol. 3, No. 3, July 1984. 



Markov Chains and Computer-Aided Geometric Design • 217 

The corresponding new control points are defined by setting 

tQ _~ M *  tp,  tQ, = M .  tp , .  

Therefore 

Hence 

Q~-I = Y, Mn-j, kPk, 

Q] = Y, MikP;~ = Y, MjkPn-k 
---- Z Mj.n-kPk. 

M a - j , n - k  = M j k  ¢ ~  Q] = Q ~ - i .  

Thus this condition implies that reversing the order of the old control points P 
also reverses the order of the new control points Q. 

Now consider the condition 

Y~ kM~k = j.  
k 

Let P consist of a collection of points that are equally spaced along a straight 
line L(t) .  Then 

L(t )  = tA + B, Pk = k A + 
n 

Therefore 

Hence 

kMik = J ¢=~ Q1 = PI. 
k 

Thus this condition implies that if the old control points are equally spaced along 
a straight line, then the new control points are identical to the old control points. 
Another way to say this is that the transformation M exactly reproduces straight 
lines. Analogously, notice that the first condition, 

~ Mjh = 1, 
k 

implies that the transformation M exactly reproduces individual points. For 
suppose that for all k, Ph = Po; then 

Hence 

~ Mjk = 1 
k 

, ~  ~ = P o .  
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Trans fo rma t ion s  t ha t  reproduce bo th  individual points  and  s t ra ight  lines are 
fundamenta l  in computer -a ided  geometric  design. 

Next  suppose t ha t  M is a Descar tes  matr ix .  To  see what  effect this  condit ion 
has  on the  control  points  Q, we first  need some pre l iminary  results. 

PROPOSITION 1. Let  M = (Mjk) be a matrix,  and  let C = (Co . . . . .  cn) be a set 
of constants.  Define new constants  D = (do, • • •, d , )  by set t ing 

dj = ~ Mjkck, eD = M *  tC. 
k 

I f  M is a D-matr ix ,  then  

sign alternations D <_ sign alternations C. 

PROOF. The  proof  of this  result  is very similar  to the proof  of  the theorem of 
G a n t m a c h e r - K r e i n  given in [13]. Le t  p be the  n u m b e r  of  sign a l te rnat ions  in C. 
T h e n  we can par t i t ion  C into p + 1 subsets  (Co, • • •, ckl), • • •, (ck~+l, • • •, c,) such 
tha t  each subset  has  at  least  one nonzero e lement  and  

sign c~ = ( - 1 )  q if c~ is in the q th  subset.  

Suppose tha t  the proposi t ion  is false. T h e n  there  mus t  be p + 2 nonzero cons tan t s  
djo , . . . ,  djp+~ such t h a t  sign djl = ( - 1 )  i. Consider  the  sys tem of p + 2 l inear  

equat ions with p + 1 unknowns  

(*) dj, = • Mj,hlc~l xq, i = O, . . . , p  + 1. 
q = l  Lk~kq_  1 + 1 

By construct ion,  

dj, = ~. Mj, hch 
k 

= 2 ( - 1 )  q Mj,klchl  , i = O , . . . , p + l .  
q = l  L k = k q - l + l  

Therefore  the l inear sys tem (*) has a solution. Indeed, we can choose xq = ( - 1 )  q. 
Now a sys tem o f p  + 2 l inear  equat ions with p + 1 unknowns  can have a solution 
if and  only if the de t e rminan t  of  the  ent i re  sys tem is zero. Expand ing  this  
de t e rminan t  by cofactors  of the  first  column, we get 

kl 

djo Z MioklCk] "'" ~ Mjoh]Ckl 
k=o k=kp + l 

Det  
kl 

k~O k=kp+ l 

= E (-1)/di,  E ICmo"" cmp I M  o 
/=o ~o.- mp \too mp ] '  
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^ 

where ji  means tha t  ji is omitted. But  if M is a D-matr ix,  this expression cannot  
be zero. In fact, if  M is a D-matr ix,  all the terms in this expression have the 
same sign, and at least some terms are nonzero. Thus  we have reached a 
contradict ion.  Therefore  it follows tha t  if M is a D-matrix,  

sign al ternat ions D _%< sign al ternat ions C Q.E.D. 

In 3-space we say tha t  a collection of points Q = (Qo . . . .  , Qn) oscillates less 
than  a collection of points P = (Po . . . . .  P , )  if and only if for every plane S the 
number  of t imes the polygon determined by the vertices Q crosses S is less than  
or equal to the number  of t imes the polygon determined by the vertices P crosses 
S. In this case we shall write 

oscillations Q < oscillations P. 

PROPOSITION 2. Let  M = (Mih) be a Markov chain, and let P = (Po, . . . ,  P , )  
be a collection of points. Define a new set o[points Q = (Qo, • . . ,  Qn) by setting 

Qj = ~ MjkPk, tQ = M .  tp. 

I f  M is a D-matrix,  then 

oscillations Q <_ oscillations P. 

PROOF. Let  S be a plane, N a vector normal  to S, and R a point  on S. Then  
with respect to S, 

oscillations P = sign al ternat ions [(Po - R) .  N . . . . .  (Pn - R) .  N], 
oscillations Q = sign al ternat ions [(Qo - R ) - N  . . . . .  (Qn - R ) . N ] .  

But  since M is a Markov chain 

= 2 Mjk[(Pk -- R ) . N ] .  
h 

Therefore  it follows immediately from Proposi t ion 1 that ,  with respect to S, 

oscillations Q < oscillations P. 

Since this inequali ty holds for every plane S, the general result  is valid. Q.E.D. 

Thus  we have shown tha t  

M is a D-matr ix  ~ Q oscillates less than  P. 

Finally, suppose tha t  De t (M)  ~ 0. Let  P, P '  be two sets of control  points.  The  
corresponding new control  points Q, Q'  are defined by 

tQ = M .  t p ,  tQ, = M .  tp , .  

Therefore  

D e t ( M ) # 0  ¢=~ Q ' = Q  iff P ' = P .  

We summarize our results in Table  III. 
To  complete this discussion, let us adopt  the perspective of Problem 3 of 

Section 2. Here we have a curve B[P]( t ) - -de f ined  by a collection of blending 
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Table  III 

T r a n s f o r m a t i o n  ma t r ix  Control  po in t s  

1. ~ Mih = 1 ~=~ Q is well def ined 
k 

2. Mjk >-- 0 ~ Q c_ convex hull  (P) 
j0, k ~ 0 Qo = P0 

3. M o k = ~ l ,  k = 0  

JO, k ~ n Q . =  P .  
M.h = I1, k = n 

4. M._j,._~ = Mjk ¢~ Revers ing  P reserves  Q 
5. ~ kMj~ = j ~ Stra ight  l ines are 

h reproduced exact ly 
6. M is a D-ma t r i x  ~ Oscil lat ions Q ~ osci l lat ions P 
7. De t (M)  ~ 0 ¢~ Q' = Q iff P '  = P 

functions B( t )  = (Bo(t) . . . .  , B , ( t ) )  and a set of control points P = (P0 . . . .  , 
Pn)--and a new distribution D( t )  = (Do(t), . . . ,  Din(t)), and we seek a new set 
of control points Q = (Q0, . . . ,  Qm) such that  the curve D[Q](t) is identical to 
the curve B[P](t) .  As we have already seen, if span[D(t)] D_ B(t), then there is a 
matrix M = (Mjk) such that  

Bk(t)  = ~ M~kDi(t), B ( t )  = D ( t ) * M ,  
i 

and the new control points Q are defined simply by setting 

Qj = ~ M j k P k ,  tQ ___ M *  t p .  
k 

Now suppose that  the blending functions B (t), D (t) are known to satisfy some 
property in Table I. What  implications does this have for the transformation 
matrix M and the control points Q? 

Clearly this question is very similar to those that  we have already answered. 
Thus all we really need to do to answer this question is to combine Tables II and 
III. There are, however, two slight differences. In our current problem the number 
m of D blending functions and control points is not necessarily the same as the 
number n of B blending functions and control points. Also, in our previous 
discussion, D( t )  = B ( t ) . M ,  but in our current discussion, B ( t )  = D ( t ) . M .  
These differences will affect, in particular, conditions 3-5. However, the analysis 
of these conditions is still essentially the same, so we need not repeat this analysis 
again here. Instead we shall simply summarize our results in Table IV. In this 
table we use the Kronecker delta symbol 

0, j ~  k, 
5Jk= 1, j = k .  

4. CONCLUSIONS AND FUTURE WORK 

In this paper we have tried to elaborate upon the deep connection between 
classical probability theory and computer-aided geometric design. The fact that  
Markov chains are often associated with solutions to some of the standard 
problems of computer-aided geometric design further reinforces this link. 
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In Part II of this paper [9], we shall flesh out this theme by introducing specific 
examples of Markov chains that  either satisfy some of the constraints or solve 
one of the problems analyzed here. Particular applications to subdivision will 
also be discussed. 
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