
A Recovery Algorithm for A High-Performance
Memory-Resident Database System

Tobm J. Lehman
Computer Sciences Department
IBM Almaden Research Center

Abstract
Wrth memory prrces droppmg and memory slaes m-
creasmg accordrngly, a number of researchers are ad-
dressmg the problem of desrgnmg hrgh-performance
database systems for managing memory-restdent data
In thus paper we address the recovery problem m the
context of such a system We argue that exrstmg
database recovery schemes fall short of meetmg the re-
qmrements of such a system, and we present a new re-
covery mechamsm whrch IS designed to overcome therr
shortcommgs The proposed mechamsm takes advan-
tage of a few megabytes of rehable memory m order to
orgamae recovery mformatron on a per “obJect” basrs
As a result, It IS able to amortme the cost of check-
pomts over a controllable number of updates, and rt
IS also able to separate post-crash recovery mto two
phases-hrgh-speed recovery of data whrch IS needed
rmmedrately by transacttons, and background recov-
ery of the remammg portions of the database A turn-
ple performance analysrs IS undertaken, and the results
suggest our mechamsm should perform well m a hrgh-
performance, memory-resrdent database envrronment

1 INTRODUCTION
Memory-resrdent database systems are an attractrve
alternatrve to drsk-resrdent database systems when
the database fits m mam memory ’ A memory-

Tlus research wa, partially supported by an IBM Fcl-
lowrhlp, an IBM Faculty Development Award, and Natlonal
Science Foundation Grant Number DCR-8402818

‘It II urually the case that the enttre database wzll not
fit m the amount of memory avsllable, but xt may often be
the case that a large amount of the frequently accessed data

PermIssIon to copy wlthout fee all or part of this material IS granted
provided that the copies are not made or dlstrlbuted for direct
commercial advantage, the ACM copyrtght notlce and the title of
the pubhcatlon and Its date appear, and notlce 1s given that copymg
IS by permlsslon of the Assoclatlon for Computing Machmery To
copy otherwise, or to repubhsh, requires a fee and/or specfic
permission

0 1987 ACM 0-89791-236-5/87/0005/0104 754

Michael J. Carey
Computer Sciences Department

University of Wlsconsm-Madison

resrdent database system can offer srgmficant perfor-
mance rmprovements over disk-resrdent database sys-
tems through the use of memory-based, instead of drsk-
based, algortthms [Ammann 85, DeWrtt 84, Dewitt
85, Lehman 86a, Lehman 86b, Lehman 86c, Salem 86,
Shaprro 86, Thompson 861 Wrth the potentral perfor-
mance gain, however, comes an Increased dependency
on the database recovery mechamsm

A memory-resident database system IS more vulner-
able to farlures Power loss, chip burnout, hardware
errors, or software errors (e g , an erroneous program
causrng a “runaway” CPU) can corrupt the pnmary
copy of the database A stable backup copy of the
database must be mamtarned rn order to restore all or
part of the memory-resrdent copy after a failure Simple
battery-backup memory IS affordable, but rt 1s not nec-
essanly rebable and rt 1s not immune to software errors,
so It 1s not a complete eolutron to the memory-resident
database system recovery problem Large memorres
that are both stable and reha5le are both expensive and
potentrally slow-It is drfficult to say Just how expen-
save or slow these types of memones are because they
are not widely avarlable Usmg current technology as
a gmde, we bekeve that m the near future stable and
reliable memory will be available rn sines on the order of
tens of megabytes and wrll have read/wnte performance
two to four trmes slower than regular memory of the
same technology-too slow and too small to use for the
entire marn memory, but large and fast enough to use
as a stable buffer Using this stable rehable buffer, we
attempt to desrgn of a set of recovery algorrthms that
both functron correctly for memory-resrdent database
systems and perform sufficrently well to warrant bemg
used rn a hrgh-performance database system envrron-
ment

1.1 Lessons Learned From Disk-
Based Recovery Methods

Memory-resident database systems have recovery needs
srmrlar to those of drsk-restdent database systems
Indeed, almost any drsk-onented recovery algorrthm
--_
will fit For the present, we are concerned only with the
memory-resident database as a self-contamed umt

104

http://crossmark.crossref.org/dialog/?doi=10.1145%2F38714.38730&domain=pdf&date_stamp=1987-12-01

would juncfron correctly In a memory-readent database
system environment In any database system, the mam
purpose of the recovery mechamsm 1s to restore the pn-
mary copy of the database to Its most recent consistent
state after a fadure A disk-onented system IS slmdar
to a memory-resident system m the handhng of trans-
action commit, as both types of systems need to record
the effects of the transaction on some stable storage de-
vice In this sectlon we descnbe how some disk-oriented
recovery designs handle the transaction commit proce-
dure Smce we do not have space m this paper to de-
scnbe these algorithms completely, we must refer the
reader to the literature for further details [Kohler 81,
Haerder 83, Reuter 841

When a transaction has updated some portlon of the
database and 1s ready to make Its changes permanent,
there are several ways to handle the commit procedure

1 The transaction could flush all oflts updated pages
to the database residing on disk, as In the TWIST
algonthm [Reuter 841

2 The transaction could flush all oflts updated pages
to a separate device, thereby allowmg It to write
all of the dirty pages m one action usmg chslned
I/O, as m the Database Cache algonthm [Elhardt
841

3 The transactlon could make shadow copies of up-
dated pages to slmpllfy post-crash recovery, while
still mamtalmng a record-level log of updates, as In
the System R recovery algonthm [Lone 77, Gray

811
4 The transaction could wnte a record-level log of

the updates that It has performed (using the wnte-
ahead-log protocol [Gray 78]), and penodlcally
take checkpotdr to refresh the database and keep
the amount of log data small, as m the Lmdsay cl
al algorithm [Lindsay 791

In [Reuter 841, Reuter analyzed the four methods
mentloned above and found that, for a disk-oriented
system, method (4) [Lindsay 791 outperformed the rest,
method (3) [Lorle 771 was also found to perform well
when the page table was memory-rendent These meth-
ods are deslgned to produce little processmg overhead
during normal transaction processmg, however, some
log processmg IS reqmred for transaction UNDO or sys-
tem restart Tks appears to be the best approach for a
high-performance database system, as UNDO process-
mg 1s typically done only for approumately 3 percent of
all transactlons [Gray 781, and restart 1s needed rarely
m most systems The Database Cache and TWIST al-
gonthms, on the other hand, Involve larger processmg
overheads for normal transaction processmg, as they are
designed to provide support for fast UNDO processmg
and fast system restarts

From exammmg disk-onented database systems,
then, It appears that method (4) would provide a good
baas for a memory-resident algorithm Its wnte-ahead
log protocol usmg record-level log records appears to
be a good method for handling the transaction commit

process However, the problem with usmg such an “off
the shelf” disk-onented recovery scheme for a memory-
resident database system 1s that the performance of the
recovery mechamsm would probably be poor m those
cases where the entire memory-rendent database, the
“buffer”, must be wntten to disk (as m a checkpoint
operation) or read from disk (as In a system restart nt-
uatlon) Furthermore, a memory-resident database sys-
tem appears to be able to obtain performance gams by
ebmmatlng the buffer manager altogether [Lehman 86a,
Lehman 88~1, so buffer-oriented recovery algonthms
must be modified to reflect a “memory-resident” ap-
proach rather than a “buffer-pool” approach We must
take a closer look at the requirements of a memory-
resident system m order to design proper memory-
resident database recovery algonthms We first exam-
me previous work on memory-resident database system
recovery [Dewitt 84, Ammann 86, Elch 86, Hagmann
86, Leland 86, Salem 861

1.2 Memory-Resident Database
Recovery Proposals

Recovery designs for memory-resident database systems
have not been very different from those for disk-resident
database systems, with one notable exceptlon IBM’s
IMS FASTPATH [IBM 79, IBM 841 FASTPATH was
the first to mtroduce the notlon of cotnm~t groupr The
basic idea of commit groups 1s to amortize the cost of
log I/O synchromzatlon over several transactions rather
than JUSt a smgle transactlon Where a amgle transac-
tion would normally wait for its log mformatlon to be
flushed to disk before comnuttmg and releasing locks,
group commit allows It to prccommaf, whereby Its log m-
formation IS stdl m volatile memory (not yet flushed to
disk), but Its locks are released anyway The log mfor-
matlon of several transactions accumulates, bemg writ-
ten to disk when the log buffer fills up Ftnally, once the
log lnformatlon arrives safely on disk, the transaction
officially commits This techmque allows transactions
accessmg the same lnformatlon to “overlap” somewhat,
thus mcreasmg concurrency and transaction through-
put Note that there 1s no danger of a database update
arnvmg at the disk before the correspondmg log record,
as the database update stays (only) In memory, In the
special case of a checkpomt, the log would be forced
to disk first DeWltt et at [DeWltt 841 point out that
a stable log buffer memory can also be used to allow
transactions to commit without log I/O synchromza-
tlon, at the expense of makmg the log buffer memory
both stable and rehable A stable log buffer provides
the addltlonal advantage of allowlng the recovery mech-
anism to post-process the cornnutted log data, perform-
mg log compression or change accumulation

In performing database checkpomts, the memory-
resident database system recovery proposals do not dlf-
fer much from disk-onented methods, they flush the
dirty portion of the buffer to stable storage Dewitt
et al [Dewitt 841 propose first creating a shadow copy

105

of the dirty portron of the database and then writing
rt to disk Erch [Erch 861 proposes writing the dirty
portion of the database to drsk when the database sys-
tem naturally qmesces (though this seems likely to be a
rare event m a high-performance database system) Fr-
nally, Hagmann [Hagmann 863 proposes simply stream-
ing the entire memory copy of the database to disk for
a checkpomt In a sense, these methods each treat the
database as a single obJect instead of a collection of
smaller obJects-for post-crash recovery, these meth-
ods will reload the entire database and process the log
before the database IS ready for transactron processing
to resume

It IS often the case that a transaction can run wrth
only a small portion of the database present m mem-
ory A more flexible recovery method would recover
the data that transactrons need In order to run on
a demand basis, allowing transaction processing and
general recovery to proceed In parallel We propose
a design for a recovery component that provides hrgh-
speed loggmg, efficient checkpomtmg, and a post-crash
recovery phase that enables transaction processmg to
resume qurckly In the next section we describe our
new memory-resident database system recovery algo-
rithm In Section three, we provide a simple analysis
that supports our claim of high performance Section
four concludes the paper

2 A NEW RECOVERY
METHOD

In order to descnbe our recovery scheme more clearly,
we need to describe rt m the context of our intended
Marn Memory Database Management System (MM-
DBMS) architecture [Lehman 86bJ The mam feature
of relevance here IS its orgamzatron of memory Every
database obJect (relation, index, or system data struc-
ture) 1s stored rn its own logmal segment Segments are
composed of one or more fixed-size partrtlons, whrch
are the unit of memory allocatron for the underlying
memory mapping hardware (We use the word partr-
tron rather than page to avoid any preconcerved notions
about the uses of a partition) Partrtrons represent a
complete umt of storage, database entltres (tuples or
mdex components) are stored m partitions and do not
cross partition boundarres r Partrtrons are also used
as the umt of transfer to disk rn checkpoint operatrons

2.1 Overview of Proposal
The proposed memory-resrdent database recovery
scheme uses two Independent processors, a mam proces-
sor and a recovery processor, stable memory comprrsmg
two different log components, a Stable Log Buffer and
a Stable Log Tall, and disk memory to hold both a

“Long fields, such as those used to hold voxe or lmsge
data, are managed by a separate mechamrm not descrrbed
here

checkpoint copy of the database and log mformatron
The two processors run Independently and commum-
cate through a buffer area rn the Stable Log Buffer

The mam CPU performs regular transactron
processing-its only loggmg functron is to write a trans-
action’s log records to the Stable Log Buffer The recov-
ery manager, running on the recovery CPU, reads log
records from the Stable Log Buffer that belong to com-
nutted transactrons and places them mto bms (called
par~rtcon Qrnr) In the Stable Log Tall accordmg to the
address of the partrtron to whrch they refer Each partl-
tron having outstanding log mformatron IS represented
m the Stable Log Tall by such a partrtron bm Each
partition bin holds BED0 log records and other mls-
cellaneous log information pertammg to its partrtron
Partrtrons having outstandmg log rnformatlon are re-
ferred to as o&we

As partition bins become full, they are written out to
the log disk, log pages for a given partition are charned
together for recovery purposes Grouping log records
accordmg to therr correspondmg partrtrons In the Sta-
ble Log Tall allows the recovery manager to keep track
of the update activity on mdrvrdual partrtrons When
a partrtron has accumulated a specrtled threshold count
of log records, It IS marked to be checkpomted, and thus
the cost of checkpomt operatrons are amortrzed over a
controlled number of update operations Grouping log
records also has another srgmficant advantage-It al-
lows partrtrons to be recovered independently

After a crash, the recovery manager restores the
database system catalogs and then signals the trans-
action manager to begn processmg As each transac-
tion requests access to relatrons and mdrces, the trans-
action manager checks to make sure that these obJects
are available, and, If not, mrtrates recovery transactrons
to restore them on a per partition basis

In the remainder of this sectron the supportmg hard-
ware for the recovery mechanism IS presented, then,
details of the recovery algonthms, mcludrng regular
logging, checkpomtrng, recovery, and archive loggrng,
are described A simple performance analysis of the
logging, checkpomtmg, and recovery algonthms 1s pro-
vided m Section 3

2.2 Hardware Organization
The hardware architecture for the recovery mechamsm
IS composed of a recovery CPU, several megabytes of
reliable, stable main memory, and a set of drsks The re-
covery CPU has access to all of the stable memory, and
the mam CPU has access to at least part of the stable
memory The two CPU’s could both address all of mem-
ory (both volatrle and nonvolatrle), or they could share
only the address space of the Stable Log Buffer To al-
low more flexrbrhty m the actual hardware design, and
also to provide better rsolatron of faults, our algorithms
require the two CPU’s to share only the address space
of the Stable Log Buffer, usmg rt as a commumcatron
buffer along with Its other uses Also, though the re-
covery duties could be performed by a process running

106

records belongmg to commltted transactlons from the
Stable Log Buffer and places them Into partltlon bms
m the Stable Log Tall Last, the psrtltlon bm pages of
REDO log records m the Stable Log Tall are wrltten
to disk when they become full These three steps are
dlscussed in more detad below

2.3.1 Writing Log Records

TransactIons write log records to two places REDO
log records are placed m the Stable Log Buffer and
UNDO log records are placed m the volatile UNDO
space REDO log records are kept m stable memory so
that transactlons can comnut Instantly-they do not
need to wait until the REDO log records are flushed to

Figure 1 Recovery Mechamsm Arclutecture

on one of many processors of a multlprocessor, a dedl-
cated recovery processor (or even a dedicated recovery
mult:processor) can take advantage of speclahaatlon by
havmg closer ties with the log disk controllers and run-
nmg a special nummal operating system The disks are
dlvlded into two groups and used for different purposes
One set of disks holds checkpomt mformatlon, and the
other set of (duplexed) disks holds log mformatlon The
recovery CPU manages the log disks, and both the re-
covery CPU and the mam CPU manage the checkpoint
disks Figure 1 shows the basic layout of the system

The two processors have logically different functions
The main CPU IS responsible for transaction process-
mg, while the recovery CPU manages logging, check-
pomtmg operations, and archive storage Although the
two sets of tasks could be done by a smgle processor,
It 1s apparent that there 1s a large amount of paral-
lehsm possible Indeed, although only two processors
are mentloned, each CPU could even perhaps be a mul-
tlprocessor which further exploits parallehsm wlthm Its
own component In dlscussmg the design, however, we
refer to only two CPU8

disk UNDO log records are not kept In stable mem-
ory because they are not needed after a transaction
commits-the memory-resident database system does
not allow modified, uncomnutted data to be wntten to
the stable disk database A log record corresponds to
an entity In a partltlon a relation tuple or an index
structure component An entity IS referenced by Its
memory address (Segment Number, Partltlon Number,
and Partltlon Offset)

Both the volatde UNDO space and the Stable Log
Buffer (SLB) are managed as a set of fixed-are blocks
These blocks are allocated to transactions on a demand
baas, and a gven block will be dedicated to a single
transaction durmg Its hfetlme As a result, crltlcal sec-
tions are used only for block allocatlon - they are not a
part of the log wntmg process itself Because of these
separate lists, transactions do not have to synchronize
with each other to wnte to the log Therefore, having
each transaction manage Its own log record hst greatly
amehorates the tradltlonal “hot spot” problem of the
log tall

The chains of log blocks for a transactlon will appear
on one of two hsts, the committed transaction list or
the uncommitted transaction hst When a transaction
commits, its REDO log block cham IS removed from
the uncommitted list and appended to the committed
transaction list, and Its UNDO log block cham 1s du-

2.3 Regular Logging carded (Figure 2) The comnutted transaction hst IS
maintained m commit order so that the log records can
be sent to disk m this order

2.5.2 Log Record Format

The loggmg component manages two logs one log holds
regular audit trail data such as the contents of the mes-
sage that lmtlates the transactlon, time of day, user
data, efc , and the other holds the REDO/UNDO m-
formatlon for the transaction The audit trail log IS
managed In a manner described by Dewitt cf al [De-
Watt 841 and uses stable memory We concentrate on
the REDO/UNDO log, as It 1s responsible for mamtam-
mg database consistency and 1s the maJor focal point
of recovery

Log records have different formats depending on the
type of database entity that they correspond to (re-
lation tuples or index components) and on the type of
operation that they represent All log records have four
main parts

The REDO/UNDO loggmg procedure 1s composed of
three tasks First, transactlons create both REDO and
UNDO log records, the REDO log records are placed
mto the Stable Log Buffer, and the UNDO records are
placed into a volatile UNDO space Second, the recov-
ery manager (runmng on the recovery CPU) reads log

TAG 1 Bm Index 1 Tran Id 1 Operation

TAG refers to the type of log record, Ban Indez 1s the
index into the part&on bm table where the log record
will be relocated, !Z’ran Id IS the transaction Identifier,
and Operafron identifies the REDO operation for the

107

- I

Figure 2 Wrbng Log Records

entrty The bm index 1s a drrect index mto the partrtron
bm table, and It IS used to locate the proper partrtron
bm log page for an entrty’s log record Partrtlons mam-
tam then partrtron bm index entnes as part of their
control rnformatron, so a bm index entry IS easrly lo-
cated given the address of any of Its entitles (The next
section drscusses this m more detail)

Relation log records may specrfy REDO values for
specrfic entitles, so m one sense they are o&e log
records However, they may also specrfy operatrons that
entail updating the stnng space m a partrtron, which 1s
managed as a heap and 1s not locked m a two-phase
manner, so relation log records are really operat:on log
records for a partrtron Index log records specify REDO
operatrons for mdex components (e g , T Tree nodes or
Modrfied Linear Hash nodes [Lehman SSc]) A single
mdex update operatron may affect several mdex compo-
nents, so a log record must be wntten for each updated
mdex component To marntam seriahaabrhty and to
srmplrfy UNDO processmg for transactrons, mdex com-
ponents and relation tuples are locked wrth two-phase
locks [Eswaran 761 that are held until transaction com-
mlt

2.3.3 Grouping Log Records by Partition

The mam purpose of the Stable Log Tall IS to pro-
vide a stable storage environment where log records can
be grouped accordmg to their correspondmg partrtrons
The recovery manager uses this for several things

1 The log records correspondmg to a partrtlon are
collected m page sme units and wntten to disk
The log pages for a partition are linked, thus al-
lowing all the pages of a partmular partrtron to be
located easily dunng recovery

2 The number of log records for each partrtron IS
recorded, so the checkpomt mechamsm can wnte
those partrtrons that have a specrtled amount of
log mformatron to disk, thus amortrmng the cost
of a checkpontt operation over many update opera-
tions Once a partrtron has been checkpomted, Its

SIable Redo lnfomlallal
(SIable lag St&r)

’ 7-1 - xidr-4. op-18
Tl - e-3. op_lb
Tl - ad&J. op_lc
= - addrg. %a
l3 - addr-8. op-3s

Q

Stable Memory Log Tad
:-----‘- ___ - _--__-_ _----

L ____--- _ - - -k-K~ -

Figure 3 Regular Tmusactlon Loggmg

correspondrng log rnformatron IS no longer needed
for memory recovery

3 Redundant address mformatron may be stnpped
from the log records before they are wntten to
drsk, thereby condensing the log

Log records are read from the Stable Log Buffer and
placed mto partrtron bms rn the Stable Log Tall (Fig-
ure 3) Each log record IS read, Its bm mdex field IS
used to calculate the memory address of the log page of
the record’s partrtron bin, and the log record IS copied
mto that log page There are two mam possibrhtres for
orgamsmg the log bm table there could be an entry m
the table for every exrstrng partrtron m the database,
or there could be an entry for every active partrtron
(Recall that an active partrtron IS one that has been
updated smce Its last checkpomt, so rt has outstand-
mg log mformatron) Smce the bm index should not be
sparse, bin mdex numbers must be allocated and freed,
hke fixed blocks of memory If every partrtron were rep-
resented m the log bm table, then bm index numbers
would be allocated and de-allocated infrequently-only
as often as partrtrons are allocated and de-allocated
However, rf only the aciec partrtrons were represented
m the log brn table, then bm mdex numbers would be
allocated when partrtlons are activated and reclaimed
when they are de-activated, thereby causmg the brn m-
dex number resource manager to be activated more fre-
quently For srmphuty m design, we assume that each
partrtron has a small permanent entry m the partrtron
bm table This requires an informatron block m the
Stable Log Tar1 for each partrtron m the database, but
only active partltrons requrre the much larger log page
buffer The amount of stable reliable memory required
for the Stable Log Tall depends on the total number
of partrtrons m the database and the number of active
partitions Each partition uses a small amount-on the
order of 50 bytes, and each active partition requires a
log page buffer-on the order of 2 to 16 kilobytes (de-
pending on log page suse)

Each partrtron has an mformatron block rn Its log bm
contarnmg the followmg entnes

108

Partrtron Address (Segment Number, Partrtron
Number)

Update Count

LSN of First Log Page

Log Page Directory

The Parid:on Addrcrr IS attached to each page of log
records that IS wntten to drsk The entry serves as a
consistency check dunng recovery so that the recovery
manager can be assured of havmg the correct page It
also allows the log pages of a partition to be located
when the log 1s used for archive recovery

The Update Gouni and the LSN of Arrt Log Page are
monitors used to tngger a checkpomt operatron for a
partition The update count reflects the number of up-
dates that have been performed on the partrtron When
the update count exceeds a predetermmed threshold,
the partrtron IS marked for a checkpornt operation The
Log Sequence Number of the Arst log page of a partrtron
shows when the partrtron’s Arst log page was wntten, rt
IS the address of the oldest of the partrtron’s log pages
When a partition IS infrequently updated, It wrll have
few log pages and they wdl be spread out over the en-
trre log space The avarlable log space remains constant,
and It IS reused over time The log space holding cur-
rently active log mformatron 1s referred to as the log
wmdow The log window 1s a Axed amount of log disk
space that moves forward through the total disk space
as new log pages are wrrtten to it, so some actrve log
mformatron may fall off the end To allow log space
to be reused, partrtrons are checkpomted If they have
old log rnformatron that IS about to fall off the end of
the log wmdow (There will actually be a grace penod
between when the checkpomt IS tnggered and when the
log space really needs to be reused)

If the log space were mtlnrte, all partition checkpomts
would be tnggered by the update count However, since
the log space IS Amte, infrequently updated partrtlons
wdl have to be checkpointed before they are able to
accumulate a sufflcrent number of updates In this case,
we say that those partrtrons were checkpomted because
of age This works as follows The recovery manager
mamtams an ordered hst of the Arst log pages of all
active partttrons Whenever the log wmdow advances
due to a log page being wrrtten, this Fcrrt LSN list IS
checked for any partition whose Arst log page extends
beyond the log window boundary When a partrtron
becomes active rt IS placed on the First LSN lrst, and
when It IS checkpomted rt IS removed from the list The
head of the hst holds the oldest partrtron, so only a
single test on thus hst IS necessary when checking for
the possrbrlrty of generating a checkpomt due to age

The Log Page Dlrecfory holds pointers to a number
of log pages for a pven partrtron (Figure 4) During
recovery, REDO log records must be apphed m the or-
der that they were onqnally written If log pages were
chamed In order from most recently to least recently
wntten, whrch IS the reverse of the order needed, then
log records could not begin to be applied until the last

Fqure 4 Log Page Drrectorres

of the pages was read (which IS the Arst page needed
for recovery processmg) Instead, a directory allows log
pages to be read rn the order that they are needed dur-
mg recovery The sme of the directory IS chosen to be
equal to the median number of log pages for an active
partrtron so that, dunng recovery, It should often be the
case that the log pages wrll be able to be read rn order
This allows the log records from one page to be used
while the log records from the next page are being read
off of the log disk

If fewer than N (the directory sme) log pages have
been wntten, the directory points to all of the log pages
for the partition (Figure 4(a)) When more than N log
pages have been wntten, the directory will be stored rn
every Nth log page

2.2.4 Flushing Log Records to the Log Disk

When the log records of a partrtron fill up a log page, the
records are written to the log disk The recovery CPU
rssues a disk wnte request for that page and allocates
another page to take Its place (The memory holdmg
the old page IS then released after the drsk wnte has suc-
cessfully Amshed) The recovery CPU can issue a disk
wnte request with little effort because It IS a dedicated
processor, It 1s using real memory, and rt IS probably
running a smgle thread of execution (or at least a mm-
rmal operatmg system) It needs to do little more than
append a disk write request to the drsk device queue
that points to the memory page to be wntten

2.4 Regular Checkpointing

As explained earher, the main purpose of a checkpomt
operation IS to bound the log space used for partrtrons
by writing to drsk those partitions that have exceeded a
predetlned number of log records Its secondary purpose
LS to reclarm the log space of partrtrons that have to be
checkpomted because of age When the recovery man-
ager (running In the recovery CPU) determmes that a
partition should be checkpomted, either due to update
count or age, rt tells the main CPU that the partrtron
IS ready for a checkpoint vra a commumcatron buffer rn

109

the Stable Log Buffer The recovery manager enters the
pertltlon’a address m the buffer along with e flag that
represents the status of the checkpomt for that pertl-
tlon, mltlelly this flag 1s m the requerf state, It changes
to the In-progrerr state while the checkpomt IS runmng,
end It finally reaches the fintrhed state after the check-
point transaction comnuts A fimshed state entry IS e
signal to the recovery CPU to flush the remslnmg log
mformetlon for the pertltlon from the Stable Log Tell
to the log disk

After e partltlon has been checkpomted, though Its
log mformetlon 1s no longer needed for memory recov-
ery, the log mformetlon cannot be discarded because It
IS still needed m the archive log to recover from media
fellure If the pertltlon has any log records rememmg In
the Stable Log Tell, they are flushed to the log disk In
some sltuetlons, partlculerly when a pertltlon IS check-
pointed because of age, e partlel page of log records
may need to be flushed to the log disk In that case, Its
log records are copied to a buffer where they are com-
bmed with other log records to create e full page of log
mformetlon, thereby sevmg log space end disk transfer
time by wntmg only full or mostly full pages to the log

Partltlon checkpomt Images could be kept m well-
known locetlons on the checkpoint disks, slmller to e
shadow page scheme, but that would require a disk
seek to a partltlon’s checkpomt image locetlon for each
checkpoint Instead, checkpomt Images are simply writ-
ten to the first evellable location on the checkpomt
disks end e partltlon’s checkpolnt image location (In
the reletlon catalog) IS updated after each checkpoint
Therefore, for performance reasons, the disks holding
pertltlon checkpoint images are orgemaed m a pseudo-
urculer queue Frequently updated partltlons will pe-
nodlcelly get written to new checkpoint disk locations,
but reed-only or infrequently updated partltlons may
stay In one locetlon for a long time (We use e pseudo-
urculer queue rather than e real clrculer queue so that
pertltlons that are rarely checkpomted don’t move end
are skipped over es the head of the queue passes by)
The checkpomt disk space should be large enough so
that there will be sufficiently many free locetlons, or
Mer, evedeble to hold new checkpoint images

A map of the disks’ storage space 1s kept In the sys-
tem catalogs to allow trensectlons to find the next evell-
able locetlon for writing e partltlon New checkpomt
copies of pertltlons neuer overwnte old copies Instead,
the new checkpomt copy IS wntten to a new locetlon
(the heed of the queue), end Installed atomlcelly upon
commit of the checkpolnt transection The relation
catalog contams the disk locetlons of these checkpolnt
copies so that they can be located and used to recover
partltlons after e crash

The steps of the checkpoint procedure are as follows

1 The recovery CPU Issues a checkpomt request con-
temmg e partltlon address end e status flag m the
Stable Log Buffer

2 The transection manager, runnmg on the mem
CPU, checks the checkpomt request queue m the

3

4

5

6

7

2.5

Stable Log Buffer between transections For each
pertltlon checkpoint request that It finds, It starts
a checkpomt trensectlon to reed the specified per-
tltlon from the database end wnte It to the check-
point disk, and It also sets the checkpoint status
flag to In-progrerr

The checkpoint trensectlon sets e reed lock on the
pertltlon’s relation and waits until It 1s granted
Notice that e smgle read lock on e relation 1s suf-
ficient to ensure that Its relation end Index partl-
tlons are all m e frunraciton conrlrfent state, thus,
only committed date 1s checkpomted

When the reed lock on the pertltlon’s relation
1s granted, the checkpolnt trensectlon allocates a
block of memory large enough to hold the partl-
tlon, copies the partltlon into that memory, end
releases the read lock Relation locks are held Just
long enough to copy e partltlon et memory speeds,
so checkpoint trensectlons will cause mlmmel m-
terference with normal trensactlons The check-
point trensactlon then locates e free ares on the
checkpoint disk to hold the partltlon (Since mul-
tiple checkpomt trensectlons may be executing m
parallel, e wnte latch on the dnk allocation map
1s required for this)

The updates to the disk allocetlon map end the
partltlon’s catalog entry are logged before the per-
tltlon IS actually wntten to disk Checkpomts of
catalog pertltlons are done m e manner slmller to
regular partltlons, except that thar disk locations
are dupllceted In stable memory and m the disk
log (because catalog mformetlon must be kept In
e well-known place so that It can be found easily
dunng recovery)

The pertltlon IS written to the checkpoint disk end
the checkpomt transectlon commits The memory
buffer holdmg the checkpomt copy IS released, the
new disk location for the partition 1s installed In
Its catalog entry, end the status of the checkpoint
operation 1s changed to jin:rhed

The recovery manager, on seemg the finished state
of the checkpoint operetlon, flushes the partltlon’s
rememmg log mformetlon from the Stable Log
Buffer to the log disk

Post-Crash Memory Recovery

Smce the pnmary copy of the database IS memory-
resident, the only way e trensectlon can run IS If the
mformatlon It needs 1s In mem memory Restoring the
memory copy of the database entslls restonng the cat-
alogs and then Indices nght away, then usmg the mfor-
metlon m the catalogs to restore the rest of the database
on e demand basis The mformetlon needed to restore
the catalogs 1s a list of catalog partltlon addresses, and
this 1s kept In e well-known locetlon--lt IS stored twice,
m the Stable Log Buffer end m the Stable Log Tell,
end It 1s penodlcally wntten to the log disk Once the

110

catalogs and thar mdmes have been restored, regular

transactron processmg can begm
A Transactron could demand the recovery of a index

or relatron partrtron m one of two ways

1 It could predeclare the relatrons and mdmes that rt
requrred wrth knowledge gamed from query compr-
latlon Then, when the relatrons and rndmes were
restored m therr entirety the transactron could run

2 It could srmply reference the database dunng the
course of regular processmg and generate a restore
process for those partrtrons that are not yet re-
covered Because of reasons having to do wrth
holdmg latches over process swatches (explarned
m [Lehman 87]), rf a transactron made a reference
to an unrecovered portion of the database whrle
holdmg a latch, It would have to grve up the latch
or abort

There IS a tradeoff-method (1) IS sample, but It re-
stncts the avarlabrlrty of the database by forcmg the
transactron to wart untrl the enfrre set of relatrons and
mdmes that It requested are avadable before the trans-
actron can run On the other hand, method (2) allows
for more avadabrhty by restormg only those needed par-
trtrons, but It adds complexity and the possrbrhty of
several transactron aborts durmg restart It appears
that experrmentstron on an actual rmplementatron 1s
requrred to resolve thus Issue

Usmg either method, transactrons generate requests
to have certam partrtlons restored The transactron
manager checks the relatron catalog for these entrres
to see If they are memory-resrdent If they are not, It
mltrates a set of recovery transactrons to recover them,
one per partrtron A relatron catalog entry contams a
hst of partrtron descnptors that make up the relatron, so
the transactron manager knows whmh partltrons need
to be recovered Each descnptor grves the drsk locatron
of the partrtron along wrth its current status (memory-
resrdent or drsk-resident)

A recovery transactron for a partrtron reads the par-
trtron’s checkpoint copy from the checkpornt drsk and
issues a request to the recovery CPU to read the par-
trtron’s log records and place them m the Stable Log
Buffer Once the partrtron and Its log records are both
avadable, the log records are apphed to the partrtron
to bnng rt up to Its state precedmg the crash (The
processmg of log records can be overlapped wrth the
readmg of log pages rf the pages can be read m the
correct order) Then, between regular transactrons, a
system transactron passes through the catalogs and IS-
sues recovery transactrons (at a lower pnonty) for par-
trtrons that have not yet been recovered and that have
not been requested by regular transactrons

2.5.1 Reading in the Log Records

The operations specrfied by log records must be appbed
m the same order that they were ongmally performed
A smgle backwards lmked hst of log pages would force
the recovery manager to read euery log page before It

Letter 1 Represents

/yzgcj

Table 1 Varmble Conventrons

could even begn to apply the log records Recall that
a &rectory of log pages 1s therefore used here, and smce
the drrectory sme IS chosen to be equal to the antrcr-
pated average number of log pages for a partrtron, It
should be possrble m many cases to schedule log page
reads m the order that they were orrgmally wrrtten
Thus, the log records from one page can be apphed to
the partrtron whrle the next page of log records are be-
mg read When the number of log pages exceeds the
drrectory sise, It IS possible to get to the first log page

after I- ,,~~~~,“;so!,,~,~~:,,~,l page reads

Relatron log records represent operatrone to update
a field, insert a tuple, or delete a tuple m a partrtron
(More complmated issues mvolvmg changes to relatron
schema mformatron are beyond the scope of thre drs-
cussron) Index log records represent partsion-rpecsfic
operatrons on index components Recall that a smgle
mdex update may rnvolve several different actrons to be
applied to one or more index partrtrons For example,
a tree update operation can modrfy several tree nodes,
thus generatmg several different log records A pven
log record always affects exactly one partrtron

2.6 Archive Logging

The drsk copy of the database 1s basmally the archive
copy for the prmary memory copy, but the drsk copy
also requrres an archrve copy (probably on tape or op-
tmal drsk) rn case of disk medra Isrlure Protectmg the
log disks and database checkpomt drsks comes under
the well-known area of tradrtronal archive recovery, for
which many algorithms are known [Haerder 831, so It IS
not drscussed here

3 PERFORMANCE ANAL-
YSIS OF THE RECOV-
ERY PROPOSAL

To get an Idea of how this recovery mechanrsm ~111
perform, m thus sectron we examrne the performance
of the three marn operatrons of the recovery compo-
nent loggrng, checkpomtmg, and post-crash recovery
First, the logging capacrty of the recovery mechamsm
IS calculated to determme the maxrmum rate at whmh
rt can process log records Second, the frequency of

111

Name Explanatron Value and Umts
I recordJookup Read one log record and determme mdex of proper log bm 20 Instructrons / Record
I copy Aar4 Startup cost of copymg a stnng of bytes 3 Instructrons / Copy
I cop, -add Addrtronal cost per byte of copymg a string of bytes 0 125 Instructrons / Byte
I wrdc-1nd Cost of rmtlating a disk wnte of a full log bm page 500 Instructions / Page Wrote

IpJdl@C Cost of allocating a new log bin page and releasmg the old 100 Instructrons / Page Wnte
one

Ipage-update Cost of updating the log bm page mformatron 10 Instructrons / Record

Ip.pc-ekcck Cost of checking the exrstence of a log brn page 10 Instructrons / Log Record

lpvoccrr-LSN Cost of mamtammg the LSN count and checking for pos-
sable checkpomts

40 Instructrons / Page Wrote

I ckcckpord Cost of srgnalmg the main CPU to start a checkpomt trans- 40 Instructrons / Checkpornt
action

I record-ror: Total cost of the record sorting process (Calculated) Instructrons / Record

Ipp-Wt’it. Total cost of wrrtmg a page from the SLT to the log drsk (Calculated) Instructions / Page

Slo,-record Average sme of a log record 24 Bytes / Record

Sro* -pep Siae of a log page 8 Kilobytes / Page
s peritt1or Siee of a partition 48 Krlobytes / Partrtron
N upd& The number of log records that a partltron can accumulate 1000 Log Records / Partition

before a checkpomt 1s triggered

N~o~-~c~cr Average number of log pages for a partition (Calculated) Log Pages / Partition

Rbyic,~~oyps(: Byte rate of the loggng component (Calculated) Bytes / Second
R ~c,&,-~Osscd Record rate of the loggmg component (Calculated) Log Records / Second
R ckcckpod Frequency of checkpomts (Calculated) Checkpomts / Second
P reeo+cry MIPS power of the recovery CPU 1 0 M&on Instructrons / Second

Table 2 Parameter Deacrrptrons

checkpoint transactions IS calculated for various log-
gng rates, and the overhead imposed by checkpointmg
transactions 1s calculated as a percentage of the total
number of transactrons that are running Fmally, the
process of post-crash recovery IS outlmed for an mdlvrd-
ual partrtron and performance issues are discussed, and
then the performance advantage of partrtron-level re-
covery is demonstrated by comparing rt with database-
level recovery

3.1 Logging, Checkpointing, and
Recovery Parameters

Before we begm the analysrs, we introduce the param-
eters that wrll be used throughout this section Table 1
grves the conventrons that we use for the names of the
parameters, and Table 2 hsts each parameter of interest
along with rts meamng, value (determined as described
below), and units

The environment used to generate these figures 1s
based on a mrdsmed mainframe with a 6 MIP uniproces-
sor for the mam CPU and a smaller 1 MIP umprocessor
for the recovery CPU ’ The stable r&able memory for
the recovery CPU 1s composed of the faster mamframe
memory chrps, but rt 1s four times slower due to the

‘The speed of the mam CPU 1s not used m any of the
cslculatronr presented here, but we mention It to put the
reader m the proper frame of mmd

complexrty of making It stable and &able ’
Instructron counts per operatron are estimated (this

recovery scheme has not yet been Implemented) and
overheads produced by procedure calls, process swrtch-
mg and operatmg system mteractron have been some-
what accounted for by padding the instructron counts
for the operatrons Complrcated microcoded rnstruc-
trons such as the block move rnstructron are represented
as multrple mstructrons A gencrsc mstructron executed
on the recovery processor 1s assumed to execute m one
microsecond and a memory reference IS assumed to ex-
ecute m about one rmcrosecond The reader should
keep m nund that the mstructron count numbers ap-
pear smaller than normal system numbers The recov-
ery component IS highly specrahaed and requires only
a minrmal operating system, and rt has sole control of
the log disks when they are actrvely recervrng log infor-
matron (The recovery component releases control of
a log disk when that disk IS transferred to the archive
component to role the contents of the disk onto tape)

The disk parameters rn Table 2 are based on a two-
head per surface high-performance disk drive It uses
two read/write heads per surface, so rt has relatively
low seek times The transfer rate for a track of data
IS double the transfer rate for mdrvrdual pages, par-

‘The cost and performance figurer of thts stable memory
are proJected from current technology Ths memory II not
available today, but WC b&eve It WIU be widely ardable
w&in the next decade

112

trtrons are wrrtten m whole tracks, whereas log pages
are wrrtten mdrvrduslly (requrrmg separate disk opers-
tions) To schreve the maxrmum transfer rate possrble
for wrrtmg log pages, the drsk sectors of the log drsk
are interleaved, logrcally s4acent sectors are physrcally
one sector apart (For srmphuty, sectors are assumed
to be the srue of one page) After wrrtmg one page, a
drsk needs a small amount of thrni tame to set up for the
next page wnte-more time, we assume, than the trme
rt takes to travel from the end of one sector to the begm-
rung of the next physrcslly s$scent sector Therefore,
by logcally mterleavmg the sectors, the disk has the
time of one full sector to reset for the next page wnte
We also use different seek times for the checkpornt disks
and the log disks The seek time for a partition read
IS an average seek time, as a partrtron can be anywhere
on the disk m relatronshrp to the drsk head dunng the
recovery process However, even though the log pages
for a psrtrtron wrll be spread out over the log space,
each page wrll be relstrvely close to rts srbhng, so the
seek times between log pages should be somewhat less
than the average seek time

Prckrng an optrmal srae for partrtrons and log pages
mvolves dealing with a hat of tradeoffs For example,
the log page srae represents a subtle tradeoff between
the space required to hold log pages m the Stable Log
Buffer and the frequency of page writes and page allo-
catrons The partrtron slut affects several factors the
number of entnes m the Stable Log Tad, since larger
psrtrtrons mean fewer partrtron entnes, the cost and
efRcrency of checkpornts, smce larger partrtrons mrght
cause a larger percentage of non-updated data to be
wntten dunng a checkpornt operstlon, and the over-
head of managing partitions, since smaller partitions
mean mamtammg more entnes per relstron The sraes
for log pages and partrtrons m Table 2 were chosen from
the middle of a range of possrble values, given the specr-
Acatrons and database reference patterns of a psrtrculsr
database system, rt may be possrble to pick better page
srxe and psrtrtron snse values

3.2 Logging Capacity Analysis
The logging rate of a recovery mechamsm must be
greater than the rate at which the marn CPU can gen-
erate log records, or else the recovery mechamsm will
be the performance bottleneck of the system We estr-
mate the logging cspscrty of the proposed design usmg
a simple snslytrcal model ’ Durmg normal processmg
the recovery CPU spends most of Its time moving log
records from the Stable Log Buffer mto partition bins
m the Stable Log Tall, rt spends a smaller portion of
its time rmtratmg disk wnte requests for full pages of
log records and, an even smaller portion of Its time is

‘Note Space lnmtatlons force us to descnbe only bnefly
the underlymg formulas on which the performance graphs
are based For a more complete and mrratlva dcscnptlon of
the formulas, the reader 1s referred to [Lehman 86b] The
reader II also remmded that Table 2 smnmsrmcs the me-g
of each parameter used m the anslys1s

Loggrng Copoclty of Recovery Component
15,000,

Figure 6 Graph 1-Loggrng Speed

spent notrfymg the msln CPU of psrtrtrons that must
be checkpomted

The cost of the Arst aspect of recovery processmg
1s the cost of the rorf:ng process of moving a single log
record from the Stable Log Buffer to its correct locatron
m the Stable Log Tall

I tCCord~8o~i - - &cord-loohup •t &w-cbcck +

Ico,y-‘dcrd t (IcoPy-add * slog-record) •t

Ipqe-update t ~pc~cAw *
Slog-record
s

log-).#”

The second and third aspects of the loggmg process
entarl wntmg the psrtrtron bm log pages to disk as they
All up and notifying the msm CPU each time a partition
needs to be checkpomted

Ipage-wrate = Lnoc-,rtl t Iproccrr-ZSN t
I ChCChpOd

N update *
‘log-record

30*-p*#C

The recovery processor executes a number of mstruc-
trons to move a log record from the Stable Log Buffer
to 8 partition bm in the Stable Log Tall Irccor(-ro~r
and rt executes a number of rnstructrons to write a psr-
trtron bm log page to disk IrcJc-wc,~e If we combme
those mstructron costs m terms of mstructrons per byte
and drvrde that into the processing power of the system
(mstructrons per second) then we get the speed of the
loggrng component m bytes per second

Rbltea-logJcd =
P rk?corery

I
record *or:

sIopecocd

Graph 1 shows the logpng speed rn log records per
Rb,icr IO cd second (l.c., .+ for various log record and

log -record
disk page sines The number of log records generated
by a transactron IS of course spphcatron-dependent It
can range from a few log records over hundreds of thou-
sands of rnstructrons (for computatron-mtensrve trans-
sctrons) to a few records over several thousand mstruc-
trons (for Gray’s debit/credit transsctrons [Gray 851) to

113

Loqglng Capaclly III TransactIons per Second

-S- Loq Record

+ Lmq Record

+ L,q Rorrrd nizn 20

+I- L,q Record

Fqure 6 Graph 2-Transactron Rates

one log record over only hundreds of rnstructrons (for
update mtensrve transsctrons) Graph 2 shows the var-
IOUS maxrmum transactron rates that can be supported
by the loggmg mechamsm as the number of log records
generated by a transaction IS varred

Typrcal log records should be small, as common op-
erations such as mdex operatrons, numerical field up-
dates, and delete operatrons all generate log records
that are 8 to 24 bytes in size Larger log records will be
generated by other operatrons - updates to long fields
or msertrons of whole tuples, for example - but these
are expected to occur less frequently Gray’s notron of
a typmal debrt/credrt transactron 1s one that wrrtes ap-
proxrmately four log records Given four log records per
transactron, our loggmg component estimated capacrty
IS approxrmately 4,000 transactlone per second-a fig
ure sufflcrently high to suggest that the logging compo-
nent will probably not be the bottleneck of the system s

3.3 Checkpointing Overhead Anal-
ysis

The recovery processor does little work for checkpomt-
mg When rt notices that an obJect should be check-
pornted, rt srmply signals the mam CPU that the task
should be done The maJor overhead lies with the main
CPU, as it performs the real work of a checkpornt oper-
ation It 1s responsrble for locking the obJect, copying
rt to a side buffer and then releasing the lock on the pri-
mary copy of the partrtron, locating a disk track for the
partrtron, logging the updates to the disk map and cat-
alog mformatron, schedulmg the drsk write, and finally,
commrttmg the checkpomt transactron

The frequency of checkpornt transactions IS of m-
terest because rt shows the percentage of all transac-
trons that are devoted to regular transactron processmg
versus the percentage that are devoted to checkpomt-

eNote that we’re not clamung that we cm produce 4,000
transactions per second- we’re sunply clslrmng that the re-
covery component sppcars to be able to handle that rate of
log records

mg partrtrons (Checkpomt transactrons are relatively
small, so they would be on the same order of computa-
tion as a debit/credit transactron, thus evaluatrng the
cost of this checkpoint mechamsm as a percentage of
overall transactron load appears to be a valid measure-
ment) The frequency of checkpomt transactrons 1s de-
termined by the logging rate, the update count for each
partrtron, the number of active partrtrons, the drstrr-
butron of updates over the active partrtrons, and the
size of the log window (Recall that the log window 1s
the active portion of the reusable log) For a pven log
window size, an active partrtron may reside m the log
window long enough to accumulate enough updates to
tngger a checkpornt, or it may not receive many up-
dates, m whrch case rt would be checkpomted because
of age (so that Its space may be reclaimed) The num-
ber of checkpomts triggered by update count depends
on the number of active partrtrons for a particular log
window and the drstrrbutron of log records over those
partrtrons Given an rnilmte log window, checkpomts
of all active partitrons would eventually be triggered by
update count, m which case the checkpomt rate would
be:

R
R

checkpod =
tccovdn-logged

N update

This 1s the best possrble scenano, as the cost of each
checkpoint operation would be amortrzed over Nupdale
update operatrons

Since log space IS finite, there will be some actrve
partrtrons that do not accumulate N,,&(e updates be-
fore their log space needs to be reclarmed, so they wrll
be checkpornted because of age instead This leads to a
higher number of checkpomt operatrons, as the cost of
checkpomts tnggered by age are amortrzed over fewer
than N,+& update operatrons Thus, the worst case
occurs when each active partrtron accumulates only one
page of log records before rt 1s checkpornted In thus
case 7

S
Rchtxkpotnc = Rrrcordc-loJged *

log-record

s log-pap

It 1s not likely that the best or worst case wrll ever oc-
cur, instead, there wrll be some percentage of each type
of checkpomt operatron For a grven number of actrve
partrtrons, a large log window srmply provrdes a better
opportunity for ti partition to accumulate N,,z,jcle log
records than a small wrndow Thus, for performance
reasons, there IS a mmrmum log window size for a given
number of active partitions-there should be at least
enough pages in the low window to hold NSpd,,(e log
records for every active partrtron The only lrmrta-
trons on the maxrmum srae are related to how much
disk space IS affordable

To calculate an average case checkpomt frequency,
rt 1s necessary to use a nux of checkpomts trrggered by

7A partrtlon does not take up disk log space until It has
accumulated at least a page of log records

114

so-. CheckpoInt Frequency

Frgure 7 Graph 3-Possible Checlcpomt Prequen-
cles

age and tnggered by update count For a grven percent-
age of partltrons that are checkpomted because of age,
there are a range of possrble checkpomt frequencies, as
those partrtrons could have anywhere from a smgle page
of updates to almost NuFdPtc updates For comparison
purposes we wrll always assume the worst case-that
a partrtron checkpomted because of age has accumu-
lated only one page of log records Thus, the equation
to determine the checkpoint rate for given fractions of
partrtlons being checkpomted because of update count
(ftrgdCltUWlt) and age (fcse) 1s

Rather than try to choose actual numbers for the log
wmdow srue, the number of active partrtrons, and the
dlstnbutron of log records, we simply examine some drf-
ferent mrxes of checkpomt trigger percentages Graph
3 shows the checkpoint frequenues for various update
counts and trigger percentages as the loggrng rate 1s
vaned The log window srae and the number of ac-
tive partrtrons deternune the number of checkpornts,
but the logging rate determines how frequently they
will occur-the logging rate determines how fast pages
of log records go into the log wmdow, and thus, how
fast they reach the end of the log window, possibly
tnggermg checkpomt operatrons For an update count
of 1,000, rf the log window size 1s large enough to al-
low 60 percent of the active partitions to accumulate
N ,+,tc log records, then the checkpomt frequency will
be farrly low Assuming an average transactron writes
about 10 log records, this would rndlcate that the check-
point transactrons generated at this frequency would
compose only 1 5 percent of the total transaction load
An average number of log records less than 10 would
simply decrease the percentage of checkpoint transac-
tions

A larger update count causes fewer checkpomt op-

erations to occur for a given trigger percentage, but rt
also mcreases the suggested nummum srae of the log
window A srmrlar effect 1s seen when the log page sure
IS doubled or the log record size IS halved, as uther one
mcreases the number of log records that an active par-
tition must accumulate before rt can have a checkpoint
triggered by age (Recall that an active partrtron’s log
mformatron will not be wntten to the log disk until rt
has accumulated at least one full page of log records rn
the Stable Log Tall)

3.4 Discussion of Post-Crash Parti-
tion Recovery

The purpose of the partrtron-level recovery algorrthm
IS to allow transactrons to begrn processmg as soon as
then data IS restored Transactrons issue requests for
certain relatrons to be recovered (either “on demand”
during the course of the transactron or predeclared at
the begmmng of the transaction) and they are able to
proceed when their requested relations are avadable,
they do not have to wart for the cnisre database to be re-
stored An upper bound on the time needed to recover
a relation 1s the sum of its partition recovery times A
partrtron’s recovery time IS deterrmned by the time rt
takes to read its checkpomt image from the checkpomt
disk, to read all of its log pages, and to apply those
log pages to its checkpomt image A partltron’s check-
point image and its log pages may be read m parallel,
since they are on different disks Also, provided that
the log page directory was chosen to be large enough
to hold entries for all of the log pages for the partrtron,
the log pages can be read m the order that they were
orrgmally written, thus allowmg the log records from
one log page to be apphed to the partltron In parallel
with the reading of other log pages (This assumes, of
course, that the time required to apply a page of log
records to a partition 1s less than the time rt takes to
read a log page) s

9.4.1 Comparison with Complete Reload-
ing

The main alternative to partrtron-level recovery IS
database-level recovery An interesting point 1s that
database-level recovery 1s a special case of partrtion-
level recovery, with one very large partrtron (the en-
tire database) An attractive feature of partrtron-level
recovery 1s that rt 1s flexible enough to perform pure
partrtron-level recovery (read a partition, read Its log
mformatron and recover it), full database-level recov-
ery (read all partltrons, read all of the log, recover all
partltlons), or some level m-between An optrmiaatron
to pure partition-level recovery would be to load some
srgmficant portion of the log into memory during recov-
ery so that the seek costs to read these pages would be

8Spacc conrldcrataonr prolublt us from prorxhng a more
detmled descrlptlon of the recovery costs We refer the m-
tererted reader to [Lehman Mb]

115

ebrmnsted

4 CONCLUSION
Prevrous work m recovery, both for tradrtronal drsk-
based database systems and for memory-resident sys-
tems, has addressed Issues of loggmg, checkpomtmg and
recovenng a database Many designs have been pro-
posed, but none of them have completely satisfied the
needs of a hrgh-performance, memory-resident database
system Such a system needs a fast, efficient loggmg
mechamsm that can assrmrlate log records as fart or
faster then they can be produced, an efllcrent check-
point operatron that can amortrze the cost of a check-
point over many updates to the database, and a post-
crash recovery mechamsm that IS geared toward allow-
mg transactrons to run as qurckly as posrrble after a
crash

A desrgn has been presented that meets these three
cnteria Wrth the use of stable relrable memory and
a recovery processor, the logging mechamsm appears
to be able to assrnulate log records as fast as they can
be produced Checkpoint operatrons for partrtrons are
tnggered when the partrtrons have recerved a sIgmAcant
number of updates, and thus the cost of each checkpoint
operatron 1s amortrzed over many updates Recovery of
data m our desrgn 1s onented toward transactron re-
sponse time After a crash, relations that are requested
by transactrons are recovered first so that these trans-
actrons can begn processmg nght away The remammg
relatrons are recovered m the background on a low pri-
orrty bans

6 Acknowledgements
Our thanks to Jrm Gray, John Palmer, Jrm Stamos and
the SIGMOD referees for therr helpful comments and
suggestrons on rmprovmg thnr paper

6 REFERENCES
[Amman 861 A Ammann, M Hanrahan, and R

Knshnamurthy, “Design of a Memory Resrdent
DBMS,” Proc IEEE COMPCON, San Francisco,
February 1986

[Dewitt 841 D DeWrtt, et al, “Implementatron
Techmques for Marn Memory Database Systems,”
Proc ACM SIGMOD Conf , June 1984

[Dewitt 861 D DeWrtt and R Gerber, “Multrpro-
cessor Hash-Based Join Algonthms,” Proc llih
Conf Very Large Dolo B~ICI, Stockholm, Swe-
den, August 1986

[Eich 861 M Erch, MMDB Recoaery, Southern
Methodrst Umv Dept of Computer Scrences
Tech Rep [86-CSE-11, March 1986

[Elhardt 841 K Elhardt and R Bayer, “A Database
Cache for Hugh Performance and Fast Restart In
Database Systems,” ACM !l’ranr on Daiabarc
Syriemr 9, 4, December 1984

[Eswaran 761 K Eswaran, J Gray, R Lone, and I
Trarger, “The Notrons of Consrstency and Predl-
cate Locks In a Database System,” Comm of ihe
ACM 19, 11, Nov 1976.

[Gray 781 J Gray, “Notes on Database Operatmg
Systems,” In Operaimg Syrfemr An Advanced
CoutJe, Sprmger-Verlag, New York, 1978

[Gray 811 J Gray, et al, “The Recovery Manager of
System R,” ACM Compuitng Surseyr 18, 3, June
1981

[Gray 861 J Gray, et al, “One Thousand Transactrons
Per Second,” Proc IEEE COMPCON, San Fran-
CISCO, February 1985

[Haerder 881 T Haerder and A Reuter, “Prmcr-
ples of Transactron-Orrented Database Recovery,”
ACM Compuimg Surweyr 15, 4, December 1983

[Hagmann 861 R Hagmann, “A Crash Recovery
Scheme for a MemoryResIdent Database Sys-
tem,” IEEE Tranracilonr on Compuierr C-95, 9,
September 1986 1

[IBM 791 IBM IMS Verrcon 1 Rekore 1 5 Fari Path
Feaiure Dercrtpi:on and Dercgn Gucde, IBM World
Trade Systems Centers (G320-6776), 1979

[IBM 841 An IBM Gwde Lo IMS/VS Vi RJ Daia En-
try Daiabare (DEDB) Foe&y, IBM Internatronal
Systems Centers (GG24-1633-O), 1984

[Kohler 811 W Kohler, “A Survey of Techniques for
Synchromzatron and Recovery m Decentrabzed
Computer Systems,” ACM Compuicng Surueyr iJ,
,8, June 1981

[Lehman 86a] T Lehman and M Carey, “Query Pro-
cessmg In Mam Memory Database Management
Systems,” Proc ACM SIGMOD Conf , May 1986

[Lehman 80b] T Lehman, Dercgn and Perfor-
mance Ewluairon of a Mom Memory Relaisonal
Daiabare Syeiem, Ph D Drssertatron, Umversrty
of Wrsconsm-Madrson, August 1986

[Lehman 86~1 T Lehman and M Carey, “A Study
of Index Structures for Marn Memory Database
Management Systems,” Proc Idih Conf Very
Large Daia Barer, August 1986

[Lehman 871 T Lehman and M Carey, “Concur-
rency Control in Memory-Rendent Database Sys-
tems,” (submitted for publication)

[Leland 861 M Leland and W Roome, “The Srhcon
Database Machme,” Proc 4th Ini Workrhop on
Doiobore Machmer, Grand Bahama Bland, March
1985

[Lindsay 791 B Lindsay, et al, Noier on Dtrircbuled
Dolaborer, IBM Research Report RJ 2671, San
Jose, C&&forma, 1979

116

[Lorie 771 R Lone, “PhysIcal Integnty In a Large
Segmented Database,” ACM Tranr on Daiabare
Syriemr Z, 1, March 1977

[Reuter 801 A Reuter, “A Past TransactIon-onented
Loggmg Scheme for UNDO Recovery,” IEEE
Tranr Soffwate Eng SE-b, July 1980

[Reuter 841 A Reuter, “Performance Analysis of Re-
covery Techmques,” ACM Tranr on Database
Syrlemr 9, 4, December 1984

[Salem 861 K Salem and H Garcia-Mohna, Crarh
Recooery Mechantrmr for Macn Siorage Daiabare
Syrlemr, Pnnceton Umv Computer Science Dept
Tech Rep CS-Tech Rep [034086, Apnl 1986

[Shapiro 861 L Shapiro,
“Jam Processmg m Database Systems with Large
Main Memones,” ACM !Ranr on Dafabare Syr-
iemr, September 1986

[Thompson 861 W Thompson, Masn
Memory Daiabare Algordhmr for Muk8procerror8,
Ph D Dlssertatlon, Umv Cahforma-Davis, June
1986

117

