Check for
Updates

A Recovery Algorithm for A High-Performance
Memory-Resident Database System

Tobin J. Lehman
Computer Sciences Department
IBM Almaden Research Center

Abstract

With memory prices dropping and memory sizes n-
creasing accordingly, a number of researchers are ad-
dressing the problem of designing high-performance
database systems for managing memory-resident data
In this paper we address the recovery problem in the
context of such a system We argue that existing
database recovery schemes fall short of meeting the re-
qurements of such a system, and we present a new re-
covery mechamsm which 1s designed to overcome their
shortcomings The proposed mechamism takes advan-
tage of a few megabytes of rehable memory 1n order to
orgamize recovery information on a per “object” basis
As a result, 1t 1s able to amortize the cost of check-
points over a controllable number of updates, and 1t
18 also able to separate post-crash recovery mto two
phases—high-speed recovery of data which 1s needed
immediately by transactions, and background recov-
ery of the remaining portions of the database A sim-
ple performance analysis 1s undertaken, and the results
suggest our mechanism should perform well in a high-
performance, memory-resident database environment

1 INTRODUCTION

Memory-resident database systems are an attractive
alternative to disk-resident database systems when
the database fits n main memory ' A memory-

Thus research was partially supported by an IBM Fel-
lowship, an IBM Faculty Development Award, and National
Science Foundation Grant Number DCR-8402818

11t 1s usually the case that the eniire database will not
fit 1in the amount of memory available, but it may often be
the case that a large amount of the frequently accessed data

Permuission to copy without fee all or part of this material 1s granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and 1ts date appear, and notice 1s given that copying
1s by permuission of the Association for Computing Machinery To
copy otherwise, or to republish, requires a fee and/or specfic
permission

© 1987 ACM 0-89791-236-5/87/0005/0104 75¢

104

Michael J. Carey
Computer Sciences Department
University of Wisconsin-Madison

resident database system can offer significant perfor-
mance 1mprovements over disk-resident database sys-
tems through the use of memory-based, instead of disk-
based, algonthms [Ammann 85, DeWitt 84, DeWitt
85, Lehman 86a, Lehman 86b, Lehman 86¢c, Salem 86,
Shapiro 86, Thompson 86] With the potential perfor-
mance gain, however, comes an increased dependency
on the database recovery mechanism

A memory-resident database system 1s more vulner-
able to falures Power loss, chip burnout, hardware
errors, or software errors (e g, an erroneous program
causing a “runaway” CPU) can corrupt the primary
copy of the database A stable backup copy of the
database must be maintained in order to restore all or
part of the memory-resident copy after a fallure Simple
battery-backup memory 1s affordable, but 1t 13 not nec-
essanly reliable and 1t 1s not immune to software errors,
so 1t 15 not & comglete solution to the memory-resident
database system recovery problem Large memones
that are both stable and rehable are both expensive and
potentially slow—it 1s difficult to say just how expen-
sive or slow these types of memories are because they
are not widely available Using current technology as
a guide, we believe that 1n the near future stable and
reliable memory will be available 1n sizes on the order of
tens of megabytes and will have read/wnte performance
two to four times slower than regular memory of the
same technology—too slow and too small to use for the
entire main memory, but large and fast enough to use
as a stable buffer Using this stable rehable buffer, we
attempt to design of a set of recovery algorithms that
both function correctly for memory-resident database
systems and perform sufficiently well to warrant being
used 1n a high-performance database system environ-
ment

1.1 Lessons Learned From Disk-
Based Recovery Methods
Memory-resident database systems have recovery needs

similar to those of disk-resident database systems
Indeed, almost any disk-onented recovery algonthm

will fit For the present, we are concerned only with the
memory-resident database as a self-contained umt

http://crossmark.crossref.org/dialog/?doi=10.1145%2F38714.38730&domain=pdf&date_stamp=1987-12-01

would funcison correctly 1n a memory-resident database
system environment In any database system, the main
purpose of the recovery mechanism 18 to restore the pr-
mary copy of the database to 1ts most recent consistent
state after a fallure A disk-oriented system 1s stmilar
to a memory-resident system in the handhing of trans-
action commit, as both types of systems need to record
the effects of the transaction on some stable storage de-
vice In this section we describe how some disk-onented
recovery designs handle the transaction commit proce-
dure Since we do not have space 1n this paper to de-
scnbe these algonthms completely, we must refer the
reader to the hiterature for further details [Kohler 81,
Haerder 83, Reuter 84]

When a transaction has updated some portion of the
database and 1s ready to make 1ts changes permanent,
there are several ways to handle the commit procedure

1 The transaction could flush all of1ts updated pages
to the database residing on disk, as in the TWIST
algonithm [Reuter 84]

2 The transaction could flush all of its updated pages
to a separate device, thereby allowing 1t to wnte
all of the dirty pages in one action using chained
1/0, as in the Database Cache algonithm [Ethardt
84]

3 The transaction could make shadow copies of up-
dated pages to ssmphfy post-crash recovery, while
still maintaining a record-level log of updates, asin
the System R recovery algonthm [Lorne 77, Gray
81]

4 The transaction could wnte a record-level log of
the updates that 1t has performed (using the wnte-
ahead-log protocol [Gray 78]), and pemnodically
take checkpoinis to refresh the database and keep
the amount of log data small, as in the Lindsay et
al algonithm [Lindsay 79}

In [Reuter 84], Reuter analyzed the four methods
mentioned above and found that, for a disk-onented
system, method (4) [Lindsay 79] outperformed the rest,
method (3) {Lone 77] was also found to perform well
when the page table was memory-resident These meth-
ods are designed to produce little processing overhead
during normal transaction processing, however, some
log processing 1s required for transaction UNDO or sys-
tem restart This appears to be the best approach fora
high-performance database system, as UNDO process-
ing 18 typically done only for approximately 3 percent of
all transactions [Gray 78], and restart 1s needed rarely
in most systems The Database Cache and TWIST al-
gonthms, on the other hand, involve larger processing
overheads for normal transaction processing, as they are
designed to provide support for fast UNDO processing
and fast system restarts

From examining disk-omented database systems,
then, 1t appears that method (4) would provide a good
basis for & memory-resident algonithm Its wnite-ahead
log protocol using record-level log records appears to
be a good method for handling the transaction commut

105

process However, the problem with using such an “off
the shelf” disk-oriented recovery scheme for a memory-
resident database system 1s that the performance of the
recovery mechanism would probably be poor in those
cases where the entire memory-resident database, the
“buffer”, must be wntten to disk (as 1n a checkpoint
operation) or read from disk (as 1n a system restart sit-
uation) Furthermore, a memory-resident database sys-
tem appears to be able to obtain performance gains by
eliminating the buffer manager altogether [Lehman 86a,
Lehman 86¢], so buffer-oriented recovery algomthms
must be modified to reflect a “memory-resident” ap-
proach rather than a “buffer-pool” approach We must
take a closer look at the requirements of a memory-
resident system in order to design proper memory-
resident database recovery algorithms We first exam-
1ne previous work on memory-resident database system
recovery [DeWitt 84, Ammann 85, Eich 86, Hagmann
86, Leland 85, Salem 86)

1.2 Memory-Resident Database

Recovery Proposals

Recovery designs for memory-resident database systems
have not been very different from those for disk-resident
database systems, with one notable exception IBM’s
IMS FASTPATH [IBM 79, IBM 84] FASTPATH was
the first to introduce the notion of commit groups The
basic 1dea of commut groups is to amortize the cost of
log I/ O synchromzation over several transactions rather
than just a single transaction Where a single transac-
tion would normally wait for 1ts log mmformation to be
flushed to disk before committing and releasing locks,
group commut allows 1t to precommat, whereby 1ts log in-
formation 1s still in volatile memory (not yet flushed to
disk), but 1ts locks are released anyway The log infor-
mation of several transactions accumulates, being wnit-
ten to disk when the log buffer fills up Finally, once the
log information arrives safely on disk, the transaction
officially commits This technique allows transactions
accessing the same information to “overlap” somewhat,
thus increasing concurrency and transaction through-
put Note that there 1s no danger of a database update
arnving at the disk before the corresponding log record,
as the database update stays (only) 1n memory, 1n the
special case of a checkpoint, the log would be forced
to disk first DeWitt et al [DeWitt 84] point out that
a stable log buffer memory can also be used to allow
transactions to commit without log I/O synchromza-
tion, at the expense of making the log buffer memory
both stable and rehable A stable log buffer provides
the additional advantage of allowing the recovery mech-
anism to post-process the commutted log data, perform-
ing log compression or change accumulation

In performing database checkpoints, the memory-
resident database system recovery proposals do not dif-
fer much from disk-oriented methods, they flush the
dirty portion of the buffer to stable storage DeWitt
el al [DeWitt 84] propose first creating a shadow copy

of the dirty portion of the database and then writing
it to disk Eich [Eich 86] proposes wnting the dirty
portion of the database to disk when the database sys-
tem naturally quiesces (though this seems likely to be a
rare event 1n & high-performance database system) Fi-
nally, Hagmann [Hagmann 86] proposes simply stream-
ing the entire memory copy of the database to disk for
a checkpoint In a sense, these methods each treat the
database as a single object instead of a collection of
smaller objects—for post-crash recovery, these meth-
ods will reload the entire database and process the log
before the database 1s ready for transaction processing
to resume

It 1s often the case that a transaction can run with
only a small portion of the database present in mem-
ory A more flexible recovery method would recover
the data that transactions need in order to run on
a demand basis, allowing transaction processing and
general recovery to proceed in parallel We propose
a design for a recovery component that provides high-
speed logging, efficient checkpointing, and a post-crash
recovery phase that enables transaction processing to
resume quickly In the next section we describe our
new memory-resident database system recovery algo-
nthm In Section three, we provide a simple analysis
that supports our claim of high performance Section
four concludes the paper

2 A NEW RECOVERY
METHOD

In order to descrnibe our recovery scheme more clearly,
we need to describe 1t 1n the context of our intended
Main Memory Database Management System (MM-
DBMS) architecture [Lehman 86b] The main feature
of relevance here 18 1ts orgamization of memory Every
database object (relation, index, or system data struc-
ture) 1s stored in 1ts own logical segment Segments are
composed of one or more fixed-size partitions, which
are the umit of memory allocation for the underlying
memory mapping hardware (We use the word parti-
tion rather than page to avoid any preconceived notions
about the uses of a partition) Partitions represent a
complete unit of storage, database entities (tuples or
index components) are stored 1n partitions and do not
cross partition boundanes ? Partitions are also used
as the umt of transfer to disk in checkpoint operations

2.1 Overview of Proposal

The proposed memory-resident database recovery
scheme uses two independent processors, a main proces-
sor and a recovery processor, stable memory compnsing
two different log components, a Stable Log Buffer and
a Stable Log Tail, and disk memory to hold both a

2Long fields, such as those used to hold voice or image
data, are managed by a separate mechamusm not described
here

106

checkpoint copy of the database and log information
The two processors run independently and commum-
cate through a buffer area 1n the Stable Log Buffer

The mam CPU performs regular transaction
processing—1ts only logging function 1s to write a trans-
action’s log records to the Stable Log Buffer The recov-
ery manager, runmng on the recovery CPU, reads log
records from the Stable Log Buffer that belong to com-
mutted transactions and places them into bins (called
partstion bins) in the Stable Log Tail according to the
address of the partition to which they refer Each parti-
tion having outstanding log information 1s represented
i the Stable Log Tai by such a partition bin Each
partition bin holds REDO log records and other mis-
cellaneous log information pertamming to 1ts partition
Partitions having outstanding log information are re-
ferred to as aclwe

As partition bins become full, they are wntten out to
the log disk, log pages for a given partition are chained
together for recovery purposes Grouping log records
according to their corresponding partitions in the Sta-
ble Log Tail allows the recovery manager to keep track
of the update activity on individual partitions When
a partition has accumulated a specified threshold count
of log records, 1t 1s marked to be checkpointed, and thus
the cost of checkpoint operations are amortized over a
controlled number of update operations Grouping log
records also has another significant advantage—it al-
lows partitions to be recovered independently

After a crash, the recovery manager restores the
database system catalogs and then signals the trans-
action manager to begin processing As each transac-
tion requests access to relations and indices, the trans-
action manager checks to make sure that these objects
are available, and, 1f not, imtiates recovery transactions
to restore them on a per partition basis

In the remainder of this section the supporting hard-
ware for the recovery mechanism 1s presented, then,
details of the recovery algomthms, including regular
logging, checkpointing, recovery, and archive logging,
are described A sumple performance analysis of the
logging, checkpointing, and recovery algorithms 1s pro-
vided in Section 3

2.2 Hardware Organization

The hardware architecture for the recovery mechanism
1s composed of a recovery CPU, several megabytes of
reliable, stable main memory, and a set of disks The re-
covery CPU has access to all of the stable memory, and
the mamn CPU has access to at least part of the stable
memory The two CPU's could both address all of mem-
ory (both volatile and nonvolatile), or they could share
only the address space of the Stable Log Buffer To al-
low more flexibihty in the actual hardware design, and
also to provide better 1solation of faults, our algorithms
require the two CPU'’s to share only the address space
of the Stable Log Buffer, using 1t as a communication
buffer along with 1ts other uses Also, though the re-
covery duties could be performed by a process running

Memory s
Resident Disk
Database q Copy
%— -~ - -3 Database
(-""‘“) DBMs| i
¢« | Stable Log ™
: Buffer Memory Database ,
[erofer—2 -
(recovery) ; | Stable Log :
, | Tall Memory Log Disk

[. .- - - - P

Figure 1 Recovery Mechanism Architecture

on one of many processors of a multiprocessor, a dedi-
cated recovery processor (or even a dedicated recovery
multiprocessor) can take advantage of speciahization by
having closer ties with the log disk controllers and run-
ning a special minimal operating system The disks are
divided 1nto two groups and used for different purposes
One set of disks holds checkpoint information, and the
other set of (duplexed) disks holds log information The
recovery CPU manages the log disks, and both the re-
covery CPU and the main CPU manage the checkpoint
disks Figure 1 shows the basic layout of the system

The two processors have logically different functions
The main CPU 1s responsible for transaction process-
ing, while the recovery CPU manages logging, check-
pointing operations, and archive storage Although the
two sets of tasks could be done by a single processor,
1t 1s apparent that there i1s a large amount of paral-
lehsm possible Indeed, although only two processors
are mentioned, each CPU could even perhaps be a mul-
tiprocessor which further exploits parallelism within 1ts
own component In discussing the design, however, we
refer to only two CPUs

2.3 Regular Logging

The logging component manages two logs one log holds
regular audit trail data such as the contents of the mes-
sage that imtiates the transaction, time of day, user
data, elc, and the other holds the REDO/UNDOQ -
formation for the transaction The audit treil log 1s
managed 1n a manner described by DeWutt et al [De-
Witt 84] and uses stable memory We concentrate on
the REDO/UNDO log, as it 1s responsible for maintain-
ing database consistency and 1s the major focal point
of recovery

The REDO/UNDO logging procedure 1s composed of
three tasks Furst, transactions create both REDO and
UNDO log records, the REDO log records are placed
into the Stable Log Buffer, and the UNDO records are
placed into a volatile UNDO space Second, the recov-
ery manager (runnng on the recovery CPU) reads log

107

records belonging to committed transactions from the
Stable Log Buffer and places them into partition bins
mm the Stable Log Tail Last, the partition bin pages of
REDO log records in the Stable Log Tail are wntten
to disk when they become full These three steps are
discussed 1n more detail below

2.3.1 Writing Log Records

Transactions wrnte log records to two places REDO
log records are placed in the Stable Log Buffer and
UNDO log records are placed in the volatile UNDO
space REDO log records are kept 1n stable memory so
that transactions can commit instantly—they do not
need to wait until the REDO log records are flushed to
disk UNDO log records are not kept 1n stable mem-
ory because they are not needed after a transaction
commits—the memory-resident database system does
not allow modified, uncommtted data to be wntten to
the stable disk database A log record corresponds to
an entity 1n a partition a relation tuple or an index
structure component An entity 18 referenced by its
memory address (Segment Number, Partition Number,
and Partition Offset)

Both the volatile UNDO space and the Stable Log
Buffer (SLB) are managed as a set of fixed-size blocks
These blocks are allocated to transactions on a demand
basis, and a given block will be dedicated to a single
transaction during 1ts hfetime As a result, cntical sec-
tions are used only for block allocation — they are not a
part of the log wnting process itself Because of these
separate lists, transactions do not have to synchromze
with each other to wnte to the log Therefore, having
each transaction manage 1ts own log record hst greatly
ameliorates the traditional “hot spot” problem of the
log tail

The chains of log blocks for a transaction will appear
on one of two hsts, the committed transaction hst or
the uncommitted transaction list When a transaction
commits, 1ts REDO log block chain is removed from
the uncommitted hst and appended to the committed
transaction hist, and 1ts UNDO log block chain 1s dis-
carded (Figure 2) The commtted transaction hst 1s
maintained 1n commut order so that the log records can
be sent to disk in this order

2.83.2 Log Record Format

Log records have different formats depending on the
type of database entity that they correspond to (re-
lation tuples or index components) and on the type of
operation that they represent All log records have four
main parts

I TAG I Bin Index | Tran Id I Operation |

TAG refers to the type of log record, Bin Indez1s the
index 1nto the partition bin table where the log record
will be relocated, Tran Id1s the transaction identifier,
and Operation 1dentifies the REDO operation for the

Commutied Transaction Last Uncommitted Transaction Last
2
StableLogBuffer [Volatlle UNDO Space
M [s3pa0svalte) ' [[ss#30zunpovaze)|
$4P2,03 (Al ~~} ||59.P108 (UNDO Val2b)
s5P3 02 (Valza)| & \[s3.r801 UNDO VaL 20) |
$9,P1 08 (Val_2b) . . '
S2.P406 (Val_1o)| ¢ . seemmeesseemaces sveee s
[§77 07 (Va3
' [s3psO1 (Val 20

Figure 2 Wnting Log Records

entity The bin index 1s a direct index into the partition
bin table, and 1t 15 used to locate the proper partition
bin log page for an entity’s log record Partitions main-
tan their partition bin index entnes as part of ther
control information, so a bin index entry 1s easily lo-
cated given the address of any of its entities (The next
section discusses this 1n more detail)

Relation log records may speafy REDO values for
specific entities, so in one sense they are value log
records However, they may also specify operations that
entall updating the string space 1n a partition, whach 1s
managed as a heap and 1s not locked 1n a two-phase
manner, so relation log records are really operatson log
records for a partition Index log records speaify REDO
operations for index components (e g, T Tree nodes or
Modified Linear Hash nodes [Lehman 86¢c]) A single
index update operation may affect several index compo-
nents, so a log record must be wntten for each updated
index component To maintain seriahzabihity and to
simplify UNDO processing for transactions, index com-
ponents and relation tuples are locked with two-phase
locks [Eswaran 76] that are held until transaction com-
mut

2.3.3 Grouping Log Records by Partition

The main purpose of the Stable Log Tail 1s to pro-
vide a stable storage environment where log records can
be grouped according to their corresponding partitions
The recovery manager uses this for several things

1 The log records corresponding to a partition are
collected 1n page size units and wntten to disk
The log pages for a partition are linked, thus al-
lowing all the pages of a particular partition to be
located easily duning recovery

2 The number of log records for each partition 1s
recorded, so the checkpoint mechanism can wnte
those partitions that have a specified amount of
log information to disk, thus amortizng the cost
of a checkpoint operation over many update opera-
tions Once a partition has been checkpointed, 1ts

108

Stable Memory Log Tail

Stable Redo Information
(Stable Log Buffer)

Figure 3 Regular Transaction Logging

corresponding log information 1s no longer needed
for memory recovery

3 Redundant address information may be stnpped
from the log records before they are wntten to
disk, thereby condensing the log

Log records are read from the Stable Log Buffer and
placed into partition bins in the Stable Log Tail (Fig-
ure 3) Each log record 1s read, its bin index field 1s
used to calculate the memory address of the log page of
the record’s partition bin, and the log record 1s copied
mto that log page There are two main possibihities for
organizing the log bin table there could be an entry 1n
the table for every existing partition in the database,
or there could be an entry for every active partition
(Recall that an active partition 1s one that has been
updated since 1ts last checkpoint, so 1t has outstand-
g log information) Since the bin index should not be
sparse, bin index numbers must be allocated and freed,
hke fixed blocks of memory If every partition were rep-
resented 1n the log bin table, then bin index numbers
would be allocated and de-allocated infrequently—only
as often as partitions are allocated and de-allocated
However, if only the active partitions were represented
1n the log bin table, then bin index numbers would be
allocated when partitions are activated and reclaimed
when they are de-activated, thereby causing the bin in-
dex number resource manager to be activated more fre-
quently For simphaty in design, we assume that each
partition has a small permanent entry in the partition
bin table This requires an information block 1n the
Stable Log Tail for each partition in the database, but
only active partitions requre the much larger log page
buffer The amount of stable reliable memory required
for the Stable Log Tail depends on the total number
of partitions 1n the database and the number of active
partitions Each partition uses a small amount—on the
order of 50 bytes, and each active partition requires a
log page buffer—on the order of 2 to 16 kilobytes (de-
pending on log page size)

Each partition has an information block in 1ts log bin
containing the following entries

o Partition Address (Segment Number, Partition
Number)

¢ Update Count
o LSN of Furst Log Page
¢ Log Page Directory

The Partstson Address s attached to each page of log
records that 1s written to disk The entry serves as a
consistency check duning recovery so that the recovery
manager can be assured of having the correct page It
also allows the log pages of a partition to be located
when the log 15 used for archive recovery

The Update Count and the LSN of First Log Page are
monitors used to trigger a checkpoint operation for a
partition The update count reflects the number of up-
dates that have been performed on the partition When
the update count exceeds a predetermined threshold,
the partition 1s marked for a checkpoint operation The
Log Sequence Number of the first log page of a partition
shows when the partition’s first log page was wrtten, 1t
18 the address of the oldest of the partition’s log pages
When a partition 1s infrequently updated, 1t will have
few log pages and they will be spread out over the en-
tirelog space The available log space remains constant,
and 1t 1s reused over time The log space holding cur-
rently active log information 1s referred to as the log
window The log window 1s a fixed amount of log disk
space that moves forward through the total disk space
as new log pages are wntten to 1t, so some active log
mmformation may fall off the end To allow log space
to be reused, partitions are checkpointed 1f they have
old log information that 1s about to fall off the end of
the log window (There will actually be a grace period
between when the checkpoint 1s triggered and when the
log space really needs to be reused)

If the log space were infinite, all partition checkpoints
would be triggered by the update count However, since
the log space 1s fimite, infrequently updated partitions
will have to be checkpointed before they are able to
accumulate a sufficient number of updates In this case,
we say that those partitions were checkpointed because
of age This works as follows The recovery manager
maintains an ordered hst of the first log pages of all
active partitions Whenever the log window advances
due to a log page being wntten, this First LSN hist 1s
checked for any partition whose first log page extends
beyond the log window boundary When a partition
becomes active 1t 1s placed on the First LSN list, and
when 1t 1s checkpointed 1t 1s removed from the list The
head of the Lst holds the oldest partition, so only a
single test on this list 13 necessary when checking for
the possibility of generating a checkpomnt due to age

The Log Page Directory holds pointers to a number
of log pages for a given partition (Figure 4) Dunng
recovery, REDO log records must be apphed m the or-
der that they were onginally wntten If log pages were
chained 1n order from most recently to least recently
wntten, which 1s the reverse of the order needed, then
log records could not begin to be apphed until the last

109

Log Page Directory

doood

(disk log pages)
@)
Log Page Directory

AN nnnn

(disk log pages)
®)

Figure 4 Log Page Directories

of the pages was read (which 1s the first page needed
for recovery processing) Instead, a directory allows log
pages to be read 1n the order that they are needed dur-
ing recovery The size of the directory 18 chosen to be
equal to the median number of log pages for an active
partition so that, dunng recovery, it should often be the
case that the log pages will be able to be read in order
This allows the log records from one page to be used
while the log records from the next page are being read
off of the log disk

If fewer than N (the directory size) log pages have
been wnitten, the directory points to all of the log pages
for the partition (Figure 4(a)) When more than N log
pages have been written, the directory will be stored in
every N** log page

2.3.4 Flushing Log Records to the Log Disk

When the log records of a partition fill up a log page, the
records are wrtten to the Jog disk The recovery CPU
1ssues a disk wrnite request for that page and allocates
another page to take 1ts place (The memory holding
the old page s then released after the disk wrnte has suc-
cessfully finished) The recovery CPU can 1ssue a disk
write request with hittle effort because 1t 1s a dedicated
processor, 1t 18 using real memory, and 1t 18 probably
running a single thread of execution (or at least a min-
mmal operating system) It needs to do little more than
append a disk wrte request to the disk device queue
that points to the memory page to be written

2.4 Regular Checkpointing

As explained earher, the main purpose of a checkpoint
operation 18 to bound the log space used for partitions
by wnting to disk those partitions that have exceeded a
predefined number of log records Its secondary purpose
18 to reclaim the log space of partitions that have to be
checkpointed because of age When the recovery man-
ager (running in the recovery CPU) determines that a
partition should be checkpointed, either due to update
count or age, 1t tells the main CPU that the partition
18 ready for a checkpoint via a communication buffer in

the Stable Log Buffer The recovery manager enters the
partition’s address in the buffer along with a flag that
represents the status of the checkpoint for that parti-
tion, mtially this flag 15 1n the request state, 1t changes
to the sn-progress state while the checkpoint 18 running,
and 1t finally reaches the finsshed state after the check-
poini iransaciion commts A finished state entry 15 a
signal to the recovery CPU to flush the remaining log
information for the partition from the Stable Log Tail
to the log disk

After a partition has been checkpointed, though 1ts
log mformation 1s no longer needed for memory recov-
ery, the log information cannot be discarded because 1t
18 still needed 1n the archive log to recover from media
failure Ifthe partition has any log records remaining 1n
the Stable Log Tail, they are flushed to the log disk In
some situations, particularly when a partition 1s check-
pointed because of age, a partial page of log records
may need to be flushed to the log disk In that case, its
log records are copied to a buffer where they are com-
bined with other log records to create a full page of log
information, thereby saving log space and disk transfer
time by wniting only full or mostly full pages to the log

Partition checkpoint images could be kept in well-
known locations on the checkpoint disks, similar to a
shadow page scheme, but that would require a disk
seek to a partition’s checkpoint image location for each
checkpoint Instead, checkpoint images are sumply wrt-
ten to the first available location on the checkpoint
disks and a partition’s checkpoint 1mage location (in
the relation catalog) 1s updated after each checkpomnt
Therefore, for performance reasons, the disks holding
partition checkpoint images are organized in a pseudo-
circular queue Frequently updated partitions will pe-
nodically get wnitten to new checkpoint disk locations,
but read-only or infrequently updated partitions may
stay in one location for a long time (We use a pseudo-
caircular queue rather than a real circular queue so that
partitions that are rarely checkpointed don’t move and
are skipped over as the head of the queue passes by)
The checkpomnt disk space should be large enough so
that there will be sufficiently many free locations, or
holes, available to hold new checkpoint images

A map of the disks’ storage space 1s kept in the sys-
tem catalogs to allow transactions to find the next avail-
able location for writing a partition New checkpoint
copies of partitions never overwnte old copies Instead,
the new checkpoint copy 1s wrnitten to a new location
(the head of the queue), and installed atomucally upon
commit of the checkpoint transaction The relation
catalog contains the disk locations of these checkpoint
copies so that they can be located and used to recover
partitions after a crash

The steps of the checkpoint procedure are as follows

1 The recovery CPU 1ssues a checkpoint request con-
taimng a partition address and a status flag in the
Stable Log Buffer

2 The transaction manager, running on the main
CPU, checks the checkpoint request queue 1n the

110

Stable Log Buffer between transactions For each
partition checkpoint request that it finds, 1t starts
a checkpoint transaction to read the specified par-
tition from the database and write 1t to the check-
point disk, and 1t also sets the checkpoint status
flag to sn-progress

3 The checkpoint transaction sets a read lock on the
partition’s relation and waits until 1t 18 granted
Notice that a single read lock on a relation 1s suf-
ficient to ensure that 1ts relation and index parti-
tions are all 1n a transaction consisient state, thus,
only committed data 1s checkpointed

4 When the read lock on the partition’s relation
15 granted, the checkpoint transaction allocates a
block of memory large enough to hold the parti-
tion, copies the partition into that memory, and
releases the read lock Relation locks are held just
long enough to copy a partition at memory speeds,
so checkpoint transactions will cause minimal in-
terference with normal transactions The check-
point transaction then locates a free area on the
checkpoint disk to hold the partition (Since mul-
tiple checkpoint transactions may be executing in
parallel, a wrnite latch on the disk allocation map
18 required for this)

5 The updates to the disk allocation map and the
partition’s catalog entry are logged before the par-
tition 1s actually wnitten to disk Checkpoints of
catalog partitions are done 1n a manner simlar to
regular partitions, except that their disk locations
are duplicated 1n stable memory and 1n the disk
log (because catalog information must be kept in
a well-known place so that 1t can be found easily
during recovery)

6 The partition s wntten to the checkpoint disk and
the checkpoint transaction commts The memory
buffer holding the checkpoint copy 1s released, the
new disk location for the partition 1s installed 1n
1ts catalog entry, and the status of the checkpoint
operation 18 changed to fintshed

7 The recovery manager, on seeing the fimished state
of the checkpoint operation, flushes the partition’s
remainng log information from the Stable Log
Buffer to the log disk

2.5 Post-Crash Memory Recovery

Since the prumary copy of the database 15 memory-
resident, the only way a transaction can run 1s if the
mformation 1t needs 18 1n main memory Restoring the
memory copy of the database entails restoring the cat-
alogs and their indices nght away, then using the infor-
mation in the catalogs to restore the rest of the database
on a demand basis The information needed to restore
the catalogs 1s a hist of catalog partition addresses, and
this 1s kept 1n & well-known location—it 1s stored twice,
m the Stable Log Buffer and in the Stable Log Tail,
and 1t 15 pertodically wntten to the log disk Once the

catalogs and their indices have been restored, regular
transaction processing can begin

A Transaction could demand the recovery of a index
or relation partition in one of two ways

1 It could predeclare the relations and indices that 1t
required with knowledge gained from query compi-
lation Then, when the relations and indices were
restored 1n their entirety the transaction could run

2 It could simply reference the database during the
course of regular processing and generate a restore
process for those partitions that are not yet re-
covered Because of reasons having to do with
holding latches over process switches (explained
1n [Lehman 87]), 1if a transaction made a reference
to an unrecovered portion of the database while
holding a latch, 1t would have to give up the latch
or abort

There 15 a tradeoff—method (1) 1s simple, but 1t re-
stnicts the availability of the database by forcing the
transaction to wait until the enfsre set of relations and
indices that 1t requested are available before the trans-
action can run On the other hand, method (2) allows
for more availability by restoring only those needed par-
titions, but 1t adds complexity and the possibility of
several transaction aborts during restart It appears
that experimentation on an actual implementation 1s
required to resolve this 1ssue

Using either method, transactions generate requests
to have certain partitions restored The transaction
manager checks the relation catalog for these entries
to see 1f they are memory-resident If they are not, 1t
initiates a set of recovery transactions to recover them,
one per partition A relation catalog entry contains a
hst of partition descriptors that make up the relation, so
the transaction manager knows which partitions need
to be recovered Each descriptor gives the disk location
of the partition along with 1ts current status (memory-
resident or disk-resident)

A recovery transaction for a partition reads the par-
tition’s checkpoint copy from the checkpoint disk and
1ssues a request to the recovery CPU to read the par-
tition’s log records and place them in the Stable Log
Buffer Once the partition and 1ts log records are both
available, the log records are applied to the partition
to bring 1t up to 1ts state preceding the crash (The
processing of log records can be overlapped with the
reading of log pages if the pages can be read in the
correct order) Then, between regular transactions, a
system transaction passes through the catalogs and 1s-
sues recovery transactions (at a lower prionty) for par-
titions that have not yet been recovered and that have
not been requested by regular transactions

2.5.1 Reading in the Log Records

The operations specified by log records must be applied
in the same order that they were onginally performed
A single backwards hinked List of log pages would force
the recovery manager to read every log page before 1t

m

| Letter | Represents |

I Instructions

N Number (1 ¢, a count)
S Size

R Rate

P Processing Power

Table 1 Variable Conventions

could even begin to apply the log records Recall that
a direclory of log pages 1s therefore used here, and since
the directory size 1s chosen to be equal to the antici-
pated average number of log pages for a partition, 1t
should be possible in many cases to schedule log page
reads i the order that they were onginally wrtten
Thus, the log records from one page can be appled to
the partition while the next page of log records are be-
ing read When the number of log pages exceeds the
directory size, 1t 1s possible to get to the first log page

Number of Log Pages
after rNumber of Directory Eninet] page reads

Relation log records represent operations to update
a field, insert a tuple, or delete a tuple in a partition
(More comphcated 1ssues involving changes to relation
schema information are beyond the scope of this dis-
cussion) Index log records represent paristion-specific
operations on index components Recall that a single
index update may involve several different actions to be
applied to one or more index partitions For example,
a tree update operation can modify several tree nodes,
thus generating several different log records A given
log record always affects exactly one partition

2.6 Archive Logging

The disk copy of the database 1s basically the archive
copy for the primary memory copy, but the disk copy
also requires an archive copy (probably on tape or op-
tical disk) in case of disk media failure Protecting the
log disks and database checkpoint disks comes under
the well-known area of traditional archive recovery, for
which many algorithms are known [Haerder 83], so 1t 1s
not discussed here

3 PERFORMANCE ANAL-
YSIS OF THE RECOV-
ERY PROPOSAL

To get an 1dea of how this recovery mechamism will
perform, 1n this section we examine the performance
of the three main operations of the recovery compo-
nent logging, checkpointing, and post-crash recovery
Fuirst, the logging capacity of the recovery mechanism
1 calculated to determine the maximum rate at which
1t can process log records Second, the frequency of

[Name

Explanation

| Value and Units

Irccard-laohu’
Icopy ~start
Icapy _add
Twrste_snnt
Iyoge_cllac
Ipcge _update
Ipnge_check

Iprocen_LSN

Ichcch}amt

Irecord_mrt

Ipqe_uﬂlc

Read one log record and determine index of proper log bin
Startup cost of copying a string of bytes

Additional cost per byte of copying a string of bytes

Cost of imitiating a disk wnite of a full log bin page

Cost of allocating a new log bin page and releasing the old
one

Cost of updating the log bin page information

Cost of checking the existence of a log bin page

Cost of maintaiming the LSN count and checking for pos-
sible checkpoints

Cost of signaling the main CPU to start a checkpoint trans-
action

Total cost of the record sorting process

Total cost of wnting a page from the SLT to the log disk

20 Instructions [/ Record

3 Instructions / Copy

0125 Instructions / Byte

500 Instructions / Page Wnte
100 Instructions / Page Wrnte

10 Instructions / Record
10 Instructions / Log Record
40 Instructions / Page Wnte

40 Instructions / Checkpoint

(Calculated) Instructions / Record
(Calculated) Instructions / Page

Stog _record Average size of a log record 24 Bytes / Record

Stag_page Size of a log page 8 Kilobytes / Page

Spartstion Size of a partition 48 Kilobytes / Partition

Nygpdate The number of log records that a partition can accumulate | 1000 Log Records / Partition
before a checkpoint 18 tnggered

Nisg_pages Average number of log pages for a partition (Calculated) Log Pages / Partition

Riytes_togged Byte rate of the logging component

Reecords logged
Rckeclpatnl

Precour,

Frequency of checkpoints
MIPS power of the recovery CPU

Record rate of the logging component

(Calculated) Bytes / Second
(Calculated) Log Records / Second
(Calculated) Checkpoints / Second
10 Million Instructions / Second

Table 2 Parameter Descriptions

checkpoint transactions 1s calculated for various log-
ging rates, and the overhead imposed by checkpointing
transactions 1s calculated as a percentage of the total
number of transactions that are running Finally, the
process of post-crash recovery 1s outhned for an indind-
ual partition and performance 1ssues are discussed, and
then the performance advantage of partition-level re-
covery is demonstrated by comparing it with database-
level recovery

3.1 Logging, Checkpointing, and

Recovery Parameters

Before we begin the analysis, we introduce the param-
eters that will be used throughout this section Table 1
gives the conventions that we use for the names of the
parameters, and Table 2 hists each parameter of interest
along with 1ts meaning, value (determined as described
below), and umts

The environment used to generate these figures 1s
based on a midsized mainframe with a § MIP uniproces-
sor for the main CPU and a smaller 1 MIP uniprocessor
for the recovery CPU * The stable rehable memory for
the recovery CPU 1s composed of the faster mainframe
memory chips, but 1t 1s four times slower due to the

3The speed of the mam CPU 15 not used n any of the
calculations presented here, but we mention 1t to put the
reader 1n the proper frame of mund

complexity of making 1t stable and reliable *
Instruction counts per operation are estimated (this
recovery scheme has not yet been implemented) and
overheads produced by procedure calls, process switch-
ing and operating system interaction have been some-
what accounted for by padding the instruction counts
for the operations Complicated microcoded instruc-
tions such as the block move instruction are represented
as multiple instructions A genersc instruction executed
on the recovery processor 1s assumed to execute in one
microsecond and a memory reference 1s assumed to ex-
ecute in about one microsecond The reader should
keep in mind that the instruction count numbers ap-
pear smaller than normal system numbers The recov-
ery component 1s lhighly speciahized and requires only
a minimal operating system, and 1t has sole control of
the log disks when they are actively receiving log infor-
mation (The recovery component releases control of
a log disk when that disk 1s transferred to the archive
component to role the contents of the disk onto tape)
The disk parameters in Table 2 are based on a two-
head per surface high-performance disk drive It uses
two read/wnte heads per surface, so 1t has relatively
low seek times The transfer rate for a track of data
18 double the transfer rate for individual pages, par-

$The cost and performance figures of this stable memory
are projected from current technology This memory 1s not
available today, but we beheve 1t will be widely available
within the next decade

M2

titions are wntten in whole tracks, whereas log pages
are written individually (requiring separate disk opera-
tions) To achieve the maximum transfer rate possible
for wnting log pages, the disk sectors of the log disk
are interleaved, logically adjacent sectors are physically
one sector apart (For ssmphaty, sectors are assumed
to be the size of one page) After wniting one page, a
disk needs a small amount of think feme to set up for the
next page wnte—more time, we assume, than the time
1t takes to travel from the end of one sector to the begin-
ning of the next physically adjacent sector Therefore,
by logically interleaving the sectors, the disk has the
time of one full sector to reset for the next page wrte
We also use different seek times for the checkpoint disks
and the log disks The seek time for a partition read
18 an average seek tume, as a partition can be anywhere
on the disk in relationship to the disk head during the
recovery process However, even though the log pages
for a partition will be spread out over the log space,
each page will be relatively close to 1ts sibling, so the
seek times between log pages should be somewhat less
than the average seek time

Picking an optimal size for partitions and log pages
mvolves dealing with a Lst of tradeoffs For example,
the log page size represents a subtle tradeoff between
the space required to hold log pages in the Stable Log
Buffer and the frequency of page wntes and page allo-
cations The partition size affects several factors the
number of entries 1n the Stable Log Tail, since larger
partitions mean fewer partition entries, the cost and
efliciency of checkpoints, since larger partitions might
cause a larger percentage of non-updated data to be
wntten during a checkpoint operation, and the over-
head of managing partitions, since smaller partitions
mean maintaining more entries per relation The sizes
for log pages and partitions 1n Table 2 were chosen from
the middle of a range of possible values, given the speai-
fications and database reference patterns of a particular
database system, 1t may be possible to pick better page
size and partition size values

3.2 Logging Capacity Analysis

The logging rate of a recovery mechanism must be
greater than the rate at which the main CPU can gen-
erate log records, or else the recovery mechanism will
be the performance bottleneck of the system We esti-
mate the logging capacity of the proposed design using
a simple analytical model * Dunng normal processing
the recovery CPU spends most of 1ts time moving log
records from the Stable Log Buffer into partition bins
in the Stable Log Tail, 1t spends a smaller portion of
its time mitiating disk wnte requests for full pages of
log records and, an even smaller portion of its time is

5Note Space hnutations force us to describe only briefly
the underlying formulas on which the performance graphs
are based For a more complete and narrative description of
the formulas, the reader 1s referred to [Lehman 86b] The
reader 1s also remunded that Table 2 summarnszes the meaning
of each parameter used 1n the analysis

13

logging Capacity of Recovery Component
15,000+

—— pegs vizm Bk

s
H
°
a
s
=
- -6~ pogs size 16t
s
2
-
-
°
2

4+ page size %

=% poge size 2k

T 1 T e T T L
10 20 3 40 50 1] 70 30
Log Record Size 1n Bytes

Figure 5 Graph 1—Logging Speed

spent notifying the main CPU of partitions that must
be checkpointed

The cost of the first aspect of recovery processing
18 the cost of the sorting process of moving a single log
record from the Stable Log Buffer to 1ts correct location
in the Stable Log Tail

Trecord_sort = record _lookup + Ipuge_cbecl +
Ica”_'!urt + (Icopy_old * Slog,rccord) +

$ log_record

Ipa,e_upiute + Ipcye_a"oc *

Slo,_pc,c

The second and third aspects of the logging process
entail writing the partition bin log pages to disk as they
fill up and notifying the main CPU each time a partition
needs to be checkpointed

Ipu,ye_unte = Iypste_snst + Ipraceu_LSN +

I checkposnt

slo!_record

slay_pcge

Nu;dcte *

The recovery processor executes a number of instruc-
tions to move a log record from the Stable Log Buffer
to a partition bin in the Stable Log Tal I .cord_sorts
and 1t executes a number of instructions to wnte a par-
tition bin log page to disk Ijggc_write If we combine
those instruction costs in terms of instructions per byte
and divide that into the processing power of the system
(instructions per second) then we get the speed of the
logging component 1n bytes per second

P"CCO'C',

Teecord sort + Izu!e_urn!e
slag_ucard

slag_puge

Rbytu_loyyed =

Graph 1 shows the logging speed in log records per
R
second (re., —g2ie=l298¢d for various log record and

log _record
disk page sizes The number of log records generated

by a transaction is of course application-dependent It
can range from a few log records over hundreds of thou-
sands of instructions (for computation-intensive trans-
actions) to a few records over several thousand instruc-
tions (for Gray’s debit/credit transactions [Gray 85]) to

Logging Copacity 1n Tronsoctions per Second

5,000+

™

3 ODH

—8~ Log Record size B0

—4— Log Record srze 40

2,000 —+- Log Record aize 20

=%~ Log Record size 10

Trensactions per Second

4
——g

Ll T T i U T } I |
0 10 29 30 40 50 §0 70 L1}
Log Records per Tronzoction

Figure 6 Graph 2—Transaction Rates

one log record over only hundreds of instructions (for
update mntensive transactions) Graph 2 shows the var-
10us maximum transaction rates that can be supported
by the logging mechanism as the number of log records
generated by a transaction 1s vared

Typical log records should be small, as common op-
erations such as index operations, numerical fleld up-
dates, and delete operations all generate log records
that are 8 to 24 bytes in size Larger log records will be
generated by other operations - updates to long fields
or imnsertions of whole tuples, for example — but these
are expected to occur less {requently Gray's notion of
a typical debit/credit transaction 18 one that wrnites ap-
proximately four log records Gaven four log records per
transaction, our logging component estimated capacity
18 approximately 4,000 transactions per second—a fig-
ure sufficiently high to suggest that the logging compo-
nent will probably not be the bottleneck of the system ®

3.3 Checkpointing Overhead Anal-
ysis

The recovery processor does little work for checkpoint-
g When 1t notices that an object should be check-
pointed, 1t simply signals the main CPU that the task
should be done The major overhead hies with the main
CPU, as 1t performs the real work of a checkpoint oper-
ation It 1s responsible for locking the object, copying
1t to a side buffer and then releasing the lock on the pri-
mary copy of the partition, locating a disk track for the
partition, logging the updates to the disk map and cat-
alog information, scheduling the disk wrte, and finally,
commmitting the checkpoint transaction

The frequency of checkpoint transactions 1s of in-
terest because 1t shows the percentage of all transac-
tions that are devoted to regular transaction processing
versus the percentage that are devoted to checkpoint-

SNote that we're not clamming that we can produce 4,000
transactions per second—we're sumply clamng that the re-
covery component appears to be able to handle that rate of
log records

14

ing partitions (Checkpoimnt transactions are relatively
small, so they would be on the same order of computa-
tion as a debit/credit transaction, thus evaluating the
cost of this checkpoint mechamism as a percentage of
overall transaction load appears to be a valid measure-
ment) The frequency of checkpoint transactions 1s de-
termined by the logging rate, the update count for each
partition, the number of active partitions, the distn-
bution of updates over the active partitions, and the
s1ze of the log window (Recall that the log window 1s
the active portion of the reusable log) For a given log
window size, an active partition may reside 1n the log
window long enough to accumulate enough updates to
trigger a checkpoint, or it may not receive many up-
dates, in which case 1t would be checkpointed because
of age (so that 1ts space may be reclaimed) The num-
ber of checkpoints triggered by update count depends
on the number of active partitions for a particular log
window and the distribution of log records over those
partitions Given an infimte log window, checkpoints
of all active partitions would eventually be tnggered by
update count, in which case the checkpoint rate would

be:

Reecords logged

Rchcckyomt = Nuodat
update

This 1s the best possible scenarno, as the cost of each
checkpoint operation would be amortized over Nypgqte
update operations

Since log space 1s finite, there will be some active
partitions that do not accumulate Nyp4ai, updates be-
fore their log space needs to be reclaimed, so they will
be checkpointed because of age instead This leads to a
higher number of checkpoint operations, as the cost of
checkpoints triggered by age are amortized over fewer
than Nyp4e¢e update operations Thus, the worst case
occurs when each active partition accumulates only one
page of log records before 1t 1s checkpointed In this
case

Reheckposnt = Reecorde_logged * %’ﬂ]ﬂ'—d

log -page
It 1s not hkely that the best or worst case will ever oc-
cur, instead, there will be some percentage of each type
of checkpoint operation For a given number of active
partitions, a large log window sumply provides a better
opportumty for ¢ partition to accumulate Nypgate l0g
records than a small window Thus, for performance
reasons, there 1s a mimimum log window size for a given
number of active partitions—there should be at least
enough pages in the low window to hold Nyy4ate log
records for every active partition The only hmita-
tions on the maximum size are related to how much
disk space 1s affordable

To calculate an average case checkpoint frequency,
1t 18 necessary to use a mux of checkpoints tniggered by

TA partition does not take up disk log space until 1t has
accumulated at least a page of log records

Checkpoint Frequency

o
=4
)

-g- 100 §

-
o
]

-t (Updote Count 1000)

—+ 1013

[
o
1

01

~
o
1

Partition Cheekpoints per Second

T T 1 T T
s000 8000 10000 12000 14000
Legging Rate (Records par Seccnd)

T T T T
2000 4000 15000 18000

Figure 7 Graph 3—Possible Checkpomnt Frequen-
cles

age and triggered by update count For a given percent-
age of partitions that are checkpointed because of age,
there are a range of possible checkpoint frequencies, as
those partitions could have anywhere from a single page
of updates to almost Nypg.¢. updates For comparson
purposes we will always assume the worst case—that
a partition checkpointed because of age has accumu-
lated only one page of log records Thus, the equation
to deternmne the checkpoint rate for given fractions of
partitions being checkpointed because of update count

(.fuydute_count) and age (fage) 1s

Rcheckpaml =
chcardc-loyyed

slal _page
slog_record

fuydate_couut * Nypdate + fage
Rather than try to choose actual numbers for the log
window size, the number of active partitions, and the
distribution of log records, we simply examine some dif-
ferent mixes of checkpoint trigger percentages Graph
3 shows the checkpoint frequencies for various update
counts and trigger percentages as the logging rate 1s
vaned The log window size and the number of ac-
tive partitions determine the number of checkpoints,
but the logging rate determines how frequently they
will occur—the logging rate determines how fast pages
of log records go into the log window, and thus, how
fast they reach the end of the log window, possibly
triggering checkpoint operations For an update count
of 1,000, if the log window size 1s large enough to al-
low 50 percent of the active partitions to accumulate
Nypdate log records, then the checkpoint frequency will
be fairly low Assuming an average transaction writes
about 10 log records, this would indicate that the check-
point transactions generated at this frequency would
compose only 15 percent of the total transaction load
An average number of log records less than 10 would
simply decrease the percentage of checkpomnt transac-
tions
A larger update count causes fewer checkpoint op-

15

erations to occur for a given trigger percentage, but 1t
also 1ncreases the suggested minimum size of the log
window A similar effect 15 seen when the log page size
18 doubled or the log record size 1s halved, as either one
increases the number of log records that an active par-
tition must accumulate before 1t can have a checkpoint
triggered by age (Recall that an active partition’s log
information will not be wntten to the log disk until 1t
has accumulated at least one full page of log records in
the Stable Log Tail)

3.4 Discussion of Post-Crash Parti-
tion Recovery

The purpose of the partition-level recovery algorithm
18 to allow transactions to begin processing as soon as
their data 1s restored Transactions issue requests for
certain relations to be recovered (erther “on demand”
during the course of the transaction or predeclazred at
the beginning of the transaction) and they are able to
proceed when their requested relations are available,
they do not have to wait for the entsre database to be re-
stored An upper bound on the time needed to recover
a relation 1s the sum of 1ts partition recovery times A
partition’s recovery tume 18 determined by the time 1t
takes to read its checkpoint image from the checkpoint
disk, to read all of 1ts log pages, and to apply those
log pages to 1ts checkpoint 1mage A partition's check-
point 1mage and 1ts log pages may be read in pearallel,
since they are on different disks Also, provided that
the log page directory was chosen to be large enough
to hold entnes for all of the log pages for the partition,
the log pages can be read in the order that they were
onginally wntten, thus allowing the log records from
one log page to be applied to the partition in parallel
with the reading of other log pages (This assumes, of
course, that the time required to apply a page of log
records to a partition is less than the time 1t takes to
read a log page) *

Comparison with Complete Reload-
ing

3.4.1

The mamn alternative to partition-level recovery 1s
database-level recovery An interesting point 1s that
database-level recovery 1s a special case of partition-
level recovery, with one very large partition (the en-
tire database) An attractive feature of partition-level
recovery 18 that 1t 1s flexible enough to perform pure
partition-level recovery (read a partition, read 1ts log
information and recover 1t), full database-level recov-
ery (read all partitions, read all of the log, recover all
partitions), or some level in-between An optimization
to pure partition-level recovery would be to load some
significant portion of the log into memory during recov-
ery so that the seek costs to read these pages would be

8 Space considerations prohibit us from providing a more
detailed description of the recovery costs We refer the in-
terested reader to [Lehman 86b}

eliminated

4 CONCLUSION

Previous work 1n recovery, both for traditional disk-
based database systems and for memory-resident sys-
tems, has addressed 1ssues of logging, checkpointing and
recovering a database Many demgns have been pro-
posed, but none of them have completely satisfied the
needs of a high-performance, memory-resident database
system Such a system needs a fast, effiaent logging
mechanism that can assimilate log records as fast or
faster then they can be produced, an efficient check-
point operation that can amortize the cost of a check-
point over many updates to the database, and a post-
crash recovery mechamism that 1s geared toward allow-
ing transactions to run as quickly as possible after a
crash

A design has been presented that meets these three
cniteria 'Wath the use of stable reliable memory and
a recovery processor, the logging mechamsm appears
to be able to assimilate log records as fast as they can
be produced Checkpoint operations for partitions are
trggered when the partitions have received a significant
number of updates, and thus the cost of each checkpoint
operation 1s amortized over many updates Recovery of
data in our design 1s oriented toward transaction re-
sponse time After a crash, relations that are requested
by transactions are recovered first so that these trans-
actions can begin processing nght away The remaining
relations are recovered in the background on a low pri-
onty basis

5 Acknowledgements

Our thanks to Jim Gray, John Palmer, Jim Stamos and
the SIGMOD referees for their helpful comments and
suggestions on improving this paper

6 REFERENCES

[Amman 85] A Ammann, M Hanrahan, and R
Knshnamurthy, “Design of a Memory Resdent
DBMS,” Proc IEEE COMPCON, San Francisco,
February 1985

[DeWitt 84] D DeWitt, et al, “Implementation
Techniques for Main Memory Database Systems,”
Proc ACM SIGMOD Conf, June 1984

[DeWitt 85] D DeWitt and R Gerber, “Multipro-
cessor Hash-Based Join Algorithms,” Proc 11th
Conf Very Large Data Bases, Stockholm, Swe-
den, August 1985

[Eich 88] M Eich, MMDB Recovery, Southern
Methodist Univ Dept of Computer Sciences
Tech Rep [86-CSE-11, March 1986

[Elhardt 84] K Elhardt and R Bayer, “A Database
Cache for High Performance and Fast Restart in
Database Systems,” ACM Trans on Dalabase
Systems 9, {, December 1984

[Eswaran 78] K Eswaran, J Gray, R Lome, and I
Traiger, “The Notions of Consistency and Predi-
cate Locks 1n a Database System,” Comm of the
ACM 19, 11, Nov 1976.

[Gray 78] J Gray, “Notes on Database Operating
Systems,” 1n Operating Systems An Advanced
Course, Springer-Verlag, New York, 1978

[Gray 81] J Gray, et al, “The Recovery Manager of
System R,” ACM Compuiing Surveys 13, 2, June
1981

[Gray 85] J Gray, et al, “One Thousand Transactions
Per Second,” Proc IEEE COMPCON, San Fran-
cisco, February 1985

[Haerder 83] T Haerder and A Reuter, “Prna-
ples of Transaction-Onented Database Recovery,”
ACM Computing Surveys 15, {, December 1983

[Hagmann 88] R Hagmann, “A Crash Recovery
Scheme for a Memory-Resident Database Sys-
tem,” IEEE Transactions on Computers C-35, 9,
September 1986 '

[(IBM 79] IBM IMS Versson 1 Release 1 5 Fast Path
Feature Description and Destgn Gusde, IBM World
Trade Systems Centers (G320-5775), 1979

[IBM 84] An IBM Gusde 1o IM5/VS V1 RS Data En-
try Database (DEDB) Facslsty, IBM International
Systems Centers (GG24-1633-0), 1984

[Kohler 81] W Kohler, YA Survey of Techniques for
Synchromization and Recovery in Decentralized
Computer Systems,” ACM Computing Surveys 13,
2, June 1981

[Lehman 88a] T Lehmanand M Carey, “Query Pro-
cessing in Main Memory Database Management
Systems,” Proc ACM SIGMOD Conf, May 1986

[Lehman 88b] T Lehman, Dengn and Perfor-
mance Evalualion of a Mawn Memory Relatsonal
Database System, Ph D Dissertation, University
of Wisconsin-Madison, August 1986

(Lehman 88c] T Lehman and M Carey, “A Study
of Index Structures for Main Memory Database
Management Systems,” Proc 12th Conf Very
Large Daia Bases, August 1986

[Lehman 87] T Lehman and M Carey, “Concur-
rency Control in Memory-Resident Database Sys-
tems,” (submitted for pubhcation)

[Leland 85] M Leland and W Roome, “The Sihcon
Database Machine,” Proc {th Int Workshop on
Database Machines, Grand Bahama Island, March
1985

[Lindsay 78] B Lindsay, et al, Notes on Distriduted
Databases, IBM Research Report RJ 2571, San
Jose, Cahfornia, 1979

116

[Lorie 77]) R Lone, “Physical Integrnity mn a Large
Segmented Database,” ACM Trans on Database
Systems 2, 1, March 1977

[Reuter 80] A Reuter, “A Fast Transaction-onented
Logging Scheme for UNDO Recovery,” IEEE
Trans Software Eng SE-6, July 1980

[Reuter 84] A Reuter, “Performance Analysis of Re-
covery Techniques,” ACM Trans on Database
Systems 9, {, December 1984

[Salem 88] K Salem and H Garcia-Mohna, Crash
Recovery Mechantsms for Mawn Siorage Database

Systems, Princeton Umv Computer Science Dept
Tech Rep CS-Tech Rep [034086, Aprl 1986

[{Shapiro 86] L Shapiro,
“Join Processing in Database Systems with Large
Main Memories,” ACM Trans on Database Sys-
tems, September 1986

[Thompson 86] W Thompson, Masn
Memory Database Algorsthms for Mulliprocessors,
Ph D Dissertation, Umv Califorma-Davis, June
1986

17

