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Abstract 
Wrth memory prrces droppmg and memory slaes m- 
creasmg accordrngly, a number of researchers are ad- 
dressmg the problem of desrgnmg hrgh-performance 
database systems for managing memory-restdent data 
In thus paper we address the recovery problem m the 
context of such a system We argue that exrstmg 
database recovery schemes fall short of meetmg the re- 
qmrements of such a system, and we present a new re- 
covery mechamsm whrch IS designed to overcome therr 
shortcommgs The proposed mechamsm takes advan- 
tage of a few megabytes of rehable memory m order to 
orgamae recovery mformatron on a per “obJect” basrs 
As a result, It IS able to amortme the cost of check- 
pomts over a controllable number of updates, and rt 
IS also able to separate post-crash recovery mto two 
phases-hrgh-speed recovery of data whrch IS needed 
rmmedrately by transacttons, and background recov- 
ery of the remammg portions of the database A turn- 
ple performance analysrs IS undertaken, and the results 
suggest our mechamsm should perform well m a hrgh- 
performance, memory-resrdent database envrronment 

1 INTRODUCTION 
Memory-resrdent database systems are an attractrve 
alternatrve to drsk-resrdent database systems when 
the database fits m mam memory ’ A memory- 
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‘It II urually the case that the enttre database wzll not 
fit m the amount of memory avsllable, but xt may often be 
the case that a large amount of the frequently accessed data 

PermIssIon to copy wlthout fee all or part of this material IS granted 
provided that the copies are not made or dlstrlbuted for direct 
commercial advantage, the ACM copyrtght notlce and the title of 
the pubhcatlon and Its date appear, and notlce 1s given that copymg 
IS by permlsslon of the Assoclatlon for Computing Machmery To 
copy otherwise, or to repubhsh, requires a fee and/or specfic 
permission 

0 1987 ACM 0-89791-236-5/87/0005/0104 754 

Michael J. Carey 
Computer Sciences Department 

University of Wlsconsm-Madison 

resrdent database system can offer srgmficant perfor- 
mance rmprovements over disk-resrdent database sys- 
tems through the use of memory-based, instead of drsk- 
based, algortthms [Ammann 85, DeWrtt 84, Dewitt 
85, Lehman 86a, Lehman 86b, Lehman 86c, Salem 86, 
Shaprro 86, Thompson 861 Wrth the potentral perfor- 
mance gain, however, comes an Increased dependency 
on the database recovery mechamsm 

A memory-resident database system IS more vulner- 
able to farlures Power loss, chip burnout, hardware 
errors, or software errors (e g , an erroneous program 
causrng a “runaway” CPU) can corrupt the pnmary 
copy of the database A stable backup copy of the 
database must be mamtarned rn order to restore all or 
part of the memory-resrdent copy after a failure Simple 
battery-backup memory IS affordable, but rt 1s not nec- 
essanly rebable and rt 1s not immune to software errors, 
so It 1s not a complete eolutron to the memory-resident 
database system recovery problem Large memorres 
that are both stable and reha5le are both expensive and 
potentrally slow-It is drfficult to say Just how expen- 
save or slow these types of memones are because they 
are not widely avarlable Usmg current technology as 
a gmde, we bekeve that m the near future stable and 
reliable memory will be available rn sines on the order of 
tens of megabytes and wrll have read/wnte performance 
two to four trmes slower than regular memory of the 
same technology-too slow and too small to use for the 
entire marn memory, but large and fast enough to use 
as a stable buffer Using this stable rehable buffer, we 
attempt to desrgn of a set of recovery algorrthms that 
both functron correctly for memory-resrdent database 
systems and perform sufficrently well to warrant bemg 
used rn a hrgh-performance database system envrron- 
ment 

1.1 Lessons Learned From Disk- 
Based Recovery Methods 

Memory-resident database systems have recovery needs 
srmrlar to those of drsk-restdent database systems 
Indeed, almost any drsk-onented recovery algorrthm 
--_ 
will fit For the present, we are concerned only with the 
memory-resident database as a self-contamed umt 
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would juncfron correctly In a memory-readent database 
system environment In any database system, the mam 
purpose of the recovery mechamsm 1s to restore the pn- 
mary copy of the database to Its most recent consistent 
state after a fadure A disk-onented system IS slmdar 
to a memory-resident system m the handhng of trans- 
action commit, as both types of systems need to record 
the effects of the transaction on some stable storage de- 
vice In this sectlon we descnbe how some disk-oriented 
recovery designs handle the transaction commit proce- 
dure Smce we do not have space m this paper to de- 
scnbe these algorithms completely, we must refer the 
reader to the literature for further details [Kohler 81, 
Haerder 83, Reuter 841 

When a transaction has updated some portlon of the 
database and 1s ready to make Its changes permanent, 
there are several ways to handle the commit procedure 

1 The transaction could flush all oflts updated pages 
to the database residing on disk, as In the TWIST 
algonthm [Reuter 841 

2 The transaction could flush all oflts updated pages 
to a separate device, thereby allowmg It to write 
all of the dirty pages m one action usmg chslned 
I/O, as m the Database Cache algonthm [Elhardt 
841 

3 The transactlon could make shadow copies of up- 
dated pages to slmpllfy post-crash recovery, while 
still mamtalmng a record-level log of updates, as In 
the System R recovery algonthm [Lone 77, Gray 

811 
4 The transaction could wnte a record-level log of 

the updates that It has performed (using the wnte- 
ahead-log protocol [Gray 78]), and penodlcally 
take checkpotdr to refresh the database and keep 
the amount of log data small, as m the Lmdsay cl 
al algorithm [Lindsay 791 

In [Reuter 841, Reuter analyzed the four methods 
mentloned above and found that, for a disk-oriented 
system, method (4) [Lindsay 791 outperformed the rest, 
method (3) [Lorle 771 was also found to perform well 
when the page table was memory-rendent These meth- 
ods are deslgned to produce little processmg overhead 
during normal transaction processmg, however, some 
log processmg IS reqmred for transaction UNDO or sys- 
tem restart Tks appears to be the best approach for a 
high-performance database system, as UNDO process- 
mg 1s typically done only for approumately 3 percent of 
all transactlons [Gray 781, and restart 1s needed rarely 
m most systems The Database Cache and TWIST al- 
gonthms, on the other hand, Involve larger processmg 
overheads for normal transaction processmg, as they are 
designed to provide support for fast UNDO processmg 
and fast system restarts 

From exammmg disk-onented database systems, 
then, It appears that method (4) would provide a good 
baas for a memory-resident algorithm Its wnte-ahead 
log protocol usmg record-level log records appears to 
be a good method for handling the transaction commit 

process However, the problem with usmg such an “off 
the shelf” disk-onented recovery scheme for a memory- 
resident database system 1s that the performance of the 
recovery mechamsm would probably be poor m those 
cases where the entire memory-rendent database, the 
“buffer”, must be wntten to disk (as m a checkpoint 
operation) or read from disk (as In a system restart nt- 
uatlon) Furthermore, a memory-resident database sys- 
tem appears to be able to obtain performance gams by 
ebmmatlng the buffer manager altogether [Lehman 86a, 
Lehman 88~1, so buffer-oriented recovery algonthms 
must be modified to reflect a “memory-resident” ap- 
proach rather than a “buffer-pool” approach We must 
take a closer look at the requirements of a memory- 
resident system m order to design proper memory- 
resident database recovery algonthms We first exam- 
me previous work on memory-resident database system 
recovery [Dewitt 84, Ammann 86, Elch 86, Hagmann 
86, Leland 86, Salem 861 

1.2 Memory-Resident Database 
Recovery Proposals 

Recovery designs for memory-resident database systems 
have not been very different from those for disk-resident 
database systems, with one notable exceptlon IBM’s 
IMS FASTPATH [IBM 79, IBM 841 FASTPATH was 
the first to mtroduce the notlon of cotnm~t groupr The 
basic idea of commit groups 1s to amortize the cost of 
log I/O synchromzatlon over several transactions rather 
than JUSt a smgle transactlon Where a amgle transac- 
tion would normally wait for its log mformatlon to be 
flushed to disk before comnuttmg and releasing locks, 
group commit allows It to prccommaf, whereby Its log m- 
formation IS stdl m volatile memory (not yet flushed to 
disk), but Its locks are released anyway The log mfor- 
matlon of several transactions accumulates, bemg writ- 
ten to disk when the log buffer fills up Ftnally, once the 
log lnformatlon arrives safely on disk, the transaction 
officially commits This techmque allows transactions 
accessmg the same lnformatlon to “overlap” somewhat, 
thus mcreasmg concurrency and transaction through- 
put Note that there 1s no danger of a database update 
arnvmg at the disk before the correspondmg log record, 
as the database update stays (only) In memory, In the 
special case of a checkpomt, the log would be forced 
to disk first DeWltt et at [DeWltt 841 point out that 
a stable log buffer memory can also be used to allow 
transactions to commit without log I/O synchromza- 
tlon, at the expense of makmg the log buffer memory 
both stable and rehable A stable log buffer provides 
the addltlonal advantage of allowlng the recovery mech- 
anism to post-process the cornnutted log data, perform- 
mg log compression or change accumulation 

In performing database checkpomts, the memory- 
resident database system recovery proposals do not dlf- 
fer much from disk-onented methods, they flush the 
dirty portion of the buffer to stable storage Dewitt 
et al [Dewitt 841 propose first creating a shadow copy 
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of the dirty portron of the database and then writing 
rt to disk Erch [Erch 861 proposes writing the dirty 
portion of the database to drsk when the database sys- 
tem naturally qmesces (though this seems likely to be a 
rare event m a high-performance database system) Fr- 
nally, Hagmann [Hagmann 863 proposes simply stream- 
ing the entire memory copy of the database to disk for 
a checkpomt In a sense, these methods each treat the 
database as a single obJect instead of a collection of 
smaller obJects-for post-crash recovery, these meth- 
ods will reload the entire database and process the log 
before the database IS ready for transactron processing 
to resume 

It IS often the case that a transaction can run wrth 
only a small portion of the database present m mem- 
ory A more flexible recovery method would recover 
the data that transactrons need In order to run on 
a demand basis, allowing transaction processing and 
general recovery to proceed In parallel We propose 
a design for a recovery component that provides hrgh- 
speed loggmg, efficient checkpomtmg, and a post-crash 
recovery phase that enables transaction processmg to 
resume qurckly In the next section we describe our 
new memory-resident database system recovery algo- 
rithm In Section three, we provide a simple analysis 
that supports our claim of high performance Section 
four concludes the paper 

2 A NEW RECOVERY 
METHOD 

In order to descnbe our recovery scheme more clearly, 
we need to describe rt m the context of our intended 
Marn Memory Database Management System (MM- 
DBMS) architecture [Lehman 86bJ The mam feature 
of relevance here IS its orgamzatron of memory Every 
database obJect (relation, index, or system data struc- 
ture) 1s stored rn its own logmal segment Segments are 
composed of one or more fixed-size partrtlons, whrch 
are the unit of memory allocatron for the underlying 
memory mapping hardware (We use the word partr- 
tron rather than page to avoid any preconcerved notions 
about the uses of a partition ) Partrtrons represent a 
complete umt of storage, database entltres (tuples or 
mdex components) are stored m partitions and do not 
cross partition boundarres r Partrtrons are also used 
as the umt of transfer to disk rn checkpoint operatrons 

2.1 Overview of Proposal 
The proposed memory-resrdent database recovery 
scheme uses two Independent processors, a mam proces- 
sor and a recovery processor, stable memory comprrsmg 
two different log components, a Stable Log Buffer and 
a Stable Log Tall, and disk memory to hold both a 

“Long fields, such as those used to hold voxe or lmsge 
data, are managed by a separate mechamrm not descrrbed 
here 

checkpoint copy of the database and log mformatron 
The two processors run Independently and commum- 
cate through a buffer area rn the Stable Log Buffer 

The mam CPU performs regular transactron 
processing-its only loggmg functron is to write a trans- 
action’s log records to the Stable Log Buffer The recov- 
ery manager, running on the recovery CPU, reads log 
records from the Stable Log Buffer that belong to com- 
nutted transactrons and places them mto bms (called 
par~rtcon Qrnr) In the Stable Log Tall accordmg to the 
address of the partrtron to whrch they refer Each partl- 
tron having outstanding log mformatron IS represented 
m the Stable Log Tall by such a partrtron bm Each 
partition bin holds BED0 log records and other mls- 
cellaneous log information pertammg to its partrtron 
Partrtrons having outstandmg log rnformatlon are re- 
ferred to as o&we 

As partition bins become full, they are written out to 
the log disk, log pages for a given partition are charned 
together for recovery purposes Grouping log records 
accordmg to therr correspondmg partrtrons In the Sta- 
ble Log Tall allows the recovery manager to keep track 
of the update activity on mdrvrdual partrtrons When 
a partrtron has accumulated a specrtled threshold count 
of log records, It IS marked to be checkpomted, and thus 
the cost of checkpomt operatrons are amortrzed over a 
controlled number of update operations Grouping log 
records also has another srgmficant advantage-It al- 
lows partrtrons to be recovered independently 

After a crash, the recovery manager restores the 
database system catalogs and then signals the trans- 
action manager to begn processmg As each transac- 
tion requests access to relatrons and mdrces, the trans- 
action manager checks to make sure that these obJects 
are available, and, If not, mrtrates recovery transactrons 
to restore them on a per partition basis 

In the remainder of this sectron the supportmg hard- 
ware for the recovery mechanism IS presented, then, 
details of the recovery algonthms, mcludrng regular 
logging, checkpomtrng, recovery, and archive loggrng, 
are described A simple performance analysis of the 
logging, checkpomtmg, and recovery algonthms 1s pro- 
vided m Section 3 

2.2 Hardware Organization 
The hardware architecture for the recovery mechamsm 
IS composed of a recovery CPU, several megabytes of 
reliable, stable main memory, and a set of drsks The re- 
covery CPU has access to all of the stable memory, and 
the mam CPU has access to at least part of the stable 
memory The two CPU’s could both address all of mem- 
ory (both volatrle and nonvolatrle), or they could share 
only the address space of the Stable Log Buffer To al- 
low more flexrbrhty m the actual hardware design, and 
also to provide better rsolatron of faults, our algorithms 
require the two CPU’s to share only the address space 
of the Stable Log Buffer, usmg rt as a commumcatron 
buffer along with Its other uses Also, though the re- 
covery duties could be performed by a process running 
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records belongmg to commltted transactlons from the 
Stable Log Buffer and places them Into partltlon bms 
m the Stable Log Tall Last, the psrtltlon bm pages of 
REDO log records m the Stable Log Tall are wrltten 
to disk when they become full These three steps are 
dlscussed in more detad below 

2.3.1 Writing Log Records 

TransactIons write log records to two places REDO 
log records are placed m the Stable Log Buffer and 
UNDO log records are placed m the volatile UNDO 
space REDO log records are kept m stable memory so 
that transactlons can comnut Instantly-they do not 
need to wait until the REDO log records are flushed to 

Figure 1 Recovery Mechamsm Arclutecture 

on one of many processors of a multlprocessor, a dedl- 
cated recovery processor (or even a dedicated recovery 
mult:processor) can take advantage of speclahaatlon by 
havmg closer ties with the log disk controllers and run- 
nmg a special nummal operating system The disks are 
dlvlded into two groups and used for different purposes 
One set of disks holds checkpomt mformatlon, and the 
other set of (duplexed) disks holds log mformatlon The 
recovery CPU manages the log disks, and both the re- 
covery CPU and the mam CPU manage the checkpoint 
disks Figure 1 shows the basic layout of the system 

The two processors have logically different functions 
The main CPU IS responsible for transaction process- 
mg, while the recovery CPU manages logging, check- 
pomtmg operations, and archive storage Although the 
two sets of tasks could be done by a smgle processor, 
It 1s apparent that there 1s a large amount of paral- 
lehsm possible Indeed, although only two processors 
are mentloned, each CPU could even perhaps be a mul- 
tlprocessor which further exploits parallehsm wlthm Its 
own component In dlscussmg the design, however, we 
refer to only two CPU8 

disk UNDO log records are not kept In stable mem- 
ory because they are not needed after a transaction 
commits-the memory-resident database system does 
not allow modified, uncomnutted data to be wntten to 
the stable disk database A log record corresponds to 
an entity In a partltlon a relation tuple or an index 
structure component An entity IS referenced by Its 
memory address (Segment Number, Partltlon Number, 
and Partltlon Offset) 

Both the volatde UNDO space and the Stable Log 
Buffer (SLB) are managed as a set of fixed-are blocks 
These blocks are allocated to transactions on a demand 
baas, and a gven block will be dedicated to a single 
transaction durmg Its hfetlme As a result, crltlcal sec- 
tions are used only for block allocatlon - they are not a 
part of the log wntmg process itself Because of these 
separate lists, transactions do not have to synchronize 
with each other to wnte to the log Therefore, having 
each transaction manage Its own log record hst greatly 
amehorates the tradltlonal “hot spot” problem of the 
log tall 

The chains of log blocks for a transactlon will appear 
on one of two hsts, the committed transaction list or 
the uncommitted transaction hst When a transaction 
commits, its REDO log block cham IS removed from 
the uncommitted list and appended to the committed 
transaction list, and Its UNDO log block cham 1s du- 

2.3 Regular Logging carded (Figure 2) The comnutted transaction hst IS 
maintained m commit order so that the log records can 
be sent to disk m this order 

2.5.2 Log Record Format 

The loggmg component manages two logs one log holds 
regular audit trail data such as the contents of the mes- 
sage that lmtlates the transactlon, time of day, user 
data, efc , and the other holds the REDO/UNDO m- 
formatlon for the transaction The audit trail log IS 
managed In a manner described by Dewitt cf al [De- 
Watt 841 and uses stable memory We concentrate on 
the REDO/UNDO log, as It 1s responsible for mamtam- 
mg database consistency and 1s the maJor focal point 
of recovery 

Log records have different formats depending on the 
type of database entity that they correspond to (re- 
lation tuples or index components) and on the type of 
operation that they represent All log records have four 
main parts 

The REDO/UNDO loggmg procedure 1s composed of 
three tasks First, transactlons create both REDO and 
UNDO log records, the REDO log records are placed 
mto the Stable Log Buffer, and the UNDO records are 
placed into a volatile UNDO space Second, the recov- 
ery manager (runmng on the recovery CPU) reads log 

TAG 1 Bm Index 1 Tran Id 1 Operation 

TAG refers to the type of log record, Ban Indez 1s the 
index into the part&on bm table where the log record 
will be relocated, !Z’ran Id IS the transaction Identifier, 
and Operafron identifies the REDO operation for the 
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Figure 2 Wrbng Log Records 

entrty The bm index 1s a drrect index mto the partrtron 
bm table, and It IS used to locate the proper partrtron 
bm log page for an entrty’s log record Partrtlons mam- 
tam then partrtron bm index entnes as part of their 
control rnformatron, so a bm index entry IS easrly lo- 
cated given the address of any of Its entitles (The next 
section drscusses this m more detail ) 

Relation log records may specrfy REDO values for 
specrfic entitles, so m one sense they are o&e log 
records However, they may also specrfy operatrons that 
entail updating the stnng space m a partrtron, which 1s 
managed as a heap and 1s not locked m a two-phase 
manner, so relation log records are really operat:on log 
records for a partrtron Index log records specify REDO 
operatrons for mdex components (e g , T Tree nodes or 
Modrfied Linear Hash nodes [Lehman SSc]) A single 
mdex update operatron may affect several mdex compo- 
nents, so a log record must be wntten for each updated 
mdex component To marntam seriahaabrhty and to 
srmplrfy UNDO processmg for transactrons, mdex com- 
ponents and relation tuples are locked wrth two-phase 
locks [Eswaran 761 that are held until transaction com- 
mlt 

2.3.3 Grouping Log Records by Partition 

The mam purpose of the Stable Log Tall IS to pro- 
vide a stable storage environment where log records can 
be grouped accordmg to their correspondmg partrtrons 
The recovery manager uses this for several things 

1 The log records correspondmg to a partrtlon are 
collected m page sme units and wntten to disk 
The log pages for a partition are linked, thus al- 
lowing all the pages of a partmular partrtron to be 
located easily dunng recovery 

2 The number of log records for each partrtron IS 
recorded, so the checkpomt mechamsm can wnte 
those partrtrons that have a specrtled amount of 
log mformatron to disk, thus amortrmng the cost 
of a checkpontt operation over many update opera- 
tions Once a partrtron has been checkpomted, Its 

SIable Redo lnfomlallal 
(SIable lag St&r) 

’ 7-1 - xidr-4. op-18 
Tl - e-3. op_lb 
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Figure 3 Regular Tmusactlon Loggmg 

correspondrng log rnformatron IS no longer needed 
for memory recovery 

3 Redundant address mformatron may be stnpped 
from the log records before they are wntten to 
drsk, thereby condensing the log 

Log records are read from the Stable Log Buffer and 
placed mto partrtron bms rn the Stable Log Tall (Fig- 
ure 3) Each log record IS read, Its bm mdex field IS 
used to calculate the memory address of the log page of 
the record’s partrtron bin, and the log record IS copied 
mto that log page There are two mam possibrhtres for 
orgamsmg the log bm table there could be an entry m 
the table for every exrstrng partrtron m the database, 
or there could be an entry for every active partrtron 
(Recall that an active partrtron IS one that has been 
updated smce Its last checkpomt, so rt has outstand- 
mg log mformatron ) Smce the bm index should not be 
sparse, bin mdex numbers must be allocated and freed, 
hke fixed blocks of memory If every partrtron were rep- 
resented m the log bm table, then bm index numbers 
would be allocated and de-allocated infrequently-only 
as often as partrtrons are allocated and de-allocated 
However, rf only the aciec partrtrons were represented 
m the log brn table, then bm mdex numbers would be 
allocated when partrtlons are activated and reclaimed 
when they are de-activated, thereby causmg the brn m- 
dex number resource manager to be activated more fre- 
quently For srmphuty m design, we assume that each 
partrtron has a small permanent entry m the partrtron 
bm table This requires an informatron block m the 
Stable Log Tar1 for each partrtron m the database, but 
only active partltrons requrre the much larger log page 
buffer The amount of stable reliable memory required 
for the Stable Log Tall depends on the total number 
of partrtrons m the database and the number of active 
partitions Each partition uses a small amount-on the 
order of 50 bytes, and each active partition requires a 
log page buffer-on the order of 2 to 16 kilobytes (de- 
pending on log page suse) 

Each partrtron has an mformatron block rn Its log bm 
contarnmg the followmg entnes 
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Partrtron Address (Segment Number, Partrtron 
Number) 

Update Count 

LSN of First Log Page 

Log Page Directory 

The Parid:on Addrcrr IS attached to each page of log 
records that IS wntten to drsk The entry serves as a 
consistency check dunng recovery so that the recovery 
manager can be assured of havmg the correct page It 
also allows the log pages of a partition to be located 
when the log 1s used for archive recovery 

The Update Gouni and the LSN of Arrt Log Page are 
monitors used to tngger a checkpomt operatron for a 
partition The update count reflects the number of up- 
dates that have been performed on the partrtron When 
the update count exceeds a predetermmed threshold, 
the partrtron IS marked for a checkpornt operation The 
Log Sequence Number of the Arst log page of a partrtron 
shows when the partrtron’s Arst log page was wntten, rt 
IS the address of the oldest of the partrtron’s log pages 
When a partition IS infrequently updated, It wrll have 
few log pages and they wdl be spread out over the en- 
trre log space The avarlable log space remains constant, 
and It IS reused over time The log space holding cur- 
rently active log mformatron 1s referred to as the log 
wmdow The log window 1s a Axed amount of log disk 
space that moves forward through the total disk space 
as new log pages are wrrtten to it, so some actrve log 
mformatron may fall off the end To allow log space 
to be reused, partrtrons are checkpomted If they have 
old log rnformatron that IS about to fall off the end of 
the log wmdow (There will actually be a grace penod 
between when the checkpomt IS tnggered and when the 
log space really needs to be reused ) 

If the log space were mtlnrte, all partition checkpomts 
would be tnggered by the update count However, since 
the log space IS Amte, infrequently updated partrtlons 
wdl have to be checkpointed before they are able to 
accumulate a sufflcrent number of updates In this case, 
we say that those partrtrons were checkpomted because 
of age This works as follows The recovery manager 
mamtams an ordered hst of the Arst log pages of all 
active partttrons Whenever the log wmdow advances 
due to a log page being wrrtten, this Fcrrt LSN list IS 
checked for any partition whose Arst log page extends 
beyond the log window boundary When a partrtron 
becomes active rt IS placed on the First LSN lrst, and 
when It IS checkpomted rt IS removed from the list The 
head of the hst holds the oldest partrtron, so only a 
single test on thus hst IS necessary when checking for 
the possrbrlrty of generating a checkpomt due to age 

The Log Page Dlrecfory holds pointers to a number 
of log pages for a pven partrtron (Figure 4) During 
recovery, REDO log records must be apphed m the or- 
der that they were onqnally written If log pages were 
chamed In order from most recently to least recently 
wntten, whrch IS the reverse of the order needed, then 
log records could not begin to be applied until the last 

Fqure 4 Log Page Drrectorres 

of the pages was read (which IS the Arst page needed 
for recovery processmg) Instead, a directory allows log 
pages to be read rn the order that they are needed dur- 
mg recovery The sme of the directory IS chosen to be 
equal to the median number of log pages for an active 
partrtron so that, dunng recovery, It should often be the 
case that the log pages wrll be able to be read rn order 
This allows the log records from one page to be used 
while the log records from the next page are being read 
off of the log disk 

If fewer than N (the directory sme) log pages have 
been wntten, the directory points to all of the log pages 
for the partition (Figure 4(a)) When more than N log 
pages have been wntten, the directory will be stored rn 
every Nth log page 

2.2.4 Flushing Log Records to the Log Disk 

When the log records of a partrtron fill up a log page, the 
records are written to the log disk The recovery CPU 
rssues a disk wnte request for that page and allocates 
another page to take Its place (The memory holdmg 
the old page IS then released after the drsk wnte has suc- 
cessfully Amshed ) The recovery CPU can issue a disk 
wnte request with little effort because It IS a dedicated 
processor, It 1s using real memory, and rt IS probably 
running a smgle thread of execution (or at least a mm- 
rmal operatmg system) It needs to do little more than 
append a disk write request to the drsk device queue 
that points to the memory page to be wntten 

2.4 Regular Checkpointing 

As explained earher, the main purpose of a checkpomt 
operation IS to bound the log space used for partrtrons 
by writing to drsk those partitions that have exceeded a 
predetlned number of log records Its secondary purpose 
LS to reclarm the log space of partrtrons that have to be 
checkpomted because of age When the recovery man- 
ager (running In the recovery CPU) determmes that a 
partition should be checkpomted, either due to update 
count or age, rt tells the main CPU that the partrtron 
IS ready for a checkpoint vra a commumcatron buffer rn 
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the Stable Log Buffer The recovery manager enters the 
pertltlon’a address m the buffer along with e flag that 
represents the status of the checkpomt for that pertl- 
tlon, mltlelly this flag 1s m the requerf state, It changes 
to the In-progrerr state while the checkpomt IS runmng, 
end It finally reaches the fintrhed state after the check- 
point transaction comnuts A fimshed state entry IS e 
signal to the recovery CPU to flush the remslnmg log 
mformetlon for the pertltlon from the Stable Log Tell 
to the log disk 

After e partltlon has been checkpomted, though Its 
log mformetlon 1s no longer needed for memory recov- 
ery, the log mformetlon cannot be discarded because It 
IS still needed m the archive log to recover from media 
fellure If the pertltlon has any log records rememmg In 
the Stable Log Tell, they are flushed to the log disk In 
some sltuetlons, partlculerly when a pertltlon IS check- 
pointed because of age, e partlel page of log records 
may need to be flushed to the log disk In that case, Its 
log records are copied to a buffer where they are com- 
bmed with other log records to create e full page of log 
mformetlon, thereby sevmg log space end disk transfer 
time by wntmg only full or mostly full pages to the log 

Partltlon checkpomt Images could be kept m well- 
known locetlons on the checkpoint disks, slmller to e 
shadow page scheme, but that would require a disk 
seek to a partltlon’s checkpomt image locetlon for each 
checkpoint Instead, checkpomt Images are simply writ- 
ten to the first evellable location on the checkpomt 
disks end e partltlon’s checkpolnt image location (In 
the reletlon catalog) IS updated after each checkpoint 
Therefore, for performance reasons, the disks holding 
pertltlon checkpoint images are orgemaed m a pseudo- 
urculer queue Frequently updated partltlons will pe- 
nodlcelly get written to new checkpoint disk locations, 
but reed-only or infrequently updated partltlons may 
stay In one locetlon for a long time (We use e pseudo- 
urculer queue rather than e real clrculer queue so that 
pertltlons that are rarely checkpomted don’t move end 
are skipped over es the head of the queue passes by) 
The checkpomt disk space should be large enough so 
that there will be sufficiently many free locetlons, or 
Mer, evedeble to hold new checkpoint images 

A map of the disks’ storage space 1s kept In the sys- 
tem catalogs to allow trensectlons to find the next evell- 
able locetlon for writing e partltlon New checkpomt 
copies of pertltlons neuer overwnte old copies Instead, 
the new checkpomt copy IS wntten to a new locetlon 
(the heed of the queue), end Installed atomlcelly upon 
commit of the checkpolnt transection The relation 
catalog contams the disk locetlons of these checkpolnt 
copies so that they can be located and used to recover 
partltlons after e crash 

The steps of the checkpoint procedure are as follows 

1 The recovery CPU Issues a checkpomt request con- 
temmg e partltlon address end e status flag m the 
Stable Log Buffer 

2 The transection manager, runnmg on the mem 
CPU, checks the checkpomt request queue m the 

3 

4 

5 

6 

7 

2.5 

Stable Log Buffer between transections For each 
pertltlon checkpoint request that It finds, It starts 
a checkpomt trensectlon to reed the specified per- 
tltlon from the database end wnte It to the check- 
point disk, and It also sets the checkpoint status 
flag to In-progrerr 

The checkpoint trensectlon sets e reed lock on the 
pertltlon’s relation and waits until It 1s granted 
Notice that e smgle read lock on e relation 1s suf- 
ficient to ensure that Its relation end Index partl- 
tlons are all m e frunraciton conrlrfent state, thus, 
only committed date 1s checkpomted 

When the reed lock on the pertltlon’s relation 
1s granted, the checkpolnt trensectlon allocates a 
block of memory large enough to hold the partl- 
tlon, copies the partltlon into that memory, end 
releases the read lock Relation locks are held Just 
long enough to copy e partltlon et memory speeds, 
so checkpoint trensectlons will cause mlmmel m- 
terference with normal trensactlons The check- 
point trensactlon then locates e free ares on the 
checkpoint disk to hold the partltlon (Since mul- 
tiple checkpomt trensectlons may be executing m 
parallel, e wnte latch on the dnk allocation map 
1s required for this ) 

The updates to the disk allocetlon map end the 
partltlon’s catalog entry are logged before the per- 
tltlon IS actually wntten to disk Checkpomts of 
catalog pertltlons are done m e manner slmller to 
regular partltlons, except that thar disk locations 
are dupllceted In stable memory and m the disk 
log (because catalog mformetlon must be kept In 
e well-known place so that It can be found easily 
dunng recovery) 

The pertltlon IS written to the checkpoint disk end 
the checkpomt transectlon commits The memory 
buffer holdmg the checkpomt copy IS released, the 
new disk location for the partition 1s installed In 
Its catalog entry, end the status of the checkpoint 
operation 1s changed to jin:rhed 

The recovery manager, on seemg the finished state 
of the checkpoint operetlon, flushes the partltlon’s 
rememmg log mformetlon from the Stable Log 
Buffer to the log disk 

Post-Crash Memory Recovery 

Smce the pnmary copy of the database IS memory- 
resident, the only way e trensectlon can run IS If the 
mformatlon It needs 1s In mem memory Restoring the 
memory copy of the database entslls restonng the cat- 
alogs and then Indices nght away, then usmg the mfor- 
metlon m the catalogs to restore the rest of the database 
on e demand basis The mformetlon needed to restore 
the catalogs 1s a list of catalog partltlon addresses, and 
this 1s kept In e well-known locetlon--lt IS stored twice, 
m the Stable Log Buffer end m the Stable Log Tell, 
end It 1s penodlcally wntten to the log disk Once the 
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catalogs and thar mdmes have been restored, regular 

transactron processmg can begm 
A Transactron could demand the recovery of a index 

or relatron partrtron m one of two ways 

1 It could predeclare the relatrons and mdmes that rt 
requrred wrth knowledge gamed from query compr- 
latlon Then, when the relatrons and rndmes were 
restored m therr entirety the transactron could run 

2 It could srmply reference the database dunng the 
course of regular processmg and generate a restore 
process for those partrtrons that are not yet re- 
covered Because of reasons having to do wrth 
holdmg latches over process swatches (explarned 
m [Lehman 87]), rf a transactron made a reference 
to an unrecovered portion of the database whrle 
holdmg a latch, It would have to grve up the latch 
or abort 

There IS a tradeoff-method (1) IS sample, but It re- 
stncts the avarlabrlrty of the database by forcmg the 
transactron to wart untrl the enfrre set of relatrons and 
mdmes that It requested are avadable before the trans- 
actron can run On the other hand, method (2) allows 
for more avadabrhty by restormg only those needed par- 
trtrons, but It adds complexity and the possrbrhty of 
several transactron aborts durmg restart It appears 
that experrmentstron on an actual rmplementatron 1s 
requrred to resolve thus Issue 

Usmg either method, transactrons generate requests 
to have certam partrtlons restored The transactron 
manager checks the relatron catalog for these entrres 
to see If they are memory-resrdent If they are not, It 
mltrates a set of recovery transactrons to recover them, 
one per partrtron A relatron catalog entry contams a 
hst of partrtron descnptors that make up the relatron, so 
the transactron manager knows whmh partltrons need 
to be recovered Each descnptor grves the drsk locatron 
of the partrtron along wrth its current status (memory- 
resrdent or drsk-resident) 

A recovery transactron for a partrtron reads the par- 
trtron’s checkpoint copy from the checkpornt drsk and 
issues a request to the recovery CPU to read the par- 
trtron’s log records and place them m the Stable Log 
Buffer Once the partrtron and Its log records are both 
avadable, the log records are apphed to the partrtron 
to bnng rt up to Its state precedmg the crash (The 
processmg of log records can be overlapped wrth the 
readmg of log pages rf the pages can be read m the 
correct order ) Then, between regular transactrons, a 
system transactron passes through the catalogs and IS- 
sues recovery transactrons (at a lower pnonty) for par- 
trtrons that have not yet been recovered and that have 
not been requested by regular transactrons 

2.5.1 Reading in the Log Records 

The operations specrfied by log records must be appbed 
m the same order that they were ongmally performed 
A smgle backwards lmked hst of log pages would force 
the recovery manager to read euery log page before It 

Letter 1 Represents 

/yzgcj 

Table 1 Varmble Conventrons 

could even begn to apply the log records Recall that 
a &rectory of log pages 1s therefore used here, and smce 
the drrectory sme IS chosen to be equal to the antrcr- 
pated average number of log pages for a partrtron, It 
should be possrble m many cases to schedule log page 
reads m the order that they were orrgmally wrrtten 
Thus, the log records from one page can be apphed to 
the partrtron whrle the next page of log records are be- 
mg read When the number of log pages exceeds the 
drrectory sise, It IS possible to get to the first log page 

# 
after I- ,,~~~~,“;so!,,~,~~:,,~,l page reads 

Relatron log records represent operatrone to update 
a field, insert a tuple, or delete a tuple m a partrtron 
(More complmated issues mvolvmg changes to relatron 
schema mformatron are beyond the scope of thre drs- 
cussron ) Index log records represent partsion-rpecsfic 
operatrons on index components Recall that a smgle 
mdex update may rnvolve several different actrons to be 
applied to one or more index partrtrons For example, 
a tree update operation can modrfy several tree nodes, 
thus generatmg several different log records A pven 
log record always affects exactly one partrtron 

2.6 Archive Logging 

The drsk copy of the database 1s basmally the archive 
copy for the prmary memory copy, but the drsk copy 
also requrres an archrve copy (probably on tape or op- 
tmal drsk) rn case of disk medra Isrlure Protectmg the 
log disks and database checkpomt drsks comes under 
the well-known area of tradrtronal archive recovery, for 
which many algorithms are known [Haerder 831, so It IS 
not drscussed here 

3 PERFORMANCE ANAL- 
YSIS OF THE RECOV- 
ERY PROPOSAL 

To get an Idea of how this recovery mechanrsm ~111 
perform, m thus sectron we examrne the performance 
of the three marn operatrons of the recovery compo- 
nent loggrng, checkpomtmg, and post-crash recovery 
First, the logging capacrty of the recovery mechamsm 
IS calculated to determme the maxrmum rate at whmh 
rt can process log records Second, the frequency of 
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Name Explanatron Value and Umts 
I recordJookup Read one log record and determme mdex of proper log bm 20 Instructrons / Record 
I copy Aar4 Startup cost of copymg a stnng of bytes 3 Instructrons / Copy 
I cop, -add Addrtronal cost per byte of copymg a string of bytes 0 125 Instructrons / Byte 
I wrdc-1nd Cost of rmtlating a disk wnte of a full log bm page 500 Instructions / Page Wrote 

IpJdl@C Cost of allocating a new log bin page and releasmg the old 100 Instructrons / Page Wnte 
one 

Ipage-update Cost of updating the log bm page mformatron 10 Instructrons / Record 

Ip.pc-ekcck Cost of checking the exrstence of a log brn page 10 Instructrons / Log Record 

lpvoccrr-LSN Cost of mamtammg the LSN count and checking for pos- 
sable checkpomts 

40 Instructrons / Page Wrote 

I ckcckpord Cost of srgnalmg the main CPU to start a checkpomt trans- 40 Instructrons / Checkpornt 
action 

I record-ror: Total cost of the record sorting process (Calculated) Instructrons / Record 

Ipp-Wt’it. Total cost of wrrtmg a page from the SLT to the log drsk (Calculated) Instructions / Page 

Slo,-record Average sme of a log record 24 Bytes / Record 

Sro* -pep Siae of a log page 8 Kilobytes / Page 
s peritt1or Siee of a partition 48 Krlobytes / Partrtron 
N upd& The number of log records that a partltron can accumulate 1000 Log Records / Partition 

before a checkpomt 1s triggered 

N~o~-~c~cr Average number of log pages for a partition (Calculated) Log Pages / Partition 

Rbyic,~~oyps(: Byte rate of the loggng component (Calculated) Bytes / Second 
R ~c,&,-~Osscd Record rate of the loggmg component (Calculated) Log Records / Second 
R ckcckpod Frequency of checkpomts (Calculated) Checkpomts / Second 
P reeo+cry MIPS power of the recovery CPU 1 0 M&on Instructrons / Second 

Table 2 Parameter Deacrrptrons 

checkpoint transactions IS calculated for various log- 
gng rates, and the overhead imposed by checkpointmg 
transactions 1s calculated as a percentage of the total 
number of transactrons that are running Fmally, the 
process of post-crash recovery IS outlmed for an mdlvrd- 
ual partrtron and performance issues are discussed, and 
then the performance advantage of partrtron-level re- 
covery is demonstrated by comparing rt with database- 
level recovery 

3.1 Logging, Checkpointing, and 
Recovery Parameters 

Before we begm the analysrs, we introduce the param- 
eters that wrll be used throughout this section Table 1 
grves the conventrons that we use for the names of the 
parameters, and Table 2 hsts each parameter of interest 
along with rts meamng, value (determined as described 
below), and units 

The environment used to generate these figures 1s 
based on a mrdsmed mainframe with a 6 MIP uniproces- 
sor for the mam CPU and a smaller 1 MIP umprocessor 
for the recovery CPU ’ The stable r&able memory for 
the recovery CPU 1s composed of the faster mamframe 
memory chrps, but rt 1s four times slower due to the 

‘The speed of the mam CPU 1s not used m any of the 
cslculatronr presented here, but we mention It to put the 
reader m the proper frame of mmd 

complexrty of making It stable and &able ’ 
Instructron counts per operatron are estimated (this 

recovery scheme has not yet been Implemented) and 
overheads produced by procedure calls, process swrtch- 
mg and operatmg system mteractron have been some- 
what accounted for by padding the instructron counts 
for the operatrons Complrcated microcoded rnstruc- 
trons such as the block move rnstructron are represented 
as multrple mstructrons A gencrsc mstructron executed 
on the recovery processor 1s assumed to execute m one 
microsecond and a memory reference IS assumed to ex- 
ecute m about one rmcrosecond The reader should 
keep m nund that the mstructron count numbers ap- 
pear smaller than normal system numbers The recov- 
ery component IS highly specrahaed and requires only 
a minrmal operating system, and rt has sole control of 
the log disks when they are actrvely recervrng log infor- 
matron (The recovery component releases control of 
a log disk when that disk IS transferred to the archive 
component to role the contents of the disk onto tape ) 

The disk parameters rn Table 2 are based on a two- 
head per surface high-performance disk drive It uses 
two read/write heads per surface, so rt has relatively 
low seek times The transfer rate for a track of data 
IS double the transfer rate for mdrvrdual pages, par- 

‘The cost and performance figurer of thts stable memory 
are proJected from current technology Ths memory II not 
available today, but WC b&eve It WIU be widely ardable 
w&in the next decade 
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trtrons are wrrtten m whole tracks, whereas log pages 
are wrrtten mdrvrduslly (requrrmg separate disk opers- 
tions) To schreve the maxrmum transfer rate possrble 
for wrrtmg log pages, the drsk sectors of the log drsk 
are interleaved, logrcally s4acent sectors are physrcally 
one sector apart (For srmphuty, sectors are assumed 
to be the srue of one page ) After wrrtmg one page, a 
drsk needs a small amount of thrni tame to set up for the 
next page wnte-more time, we assume, than the trme 
rt takes to travel from the end of one sector to the begm- 
rung of the next physrcslly s$scent sector Therefore, 
by logcally mterleavmg the sectors, the disk has the 
time of one full sector to reset for the next page wnte 
We also use different seek times for the checkpornt disks 
and the log disks The seek time for a partition read 
IS an average seek time, as a partrtron can be anywhere 
on the disk m relatronshrp to the drsk head dunng the 
recovery process However, even though the log pages 
for a psrtrtron wrll be spread out over the log space, 
each page wrll be relstrvely close to rts srbhng, so the 
seek times between log pages should be somewhat less 
than the average seek time 

Prckrng an optrmal srae for partrtrons and log pages 
mvolves dealing with a hat of tradeoffs For example, 
the log page srae represents a subtle tradeoff between 
the space required to hold log pages m the Stable Log 
Buffer and the frequency of page writes and page allo- 
catrons The partrtron slut affects several factors the 
number of entnes m the Stable Log Tad, since larger 
psrtrtrons mean fewer partrtron entnes, the cost and 
efRcrency of checkpornts, smce larger partrtrons mrght 
cause a larger percentage of non-updated data to be 
wntten dunng a checkpornt operstlon, and the over- 
head of managing partitions, since smaller partitions 
mean mamtammg more entnes per relstron The sraes 
for log pages and partrtrons m Table 2 were chosen from 
the middle of a range of possrble values, given the specr- 
Acatrons and database reference patterns of a psrtrculsr 
database system, rt may be possrble to pick better page 
srxe and psrtrtron snse values 

3.2 Logging Capacity Analysis 
The logging rate of a recovery mechamsm must be 
greater than the rate at which the marn CPU can gen- 
erate log records, or else the recovery mechamsm will 
be the performance bottleneck of the system We estr- 
mate the logging cspscrty of the proposed design usmg 
a simple snslytrcal model ’ Durmg normal processmg 
the recovery CPU spends most of Its time moving log 
records from the Stable Log Buffer mto partition bins 
m the Stable Log Tall, rt spends a smaller portion of 
its time rmtratmg disk wnte requests for full pages of 
log records and, an even smaller portion of Its time is 

‘Note Space lnmtatlons force us to descnbe only bnefly 
the underlymg formulas on which the performance graphs 
are based For a more complete and mrratlva dcscnptlon of 
the formulas, the reader 1s referred to [Lehman 86b] The 
reader II also remmded that Table 2 smnmsrmcs the me-g 
of each parameter used m the anslys1s 

Loggrng Copoclty of Recovery Component 
15,000, 

Figure 6 Graph 1-Loggrng Speed 

spent notrfymg the msln CPU of psrtrtrons that must 
be checkpomted 

The cost of the Arst aspect of recovery processmg 
1s the cost of the rorf:ng process of moving a single log 
record from the Stable Log Buffer to its correct locatron 
m the Stable Log Tall 

I tCCord~8o~i - - &cord-loohup •t &w-cbcck + 

Ico,y-‘dcrd t (IcoPy-add * slog-record) •t 

Ipqe-update t ~pc~cAw * 
Slog-record 
s 

log-).#” 

The second and third aspects of the loggmg process 
entarl wntmg the psrtrtron bm log pages to disk as they 
All up and notifying the msm CPU each time a partition 
needs to be checkpomted 

Ipage-wrate = Lnoc-,rtl t Iproccrr-ZSN t 
I ChCChpOd 

N update * 
‘log-record 

30*-p*#C 

The recovery processor executes a number of mstruc- 
trons to move a log record from the Stable Log Buffer 
to 8 partition bm in the Stable Log Tall Irccor(-ro~r 
and rt executes a number of rnstructrons to write a psr- 
trtron bm log page to disk IrcJc-wc,~e If we combme 
those mstructron costs m terms of mstructrons per byte 
and drvrde that into the processing power of the system 
(mstructrons per second) then we get the speed of the 
loggrng component m bytes per second 

Rbltea-logJcd = 
P rk?corery 

I 
record *or: 

sIopecocd 

Graph 1 shows the logpng speed rn log records per 
Rb,icr IO cd second (l.c., .+ for various log record and 

log -record 
disk page sines The number of log records generated 
by a transactron IS of course spphcatron-dependent It 
can range from a few log records over hundreds of thou- 
sands of rnstructrons (for computatron-mtensrve trans- 
sctrons) to a few records over several thousand mstruc- 
trons (for Gray’s debit/credit transsctrons [Gray 851) to 
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Loqglng Capaclly III TransactIons per Second 
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Fqure 6 Graph 2-Transactron Rates 

one log record over only hundreds of rnstructrons (for 
update mtensrve transsctrons) Graph 2 shows the var- 
IOUS maxrmum transactron rates that can be supported 
by the loggmg mechamsm as the number of log records 
generated by a transaction IS varred 

Typrcal log records should be small, as common op- 
erations such as mdex operatrons, numerical field up- 
dates, and delete operatrons all generate log records 
that are 8 to 24 bytes in size Larger log records will be 
generated by other operatrons - updates to long fields 
or msertrons of whole tuples, for example - but these 
are expected to occur less frequently Gray’s notron of 
a typmal debrt/credrt transactron 1s one that wrrtes ap- 
proxrmately four log records Given four log records per 
transactron, our loggmg component estimated capacrty 
IS approxrmately 4,000 transactlone per second-a fig 
ure sufflcrently high to suggest that the logging compo- 
nent will probably not be the bottleneck of the system s 

3.3 Checkpointing Overhead Anal- 
ysis 

The recovery processor does little work for checkpomt- 
mg When rt notices that an obJect should be check- 
pornted, rt srmply signals the mam CPU that the task 
should be done The maJor overhead lies with the main 
CPU, as it performs the real work of a checkpornt oper- 
ation It 1s responsrble for locking the obJect, copying 
rt to a side buffer and then releasing the lock on the pri- 
mary copy of the partrtron, locating a disk track for the 
partrtron, logging the updates to the disk map and cat- 
alog mformatron, schedulmg the drsk write, and finally, 
commrttmg the checkpomt transactron 

The frequency of checkpornt transactions IS of m- 
terest because rt shows the percentage of all transac- 
trons that are devoted to regular transactron processmg 
versus the percentage that are devoted to checkpomt- 

eNote that we’re not clamung that we cm produce 4,000 
transactions per second- we’re sunply clslrmng that the re- 
covery component sppcars to be able to handle that rate of 
log records 

mg partrtrons (Checkpomt transactrons are relatively 
small, so they would be on the same order of computa- 
tion as a debit/credit transactron, thus evaluatrng the 
cost of this checkpoint mechamsm as a percentage of 
overall transactron load appears to be a valid measure- 
ment ) The frequency of checkpomt transactrons 1s de- 
termined by the logging rate, the update count for each 
partrtron, the number of active partrtrons, the drstrr- 
butron of updates over the active partrtrons, and the 
size of the log window (Recall that the log window 1s 
the active portion of the reusable log ) For a pven log 
window size, an active partrtron may reside m the log 
window long enough to accumulate enough updates to 
tngger a checkpornt, or it may not receive many up- 
dates, m whrch case rt would be checkpomted because 
of age (so that Its space may be reclaimed) The num- 
ber of checkpomts triggered by update count depends 
on the number of active partrtrons for a particular log 
window and the drstrrbutron of log records over those 
partrtrons Given an rnilmte log window, checkpomts 
of all active partitrons would eventually be triggered by 
update count, m which case the checkpomt rate would 
be: 

R 
R 

checkpod = 
tccovdn-logged 

N update 

This 1s the best possrble scenano, as the cost of each 
checkpoint operation would be amortrzed over Nupdale 
update operatrons 

Since log space IS finite, there will be some actrve 
partrtrons that do not accumulate N,,&(e updates be- 
fore their log space needs to be reclarmed, so they wrll 
be checkpornted because of age instead This leads to a 
higher number of checkpomt operatrons, as the cost of 
checkpomts tnggered by age are amortrzed over fewer 
than N,+& update operatrons Thus, the worst case 
occurs when each active partrtron accumulates only one 
page of log records before rt 1s checkpornted In thus 
case 7 

S 
Rchtxkpotnc = Rrrcordc-loJged * 

log-record 

s log-pap 

It 1s not likely that the best or worst case wrll ever oc- 
cur, instead, there wrll be some percentage of each type 
of checkpomt operatron For a grven number of actrve 
partrtrons, a large log window srmply provrdes a better 
opportunity for ti partition to accumulate N,,z,jcle log 
records than a small wrndow Thus, for performance 
reasons, there IS a mmrmum log window size for a given 
number of active partitions-there should be at least 
enough pages in the low window to hold NSpd,,(e log 
records for every active partrtron The only lrmrta- 
trons on the maxrmum srae are related to how much 
disk space IS affordable 

To calculate an average case checkpomt frequency, 
rt 1s necessary to use a nux of checkpomts trrggered by 

7A partrtlon does not take up disk log space until It has 
accumulated at least a page of log records 
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so-. CheckpoInt Frequency 

Frgure 7 Graph 3-Possible Checlcpomt Prequen- 
cles 

age and tnggered by update count For a grven percent- 
age of partltrons that are checkpomted because of age, 
there are a range of possrble checkpomt frequencies, as 
those partrtrons could have anywhere from a smgle page 
of updates to almost NuFdPtc updates For comparison 
purposes we wrll always assume the worst case-that 
a partrtron checkpomted because of age has accumu- 
lated only one page of log records Thus, the equation 
to determine the checkpoint rate for given fractions of 
partrtlons being checkpomted because of update count 
(ftrgdCltUWlt ) and age (fcse) 1s 

Rather than try to choose actual numbers for the log 
wmdow srue, the number of active partrtrons, and the 
dlstnbutron of log records, we simply examine some drf- 
ferent mrxes of checkpomt trigger percentages Graph 
3 shows the checkpoint frequenues for various update 
counts and trigger percentages as the loggrng rate 1s 
vaned The log window srae and the number of ac- 
tive partrtrons deternune the number of checkpornts, 
but the logging rate determines how frequently they 
will occur-the logging rate determines how fast pages 
of log records go into the log wmdow, and thus, how 
fast they reach the end of the log window, possibly 
tnggermg checkpomt operatrons For an update count 
of 1,000, rf the log window size 1s large enough to al- 
low 60 percent of the active partitions to accumulate 
N ,+,tc log records, then the checkpomt frequency will 
be farrly low Assuming an average transactron writes 
about 10 log records, this would rndlcate that the check- 
point transactrons generated at this frequency would 
compose only 1 5 percent of the total transaction load 
An average number of log records less than 10 would 
simply decrease the percentage of checkpoint transac- 
tions 

A larger update count causes fewer checkpomt op- 

erations to occur for a given trigger percentage, but rt 
also mcreases the suggested nummum srae of the log 
window A srmrlar effect 1s seen when the log page sure 
IS doubled or the log record size IS halved, as uther one 
mcreases the number of log records that an active par- 
tition must accumulate before rt can have a checkpoint 
triggered by age (Recall that an active partrtron’s log 
mformatron will not be wntten to the log disk until rt 
has accumulated at least one full page of log records rn 
the Stable Log Tall ) 

3.4 Discussion of Post-Crash Parti- 
tion Recovery 

The purpose of the partrtron-level recovery algorrthm 
IS to allow transactrons to begrn processmg as soon as 
then data IS restored Transactrons issue requests for 
certain relatrons to be recovered (either “on demand” 
during the course of the transactron or predeclared at 
the begmmng of the transaction) and they are able to 
proceed when their requested relations are avadable, 
they do not have to wart for the cnisre database to be re- 
stored An upper bound on the time needed to recover 
a relation 1s the sum of its partition recovery times A 
partrtron’s recovery time IS deterrmned by the time rt 
takes to read its checkpomt image from the checkpomt 
disk, to read all of its log pages, and to apply those 
log pages to its checkpomt image A partltron’s check- 
point image and its log pages may be read m parallel, 
since they are on different disks Also, provided that 
the log page directory was chosen to be large enough 
to hold entries for all of the log pages for the partrtron, 
the log pages can be read m the order that they were 
orrgmally written, thus allowmg the log records from 
one log page to be apphed to the partltron In parallel 
with the reading of other log pages (This assumes, of 
course, that the time required to apply a page of log 
records to a partition 1s less than the time rt takes to 
read a log page ) s 

9.4.1 Comparison with Complete Reload- 
ing 

The main alternative to partrtron-level recovery IS 
database-level recovery An interesting point 1s that 
database-level recovery 1s a special case of partrtion- 
level recovery, with one very large partrtron (the en- 
tire database) An attractive feature of partrtron-level 
recovery 1s that rt 1s flexible enough to perform pure 
partrtron-level recovery (read a partition, read Its log 
mformatron and recover it), full database-level recov- 
ery (read all partltrons, read all of the log, recover all 
partltlons), or some level m-between An optrmiaatron 
to pure partition-level recovery would be to load some 
srgmficant portion of the log into memory during recov- 
ery so that the seek costs to read these pages would be 

8Spacc conrldcrataonr prolublt us from prorxhng a more 
detmled descrlptlon of the recovery costs We refer the m- 
tererted reader to [Lehman Mb] 
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ebrmnsted 

4 CONCLUSION 
Prevrous work m recovery, both for tradrtronal drsk- 
based database systems and for memory-resident sys- 
tems, has addressed Issues of loggmg, checkpomtmg and 
recovenng a database Many designs have been pro- 
posed, but none of them have completely satisfied the 
needs of a hrgh-performance, memory-resident database 
system Such a system needs a fast, efficient loggmg 
mechamsm that can assrmrlate log records as fart or 
faster then they can be produced, an efllcrent check- 
point operatron that can amortrze the cost of a check- 
point over many updates to the database, and a post- 
crash recovery mechamsm that IS geared toward allow- 
mg transactrons to run as qurckly as posrrble after a 
crash 

A desrgn has been presented that meets these three 
cnteria Wrth the use of stable relrable memory and 
a recovery processor, the logging mechamsm appears 
to be able to assrnulate log records as fast as they can 
be produced Checkpoint operatrons for partrtrons are 
tnggered when the partrtrons have recerved a sIgmAcant 
number of updates, and thus the cost of each checkpoint 
operatron 1s amortrzed over many updates Recovery of 
data m our desrgn 1s onented toward transactron re- 
sponse time After a crash, relations that are requested 
by transactrons are recovered first so that these trans- 
actrons can begn processmg nght away The remammg 
relatrons are recovered m the background on a low pri- 
orrty bans 
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