Check for
Updates

Object-Oriented Database Support for
Software Environments

Scott E Hudson

Department of Computer Science
University of Anizona
Tucson, Anizona 85721

Abstract

Cactis 1s an object-oriented, multi-user DBMS developed at
the Umversity of Colorado The implementation 1s self-
adaptive and concurrent, and runs 1 the Umx/C Sun worksta-
tion environment A central, unique focus of Cacus 1s the sup-
port of functionally-defined data 1n a manner which provides
good performance Cactis 15 1ntended for use 1n applications
which are conducive to an object-oniented approach and
mvolve denved data Such applications include software
environments

Cactis supports the construction of objects and type/subtype
hierarchies, which are useful for managing the complex and
highly-interrelated data found in software environments Such
data types include programs, requirement specifications, mile-
stone reports, configurations, documentation, and many others
Cactis uses techmques based on attributed graphs to ensure that
functionally-defined atmbutes of objects, such as compilation
dependencies, cost calculations, and mulestone dependencies
can be maintained efficiently Since 1t 1s necessary to dynami-
cally add new tools (such as debuggers and compilers) to a
software environment, the DBMS allows the user to extend the
type structure The system also supports an efficient rollback
and recovery mechanism, which provides the framework for a
software version facility

1 Introduction

A software environment provides a facility for managing
the design, construction, testing, use, and eventual reuse of
software There 1s currently a very active research area

This work was supported n part by ONR under contract number N0O0014 86 K-0054
and 1n part by NSF under grant DMC 8505164

Permussion to copy without fee all or part of this matenal 1s granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and 1its date appear, and notice 1s given that copying
1s by permission of the Association for Computing Machmery To
copy otherwise, or to republish, requires a fee and/or specfic
permission

© 1987 ACM 0-89791-236-5/87/0005/0491 75¢

491

Roger King

Umversity of Colorado
Department of Computer Science
Boulder, Colorado 80309

focussed on the development of techniques for constructing
software environments One major effort 1s described
[Tay86] Cleary, one of the most important requirements of a
software environment 1s that i1t have a central store for manag-
ing the mynad of objects which make up a software project A
DBMS structures an otherwise chaotic system of files, provides
a framework for specifying their interrelationships and depen-
dencies, and for defiming the precise effects of the programs
which act on these files In short, a DBMS can provide a
powerful abstraction, allowing a system of files to be viewed as
an organized collection of objects and tools which use these
objects

In this paper, we argue that conventional database tech-
nology 1s not sufficient for performing these tasks We take the
view that an object-oriented approach 1s the appropriate data-
base formalism for constructing the central store of a software
environment We discuss an object-oriented DBMS called
Cactis, and describe the mechanisms 1s uses to efficiently sup-
port software environment apphications The unique contribu-
tions of Cactis are centered around its ability to effectively
manage constructed objects and functionally-defined data, and
perform rollback

1.1. Limitations of Current Database Technology

Current database technology, such as herarchical, net-
work, and relational DBMS’s are limited 1n their data abstrac-
tions and representational power Briefly, we view the follow-

mg four capabihties as bemng central to supporting software
environments

1 The construction of recursively-defined objects and
type/subtype lmerarchies Software environments include
complex data types such as programs, requirement
specifications, mulestone reports, configurations, docu-
mentation, and many others These types are often

http://crossmark.crossref.org/dialog/?doi=10.1145%2F38713.38763&domain=pdf&date_stamp=1987-12-01

defined 1n terms of each other, and need to be broken
down 1nto categones For example, a configuration 1s
made up of a number of instances of the type program,
source and object modules might be viewed as subtypes
of type program

The defimtion of derived data Cacts supports derived
data i the form of functionally-defined attributes of
objects It uses a mechanism based on attnbuted graphs to
ensure that functionally-defined attributes, such as compi-
lations, cost calculations, and milestone dependencies can
be maintained efficiently It 1s particularly important 1n a
software environment that this capability be efficient, as a
significant amount of the information 1n a software sys-
tem 15 denived

The ability to extend the type structure This 1s necessary
to allow users of the software environment to dynamucally
add new tools such as debuggers and compilers

An efficient rollback and recovery mechamism, which
provides the framework for the recall of versions It 1s of
particular importance that versions not be represented as
largely redundant objects, as objects 1n a software
environment are hikely to be quite large In Cactis, the
rollback facility 1s both space and time efficient, and 1s
supported with a general-purpose Undo facility

The capability number one, above, 1s provided by the sub-
system of Cactis, called Sembase, a tool constructed at the
Umversity of Colorado (see [FKM85,Kin84]) The other three
capabilities were developed recently, and a preliminary report
on these efforts appears in [HuK86a] The system 1s now com-
plete and consists of approximately 65,000 hines of C code, and
uses a imestamping concurrency control technique

12 Related Work

Recently, significant interest has developed in semantic
and object-oriented database models Cactis 15 both a semantic
and an object-oniented model It 1s the encorporation of both
philosophies 1n one model that makes Cactis uniquely suited to
the support of software environments

A complete discussion of semantic models and their rela-
tonship to traditional models may be found
[HuK86d,KiM85] Bnefly, traditional database models sup-
port record-like structures and/or inter-record links (e g, the
relational, hierarchical, and network models) Semantic
models support expressive data relatonships, a typical seman-
tic model allows a designer to specify complex objects, and
also supports at least one form of derived relationship, general-
1zation (sometimes called subtyping) With generalization, one

mn

492

sort of object can be defined as belonging to a subcategory or
subtype of a larger category of objects [CDF82, SkZ86] and
[FKMS85] discuss data structures and access methods used to
implement semantic databases

Object-oriented models emphasize the abihty of a data
object to encapsulate behavior, in this way an object may
respond to changes elsewhere 1n the database For a discussion
of a number of research efforts directed at implementing
object-oniented database systems, see [D1D86] Such systems
vary from extensions to the relational model to handle complex
data [StR86] to database implementations based on the mes-
sage passing paradigm of Smalltalk [MSO86,MaS86] An
object-oniented system which uses persistent programming
techmques 1s described 1n [AtK83] An object-onented imple-
mentation designed to support extensible databases 1s
described 1n [CDR86], this system provides specialized storage
structures and access methods for accessing large objects
Another extensible system, designed for such applications as
engineering, 1s described 1n [MaD86] An object-oriented sys-
tem designed to support multi-media databases 1s described 1n
[WKL86] There have also been some work in the area of
database support for software engineering, see [ZSG86] and
[Nes86]

Cactis supports the data structuring facilities of a seman-
tic model It also supports the encapsulation capabilities of an
object-oniented model by allowing an object to contain the
mechamsms which allow 1ts attributes to be derived 1n terms of
other objects 1n the database Other researchers have stressed
the importance of derived data in knowledge based databases
[LaS84, Mor84, ShK84] Much of the previous work n this
area has come from Al research omnented toward constramnt
based programming systems [Bor81]

During the development of the Sembase subsystem of
Cactis a couple lessons were learned While this project did
produce a system capable of supporting a wide class of object-
oriented systems, including some forms of derived informa»
tion, 1t fell short in two ways First of all, only a subset of first
order predicate calculus expressions may be used to manage
derived data Secondly, the code, while very efficient, 1s tricky
and mnelegant Cactis supports a much wider class of denved
information, and does so 1n a clean fashion, based on a simple
algorithmic model

Cactis was influenced by and extends techniques from
attribute grammers (see [Knu68, Knu71]) and incremental attr-
bute evaluation (see [DRT81,RTD83]) to provide an effective

model for performuing efficient maintenance of functionally-
defined data and for performung rollback The effectiveness of

this last capability 15 quite important, as databases with com-
plex derived data have the potential of being very difficult to
rollback

In the next section, the Cactis data model 1s briefly
descnbed, and the implementation of Cactis 1s discussed Sec-
tion three discusses the database requirements of software
environments, and section four describes specific examples of
the apphication of Cactis to software environments Finally,
section five discusses future directions

2 Cactis

In this section, we briefly describe the Cactis data model,
and discuss the algonthmic techmques used to support
functionally-defined information and Undo We also briefly
describe the physical implementation of Cactis

2.1. The Data Model and Attributed Graphs

A Cacuis database consists of a collection of abstract
objects, atomic objects (such as strings, reals, integers, boole-
ans, arrays, and records), types, relationships, constraints, sub-
types, and predicates Abstract and atomuc objects constitute
the "data” of the database, and abstract objects are build recur-
sively out of atomic objects via relationships, which define the
logical connections which exist between the data objects The
remaining constructs comprise the database schema Objects
are broken 1nto type/subtype hierarchies based on the values of
relationships and attributes (defined below), via predicates
Thus, the type Persons may have a relationship called Mother,
which points back to Persons, and a relationship called Cars
which points to the type Automobiles A Car Buff might be
defined as the subtype defined by the predicate which calcu-
lates all Persons who own more than three cars A constraint
mght be that all Persons must own at least one car

Also, 1n a Cactis database, a data item may have attr-
butes Attributes are atormc-valued relationships, such as Age
of Persons, and may be of any C data type, except pointer
This aspect of Cactis extends techmques derived from Knuth’s
attnibute grammars [Knu68,Knu71] as well as from more
recent work on incremental atiribute evaluation
[DRT81,RTD83] used 1n syntax directed editors These tech-
mques have been used extensively in compiler construction to
represent the semantics of programmung language text Thus,
1 a Cactis database, the relationship structure between objects
18 viewed as an attributed graph Each node 1n the graph 1s an
nstance of a particular named type of data

The Cactis model allows attribute evaluation rules to be

attached to certain attributes These rules allow attributes to be
dernived from other attributes within a given instance and from
the values contained 1n related nstances Thus, objects may be
active 1 responding to changes 1n their environment rather
than simply passively storing data Since attribute evaluation
rules can be constructed from arbitrary functions of attributes,
1t 18 possible to model and mamipulate the complicated seman-
tics that real world entihes often possess It should be noted
that, 1n an attributed graph, the attnbutes of a given instance
may be denived only 1n terms of attribute values passed to 1t
from 1nstances the given instance 1s directly related to via
named relationships However, attribute values may be passed
transitively from instance to instance Thus, if the data
mstance A 1s related to wnstance B and instance B 1s related to
mnstance C, A’s attributes may derived 1n terms of C’s attribute
values

There are two kinds of attributes in the attributed graph,
derived and intnnsic Derived attributes have an attribution
rule attached to them, while intrinsic attributes do not. This
means that only intrinsic attributes may be given new values
directly Denved attributes are only changed indirectly by
computations resulting from changes to intrinsic attributes

An additional property of the Cactis data model 1s the
ability to attach constraints to attributes In the data model, a
constraint 1s 1mplemented as a derived attribute value which
computes a boolean value indicating whether the constraint has
been violated The attribute evaluation rule n this case 1s sim-
ply the predicate defining the constraint Whenever an attri-
bute which 1s designated as testing a constraint evaluates to
false, rollback of the current transaction 1s performed Since
constraint predicates are handled 1n the same manner as normal
derived attribute values, the constramnt predicate may be
formed using any expression which returns a boolean value

2.2. Efficiency Considerations

A number of data models have made provisions for func-
tionally dertved data However, the actual implementations of
most of these systems use techniques equivalent to tniggers
[BuC79] attached to data While this method 1s adequate for
sparsely interconnected data, 1t can present problems for more
highly interconnected data Since there 1s no restriction on the
kands of actions performed by triggers, the order of their firng
can change their overall effect While this allows tnggers to be
extremely flexible, 1t can also become very difficult to keep
track of the interrelationships between triggers Hence, 1t 1s
easy for errors involving unforeseen interrelationships to occur,
and much more difficult to predict the behavior of the system

493

under unexpected circumstances

By contrast, the effects of attribute evaluation computa-
ttons used 1n the Cactis system are much easier to 1solate and
understand Each data type 1n the system can be understood 1n
terms of the relationship and attribute values 1t stores, the
values 1t transmuts out across relationships, and the values 1t
receives across relationships This allows the schema to be
designed 1n a structured fashion and brings with 1t many of the
advantages of modern structured programmung techmques
The ability to localize behavior 1n this fashion 1s particularly
mmportant 1n extensible systems, where end users are expand-
mg the system during a session

Even if we can adequately deal with the unconstrained
and unstructured nature of tniggers, they can also be highly
mefficient If we choose a naive ordering for recomputing data
values after a change, we may waste a great deal of work by
computing the same data values several tmes For example, a
simple trigger mechamism mught work recursively, invoking
new triggers as soon as data changes Any trigger mechanism
which uses a fixed ordering of some sort (e g depth first or
breadth first) can needlessly recompute some values, 1n fact, 1n
the worst case can recompute an exponential number of values
On the other hand, the attnibute evaluation technique used 1n
the Cactis system will not evaluate any attribute that 1s not
actually needed, and will not evaluate any given attribute more
than once

The Cactis primitives include operations for creating and
deleting object type instances, establishing and breaking rela-
tionships between 1nstances, defiming predicates and subtypes,
and primitives for retneving and replacing attribute values
These primitive actions are augmented by the meta-action
Undo Undo has the effect of forcing the rollback of one tran-
saction This meta-action allows the user to freely explore the
database, knowing that no actions need have permanent effect

Whenever changes are made to a database using one of
the primitive data manipulation actions, Cactis must ensure
that all observable attribute values in the database retan a
value which 1s consistent with the attribute rules of the system
This requires some sort of attribute evaluation strategy or algo-
rithm One approach would be to recompute all attnbute
values every time a change 1s made to any part of the system
This 1s clearly too expensive What 1s needed 1s an algonthm
for incremental attribute evaluation, which computes only
those attributes whose values change as a result of a given
database modificanon This problem also anses 1n the area of

syntax directed editing systems, so 1t 15 not surprising that
algorithms exist to solve this problem for the attribute gram-
mars used 1n that application The most successful of these
algorithms 1s due to Reps [Rep82] Reps’ algorithm 1s optimal
1n the sense that only attributes whose values actually change
are recomputed

Unfortunately, Reps’ algonithm, while optimal for attri-
buted trees, does not extend directly to the arbitrary graphs
used by Cactis Instead, a new incremental attribute evaluation
algorithm has been designed for Cactis This new algorithm
exhibits performance which 1s similar to Reps’ algorithm, but
does have a slightly nferior worst case upper bound on the
amount of overhead incurred

The algorithm works by using a strategy which first deter-
mines what work has to be done, then performs the actual com-
putations The algonthm uses the dependencies between attr1-
butes An attnbute 1s dependent on another attribute 1f that
attribute 1s mentioned 1n 1its attribute evaluation rule (1e 1s
needed to compute the derived value of that attribute) When
the value of an intnnsic attribute 1s changed, 1t may cause the
attributes which depend on 1t to become out of date with
respect to their defining attribute evaluation rules Instead of
1mmediately recomputing these values, we simply mark them
as out of date We then find all attributes which are dependent
on these newly out of date attributes, and mark them out of
date as well

This process continues until we have marked all affected
attributes During this process of marking, we deterrmine 1if
each marked attribute 1s important Attributes are said to be
important 1if they have a constraint predicate attached to them,
or if the user has asked the database to retnieve their values
When we have completed marking attmibutes during the first
phase of the algorithm, we will have obtained a list of attri-
butes which are both out of date and important We can ther,
use a demand driven algorithm to evaluate these attributes 1n a

simple recursive manner The calculation of attnibute values
which are not important may be deferred, as they have no
immediate affect on the database If the user explicitly
requests the value of attnbutes (1e makes a query) they
become important, and new computations of out of date attr1-
butes may be invoked in order to obtain correct values An
implementation which 1s simular, 1 that 1t uses lazy evaluation,
18 described 1in [BFNS82]

In the worst case, the overhead of the algonthm (when
amortized over the sequence of all possible transactions) 1s

O(Nodes(Could_Change(A)) +| Edges(Could_Change(A))),

494

where Could_Change describes a dependency graph It
represents all attributes and objects reachable from the site of
the original primitive change A, via some series of dependen-
cies Edges model relationships and nodes model objects
This behavior comes from the mark out of date phase of the
algorithm

However, this 1s the worst case behavior In many real
cases this traversal will be cut short by finding attributes which
are already out of date For example if an attribute A were
assigned 2 different values in a row before updating the sys-
tem, the second assignment would only update A and not visit
any other attributes and hence incur only O(1) overhead In
general the actual performance of the Cactis attribute evalua-
tion algonthm will depend on the particular attributes
mnvolved, particularly on whether some attributes may remain
as out of date for long periods of time 1if they are not important
and are not accessed Also, if a given attnbute 1s changed as a
result of two different pnmitive updates to imtrinsic attributes,
the given attribute wiil only be reevaluated once (unless of
course, the given attribute has been accessed before the second
prumtive update 1s performed)

In order to support the pnmitives which break and estab-
lish relationships, a process similar to that used for intrinsic
attribute changes 1s used When a relationship 1s broken, the
system determunes which derived attnbutes depend on values
that are passed across the relationship These attributes are
marked out of date just as if an intrinsic attribute had changed
When a relationship 1s established, the second half of the attr-
bute evaluation algorithm 1s invoked to evaluate attributes
which are out of date and mmportant In order to ensure that
denived attributes can always be given a valid value, the data-
base ensures that relationships are not left dangling across attri-
bute evaluations Thas 18 either done explicitly by the transac-
tion, or where necessary the system will provide special
dummy 1nstances to tie off any dangling relationships Also,
the primitive to delete an 1nstance can be treated the same as
breaking all relationships to the instance, and the pnmitive to
create a nstance does not affect attribute evaluation until rela-
tionships are established

During the evaluation of attributes, certain attributes will
have constraint predicates attached to them After an attribute
1s evaluated, this constraint predicate 1s tested If 1t evaluates
false, a constraint violation exists By default, this causes the
transaction invoking the evaluation to fail and be rolled back or
undone Optionally, a special recovery action associated with
the constrant can be invoked to attempt to recover from the
violation In either case, the constraint must be satsfied or the

transaction 1nvoking the evaluation will fail and be undone

Wiath respect to supporting undo, we note that all of the
actions that take place as a consequence of changing an attr-
bute value can be undone simply by restoring the old value of
the attnibute Updates resulting from structural changes can be
undone by restoring the old structure Thus, Undo may be per-
formed with the same algonthmic techniques used to support
attnbute evaluation

2 3. The Implementation of Cactis

We now examine the methods that Cactis uses to perform
attribute reevaluation efficiently, given that the system 1s a
mass storage database, not an in-memory system Specifically,
the techmiques we have outlined above are efficient 1n terms of
the number of attributes that they recompute when changes are
made However, they are not necessarily efficient in terms of
the number of disk accesses needed Therefore, Cactis 1s very
careful 1 selecting the order of computations when carrying
out the actions of a database pnmitive

If we examine the routines which mark attributes as out of
date and reevaluate attribute values, we see that they are each
just a traversal of part of the attribute dependency graph We
may 1n fact choose any traversal order which visits the same
attnbutes In particular, we are free to choose an order which
reduces the number of disk accesses required

In the implementation of the Cactis data model, we use an
order of traversal which 1s chosen dynamically The way we
choose this order 1s to use a concurrent system m which a
number of sub-traversals are (conceptually) runmng at the
same ttme Each time we reach a node which has two or more
descendents to traverse, we fork a sub-traversal process to
traverse the graph in each direction For example, when we
mark an attribute out of date, we then schedule a traversal pro-
cess for each of the attributes which depend on 1t When we
evaluate an attribute, we request all the values needed to
recompute 1ts value 1n parallel We can think of this as a paral-
lel traversal of the graph where each branch of the traversal
runs independently To optimze disk access we use a greedy
technique Of all the sub-traversal processes which are runn-
able at any given time we choose to execute the one which we
expect to perform the least number of disk accesses

In practice we do not create actual separate processes to
accomplish our parallel traversal but instead simulate multiple
processes in a single process We break all computations into
pieces or chunks to be scheduled independently For example,
a normal attribute evaluation rule 1s 1mplemented using two
chunks The first schedules an evaluation for each of the attn-

495

bute values 1t depends on, then makes arrangements to
schedule the second chunk when all the values are available
The second chunk, which 1s scheduled only after all the values
1t needs have been computed, executes the attrnbute evaluation
rule 1n order to compute the final value for the attribute It then
stores the value and informs any process waiting for the value
that 1t 1s now available

The scheme for implementing concurrency that we have
described 1s very simple, easy to implement, and 1s quate
efficient The technique we use 1s similar to that used in the
OWL real-ume concurrent programming language For addi-
tional informauon about 1mplementation details, expected per-
formance, translation of programs into chunks and expenence
with the OWL language see [Don83]

Once we have mtroduced concurrency to the system as
outlined above, the process of choosing a good traversal order
simplifies to a scheduling problem We choose a process to
run which we expect to perform the least number of disk
accesses The obvious choice for this process 1s one which can
be processed using attributes currently in memory Note that
each process 1s associated with one attribute, the one it 1s com-
puting or marking out of date It may need other attribute
values to compute 1ts own value, but these are the responsibil-
1ty of other processes Any needed values will have been col-
lected 1n storage attached to the process before 1t 1s scheduled
as runnable

We use a sumple hashing scheme to index all pending
processes by the instances that contain the attnbute that they
are associated with Whenever a disk block 1s read into
memory, all processes which are associated with some 1nstance
stored on that block are promoted to a special very high prior-
1ty queue When new processes are scheduled, we first check
to see if the instance associated with the process 1s already 1n
memory, if so we schedule the request on the high prionty
queue Since they can be executed without additional disk
access, processes on the high priority queue always have prior-
1ty over other processes

In order to improve the locality of data references, we
cluster data 1n the Cactis model on the basis of usage patterns
We keep a count of the total number of times each 1nstance in
the database 1s accessed, as well as the number of times we
cross a relationship between instances 1n the process of attri-
bute evaluation or marking out of date We will then pentod-
cally reorganize the database on the basis of this information
In particular we will pack the database mto blocks using the
following greedy algorithm

496

Repeat
Choose the most referenced instance 1n the database that
has not yet been assigned a block

Place this mstance 1n a new block
Repeat
Choose the relationship belonging to some 1nstance
assigned to the block such that
(1) The relationship 1s connected to an unassigned
nstance outside the block and,
(2) The total usage count for the relationship 1s the

highest
Assign the wnstance attached to this relationship to the
block
Until the block 1s full
Until ail instances are assigned blocks

This algonthm attempts to place instances which are frequently
referenced together, 1 the same block This will tighten the
locality of reference for the database

When scheduling processes, once all in memory processes
have been executed we must choose the next one to execute
We would like to choose the process which will cause the least
number of disk accesses, however, we cannot know mn advance
which process this will be What we do 1nstead, 1s use past
behavior, or 1n the case of marking out of date, a worst case
estimate, as a predictor of future behavior We keep informa-
tion about past behavior 1n the form of a decaying average
which changes over time This makes the database self-
adaptive, allowing changes 1n the structure of the database to
be reflected 1n changing averages and hence changing schedul-
Ing priorities

In the Cacus data model values flow across relationships
in order to communicate information from one instance to
another In order to provide statistics for self adaptive optim-
zation of the attribute evaluation process, we tag each relation-
ship with a decaying average of the number of instances visited
(or alternately the actual amount of disk I/O incurred) when the
value transmutted across the relationship was requested 1n the
We use these tags to assign a prionty to pending
processes 1 the scheduling queue The highest prionity 1s given
to the process with lowest expected disk I/O Processes which

past

request values local to an instance rather than across a relation-
ship are not of concem since they will be scheduled as high
prionty when the instance 1s brought into memory A special
priority 15 given to processes which are the direct user requests
that start a chain of computations

In the case of evaluating an attribute, we update statistics
when we return to the attnibute 1n order to store 1ts new value
However, 1n the case of marking out of date, we do not return
and hence cannot store an updated statisic In this case we use

an alternate worst case statistic computed when clustering was
last performed This statistic tells how many disk blocks will
be visited 1n the worst case (1¢ assuming that no attributes to
be visited are already marked out of date) A simlar worst
case statistic 1s used as an 1mtial estimate for the dynamically
changing decaying averages

To summanze our strategy for performing updates, we
treat the traversals needed to implement attribute evaluation as
a concurrent computation This allows us to dynamically
choose a traversal order that reduces disk access In this
framework, the choice of a traversal order simplifies to the
choice of a scheduling order Sub-traversal processes which
can be executed without disk access are given highest
scheduling prionity Once all computations that can be per-
formed on 1 memory data have been completed we choose
processes which have the smallest expected number of disk
accesses to run first Expected disk accesses are measured by
either using self adaptive past performance statistics in the
form of a decaying average, or on the basis of worst case statis-
tics gathered at cluster time

3 Issues Concerning the Application of Cactis to Software
Environments

Software environments are an example of an application
domain that 1s not well supported by traditional database sys-
tems A software environment serves as a means for managing
the design, understanding, use, and reuse of software Cactis
was constructed with such applications as CAD/CAM, PCB
design, VLSI design, and in particular, software environment
support in mind The 1dea was to provide a database tool that
would serve as the central repository of an environment, and to
allow the sorts of derived information needed 1n an environ-
ment to be specified with as hittle additional code as possible
We are currently 1n process of implementing various parts of
an environment with Cactis, 1n this section we describe these
efforts

Below, we will first look at the specific requirements of
software environments which do not seem to be met by tradi-
tional DBMS’s, then see how each requirement 1s supported by
Cactis Then 1n the next secthon we will consider several
specific tasks in detail to give a broader view of the use of
Cactis 1n a software environment

Software environments typically deal with highly struc-
tured and 1interrelated objects A primary example of this 1s of
course computer programs, but software environments may
also wish to deal with objects involving the management and

497

control of an overall software development project The sorts
of object generally included 1n descriptions of existing and
proposed environments, such as [CKT86,Pen86], include
software components and software dependencies, versions,
documentations, requirements, milestone reports, test data,
verification results, bug reports, etc Note that "software com-
ponents” which are themselves highly structured and interre-
lated entiues are only one element of this hst Because of the
complexaty of the interrelationships defined 1n this model, 1t 1s
essential that the consistency of the database 1s maintained
automatically or sermautomatically Without some form of
automatic support 1t 1s very likely that inconsistent data will be
entered 1nto the database

The kind of highly structured and interrelated data used
by a software environment 1s precisely the kind of data that the
Cactis data model 1s designed to handle In Cacus, relation-
ships can be named and typed, and objects may be built using
arbitranly typed internal attribute values Furthermore, com-
posite objects may be built using relationships representing
containment This allows us to model objects such as com-
puter programs which may use a complex recursively defined
structure, in the same framework as sumpler objects such as
problem reports or bug fixes which refer to parts of programs

In addition to handling complex, highly interrelated data,
another primary requirement of a database to support environ-
ments 18 extensibility [Cle84, WaP86] We would like to be
able to extend the software environment with new tools to
meet new or speciahized needs This ability to create new tools
which work 1n harmony with the exisung system 1s, for exam-
ple, one of the major strong points of the overall Unix pro-
gramming environment To support extensibility, a database
must be able to add new types of data and refine or modify
existing types The object oniented subtyping structure of the
Cactis data model 1s a good base for supporting these kinds of
dynamic extensions

Finally, software environments, unlike most applications,
deal with entities which change dramatically over tme The

ability to retrieve and manipulate multiple versions of pro-
grammung entities can be crucial to the programming process
In addition, we need the ability to manipulate versions and ver-
sion streams as objects in themselves in order to support
configuration management tools within the system All this
must be done efficiently (see [ReG86]) We can again see that
the formalism of functionally-defined data helps us accomplish
this As we did 1n our discussion of Undo, we can note that all
of the actions that take place as a consequence of changing an
attribute value can be undone simply by restoring the old value

of the attribute Simularly, updates resulting from structural
changes can be undone by restoring the old structure This
means that although we may derive wide ranging effects from
small changes to data, we need only remember the small
changes made 1n order to restore the database to its old status

This gives us an efficient delta mechanism which allows
us to recover old versions from the current one In particular,
the information needed to remember a delta 1s proportional 1n
size to the imtial changes made to the database rather then the
total change in the database which may result because of
derived data Because we can support data of arbitrary types
as objects 1 the Cactis model 1t 1s easy to create objects which
represent the edit operations that make up a delta Since these
deltas are normal objects they can be attached to other objects
such as change descnptions, and 1n general can be integrated
with the rest of the database

To renterate the requirements we have stated, a database
which supports a software environment should

Object Class mlestone 1s

Relationships
depends_on
consists_of

Attributes
sched_compl tume,
local_work timef,
exp_compl time,
late boolean,
Rules
exp_compl =
Begm
latest time,

e support highly structured and interrelated data

e provide automatic or sem-automatic mechamisms for
maintaimng consistency within imterrelated data

o allow addition of new types of data within the framework
of the exiting system and allow refinement or extension of
the types of existing data to meet new needs

e support retention, recall, and management of multiple
related versions of objects

While this list 1s not exhaustive, 1t 1S representative of
some requirements found 1n the literature [Ost86] and 1s indi-
cative of current research directions [BeE86, GMT86, W1A86]
Cactis has been designed to meet these needs i an efficient
fashion

mlestone_dep Multi Socket,
milestone_dep Mult: Plug,

/* onginally scheduled completton time */
/* ume to complete mulestone alone */
/¥ expected completion time */

/* 1s this milestone expected late ~ */

/* sum local work and latest of things depended on */

latest = TIMEQ,

For Each dep Related To depends_on Do
latest = later_of(latest,dep exp_time),

End,

return(latest + local_time),

End,

late = later_than(exp_compl, sched_compl),

consists_of exp_time = exp_compl,

End,

Figure 1 Class Defimtion for Milestone Objects

498

4 Specific Applications of Cactis to Software Environ-
ments

As described above, software environments typically deal
with data that 15 interrelated 1n such a way that changing one
piece of data can have effects on many other data items It 1s
important that the database be able to maintain consistency 1n
this situation In this section, we describe concrete applica-
tions of Cactis to derived information 1n a software environ-
ment We descrnibe the construction of a milestone manager,
which 1s currently under construction, and a make facility,
which has been completed

The data type "mulestone” within an environment typi-
cally models the scheduled and expected completion imes of a
software component One nulestone may depend on another,
and changing the expected completion date for one milestone
may have effects that ripple throughout the expected comple-
tion dates for other milestones 1n the system Changng a mule-
stone 1s an 1nstance of a simple modification which affects the
consistency of the database If the expected completion date of
a mulestone 1s changed without also updating all the nmulestones
that directly or indirectly depend on 1t, the database will be
mnconsistent and incorrect

In the Cactis data model we may include a rule which
defines expected completion dates as a function of the mule-
stones that they depend upon We may also compute an attri-
bute that indicates whether the current expected completion
date of a mulestone 1s after 1ts oniginally scheduled completion
date, hence 1s expected to be late Figure 1 shows how an
object class for mulestones implementing these attributes has
been constructed

Using 1ts incremental attribute evaluation algorithm and
appropriate attribute evaluation rules as outlined above, the
system 1s able to efficiently ensure that all milestones always
have consistent values Under the Cactis data model, ensuring
the integnty of the database 1s no longer dependent on the
entire collection that tools that operates on 1t, but can be han-
dled 1n a centralized way by the database 1tself This increases
confidence 1n the correctness of the database and simplifies the
construction of individual tools that will use 1t or operate upon
1t In addition, new tests and constraints can be added to the
database without modifying existing tools

Turmng to the 1ssue of extensibility, we have already
indicated that automatic propagation of changes based on
functionally-defined data allows new tests and constraints to be
added to a database without disturbing the operation of existing
tools As an example, we can add a "very_late" attribute to a

milestone which indicates if the mulestone’s expected comple-
tion date exceeds 1ts scheduled completion date by more than a
fixed hmit However, since the database itself 1s responsible
for change propagation, existing tools which indirectly modify
the expected completion date of mulestones would not be
affected at all by this new attribute Consequently we can add
new functionality without having to modify existing tools

It 1s useful to note that, because of the subtyping mechan-
1sm of the Cactis model, 1t 1s possible to use values such as the
very_late attribute above to the change subtype membership of
an object dynamically Thus we can add new attributes and
hence new functionality to particular objects dynamcally
based on their properties - again without disturbing existing
tools Because of these properties the Cactis model 1s well
suited to applications such as software environments where

extensibility 1s a key 1ssue

One umque feature of using the Cactis data model to sup-
port environments 1s 1ts abtlity to represent the entire range of
data within a system This can include data ranging from syn-
tactic elements within programs, to module interconnections,
to scheduling data, all the way up to facts about the persortnel
volved 1n a project All these forms of data can all be sup-
ported in a single unified framework In particular, since the
Cactis model includes an attnbute evaluation capabihity that
was mspired by the work on syntax directed editors and incre-
mental attribute evaluation [DRT81,Rep84, TeR81] we can
support a whole range of capabilities for dealing with programs
based on attribute grammars Examples of existing environ-
ments and environment generators based on attnbute grammar
formalisms include the Cornell Program Synthesizer Generator
[ReT8S5], the Poe system [FIM84], and the SAGA system
[CaK85] among others These systems provide a number of
program development aids implemented as attribute computa-
tions Among the more powerful of the repertowre of tech-
niques available 1s program flow analysis Program flow
analysts can provide important information for testing, analysis
and optimization of programs [FoO76,0st81] While we will
not discuss them specifically here, techmques for flow analysis
based on attribute evaluation are described in detail 1
[BaJ78,Far77, W1l81] Bmefly, since Cactis does not support
data cycles, 1t can only handle flow analysis for simple
languages such as a goto-less Pascal, however, the techniques
descnibed 1n [Far86] are being mcorporated mto Cactis so that
1t may support more general forms of flow analysis

In addition to tasks that operate at a level internal to pro-

grams, a software environment may need to work with pro-
grams as a umt A good example of such a capability 1s the

499

Object Class make_rule 1s

Relationships
output make_result Multi Plug, /* to things that depend on this object */
depends_on make_result Mult1 Socket, /* to things this object depends on */
Attributes
file_name string, /* path name of file to create */

make_command string, /* text of command to create the file */
Rules
End Object,

Figure 2 Class Defimtion for Make_Rule Objects

output mod_time = /* compute and return the youngest of things this object depends on */
Begn
youngest time_val,

youngest = file_mod_tme(file_name),

For Each dep Related To depends_on Do
youngest = later_of(youngest,dep mod_time),

End,

return(youngest),
End,

Fagure 3 Evaluation Rule for Make_Rule Object

output up_to_date =
Begmn
need_recreate boolean,
this_time time_val,

need_recreate = False,
this_time = file_mod_time(file_name),

/* loop over all things this object depends on */
For Each dep Related To depends_on Do
/* make sure thing depended on 1s up to date */
VOID(dep up_to_date),

/* 1s thus object out of date */
If later_than(dep mod_time,this_time) Then need_recreate = True,
End For,

/* recreate this object 1f necessary */
If need_recreate Then system_command(make_command),

return(1),
End,

Figure 4 Evaluation Rule for Make_Rule Object

500

ability to control recompilatnon of programs source code based
on last modification imes and mutual dependencies The 1dea
1s to use dependencies and modification times to determine
exactly those modules or files which could need recompilation
and to automatically 1ssue the commands necessary to do those
recompilations This capability 1s provided by the Make pro-
gram [Fel79] found 1n the Unix system as well as in other tools
[Cle84] Because the Cactis data model can support arbrtrary
types, 1t 1s possible to supply this sort of capability within a
Cactis database

While the Cactis model cannot directly handle the files
that usually constitute source, object, and executable programs,
1t can deal with them indirectly In particular, 1t can represent
a file stored n a normal file system sumply by its name The
file name can be used within Cactis objects like the one
declared 1n Figures 2, 3, and 4 to implement a make capabihty
Figure 2 gives the mamn body of an object class representing a
dependency rule We have declared two relanonships which
relate this object to the things 1t depends on (via depends_on)
and things that depend on 1t (via output) Because we need a
many to many relationship here, there 1s an auxihary object
class not shown that 1s used to connect output relationships to
depends_on relationships We have also declared two attr-
butes, one of which represents the file name of the file we wish
to create The other 1s the text of a command which, when
executed by the operating system, will create the file Figures
3 and 4 give attnbute evaluation rules for computing values
transmutted across the output relatonship of the object

Figure 3 shows an evaluation rule which computes the
earliest modzfication ime among the local object to be created
itself and all the things 1t depends on ' We assume the routine
file_mod_time returns the last modification time of the named
file, or a time 1n the distant future 1f the file does not exist Fig-
ure 4 shows an evaluation rule which, when executed, will
ensure that the object of interest as well as all the objects 1t
depends on are up to date It begins by asking for and discard-
ing the up_to_date value for each object 1t depends on This
will ensure that all recursively dependent objects are recreated
as needed and n an appropnate order Next, if the
modification time of some object depended upon 1s later than
the modification time of the object of interest 1t 1ssues the com-
mand to recreate the object

What we have designed here 1s a very sumple make capa-
bility Using the subtyping capabilities of the Cactis model,
we have built on thus simple capability For example, we can
create a make_rule which insists that the object 1t marntained
was always kept 1n an up to date state, or better, one which

501

forces an object to be constantly up to date 1f a certain boolean
attribute were true, or acted normally otherwise The ability to
make such small changes and improvements can make creating
new tools much easier, particularly when existing functionality
can be left undisturbed as 1n the Cactis model

As a final example of how the Cactis model can support
software environments we note that Cactis attnbuted graphs
can be used to manage the user interface by making use of a
new graphical presentation system created by the authors The
basic 1dea behind this approach 1nvolves constructing and com-
posing special program fragments that, when combined, are
able to redraw a graphical display screen Attribute evaluation
rules are used to create, combine and control these program
fragments 1n order to manage a user interface This allows the
user interface to automatically reflect the state of the underly-
ing data regardless of how 1t 1s modified For a full explana-
tion of how this system works see [HuK86b, HuK86¢]

5. Directions

We are 1n the process of constructing a distributed version
of Cactis, with the effort just getting under way As modern
software environments will most likely be used 1n distributed
workstation applications, this facility 1s viewed as crucial It
will be necessary to allow different users at different machines
to configure their own environments privately and share 1nfor-
mation Cactis 15 well-suited this task, as it allows the end user
to conveniently tailor a local database Also, the concurrent
implementation of Cactis 1s naturally suited to a parallel or dis-
mbuted system In this way, various sub-traversals may actu-
ally be running at the same time

Acknowledgements

The authors would like to thank the team that constructed
the software described 1n this paper Pam Drew, Shehab
Gamalel-din, Janet Jacobs, Deacon Lancaster, Carla Mowers,
Loraine Neuberger, Evan Patten, Don Ravenscroft, Tom Reb-
man, Kurt Rivard, Jerry Thomas, and Gary Vanderlinden In
particular, Pam Drew and Tom Rebman deserve much credit
for constructing Cactis, and Jerry Thomas constructed the data
language processor

References

[AtK83]

[BaJ78]

[BeE86]

(Bor81]

[BuC79]

[BFN82]

[CaK85]

[CDR&86]

[CDF82}

[Cle84]

[CKT86]

[DRT81]

M P Atkmson and K G Kulkarm,
‘“‘Experimenting with the Functional Data
Model”’, Techmical Report on Peristent
Programming, Umversity of Edinburgh 5

(Semptember, 1983)

W A Babich and M Jazayen, ‘‘The Method of
Aurbutes for Data FLow Analysis Part I
Exhaustive Analysis Part I Demand Analysis”,
Acta Informanca 10 (October 1978), 245-272

N Belkhatr and J Estublier, ‘‘Expernience with a
Database of Programs’’, Proceedings of the
Second Symposium on Practical Software
Environments,, December 1986

A Borning, ‘‘The Programming Language
Aspects of ThingLab, a Constramnt-Onented
Simulation Laboratory’’, ACM Transactions on
Programming Languages and Systems 3 (October
1981), 353-387

O P Buneman and E K Clemons, “‘Efficiently
Monitoring Relational Databases’’, Trans
Database Systems 4 (Sept 1979), 368-382

P Buneman, R E Frankel and R Nikhil, “An
Implementation Techmique for Database Query
Languages’, ACM Transactions on Database
Systems 7 (June 1982), 164-186

R H Campbell and P A Kirslis, ““The SAGA
Project A System for Software Development’’,
Proceedings of Symposium on Practical Software
Development Environments, Pittsburgh, 1985, 73-
80

M J Carey, D J DeWitt, J E Richardson and E
J Shekita, ““Object and File Management 1n the
EXODUS Extensible Database System’,
Proceedings of the Twelfth International
Conference on Very Large Databases, August,
1986, 91-100

A Chan, S Danberg, S Fox, W Lin, A Non and
D Rues, ‘‘Storage and Acces Structures to Support
a Semantic Data Model”, Proceedings of the
Ewght International Conference on Very Large
Databases, September 8-10, 1982

G M Clemm, ““Odin An Extensible Software
Environment, Report and Users Reference
Manual”’, Unversity of Colorado at Boulder
Technical Report 262-84, March, 1984

K Cooper, K Kennedy and L Torczon, ‘“The

Impact of Interprocedure Analysis and
Optimization 1 the Rn Programming
Environment’’, ACM Transactions on

Programming Languages and Systems, October
1986, 491-523

A Demers, T Reps and T Tetelbaum,
“Incremental Evaluation for Attribute Grammars
with Apphication to Syntax Directed Editors’’,
Conference Record of the 8th Annual ACM
Symposium on Principles of Programming
Languages, Jan 1981, 105-116

502

[D1D86]

[Don83]

[FKM85]

[Far77]

[Far86]

[Fel79]

[FIM84]

[FoO76]

[GMTS86]

[HuK86a}

[HuK86b]

[HuK86c]

[HuK86d]

[Kin84]

[K1M85]

[Knu68]

K Dauttnich and U Dayal, International Workshop
on Object-Oriented Databases, Pacific Grove,
Califorma, September 23-26, 1986

M D Donner, ““The Design of OWL A Language
for Walking’’, SIGPLAN Nonices 18 (June 1983),
158-165

D Farmer, R King and D Myers, ‘‘The Semantic
Database Constructor’’, IEEE Transactions on
Software Engineering SE-11 (July 1985), 583-590

R W Farrow, ‘‘Attributed Grammar Models for
Data Flow Analysis’, Ph.D Dissertanon Rice
University, May 1977

R Farrow, ‘“Automatic Generation of Fixed-
Pomnt-Finding Evaluators for Circular, But Well-
Defined Attnibute Grammars®’, SIGPLAN Notices
Nouces 21 (July, 1986), 85-98

S I Feldman, ‘‘Make A Program for
Maintaining Computer Programs’’, Software -
Pracnice and Experience 9 (Apnl 1979), 255-265

C N Fischer, G F Johnson, J Mauney, A Pal
and D L Stock, “The Poe Language-Based
Editor Project’’, Proceedings of Symposium on
Practical Software Development Environments,
Pattsburgh, Apnl 1984, 21-29

L D Fosdick and L J Osterwell, ‘‘Data Flow
Analysis 1n Software Reliability”’, ACM
Compunng Surveys 8 (September 1976), 305-330

F Gallo, R Mmot and I Thomas, ‘“The Object
Management System of PCTE as a Software
Engmeening Database Management System’’,
Proceedings of the Second Symposwum on
Pracuical Software Environments, December 1986

S Hudson and R King, ‘““CACTIS A Database
System for Specifying Functionally-Defined
Data’’, Proceedings of the Workshop on Object-
Onented Databases, Pacific Grove, California,
September 23-26, 1986, 26-37

S E Hudson and R King, ‘‘Implementing a User
Interface as a System of Atmbutes’’, Proceedings
of the Second Symposwum on Practucal Software
Environments, December 1986

S E Hudson and R King, ‘‘Semantic Feedback 1n
the Higgens UIMS”, submutted to IEEE
Transactions on Software Engineering, 1986

R Hull and R King, ‘“‘Semantic Database
Modeling Survey, Applications, and Research
Issues’’, USC Techmcal Report Tech Rep -86-201
(April 1986)

R King, “‘Sembase A Semantic DBMS”,
Proceedings of Ist Int’l Workshop on Expert
Database Systems, Kiawah Island, South Carolina,
Oct 1984, 151-171

R King and D McLeod, ‘‘Semantic Database
Models”’, in Database Design, S B Yao (edtor),
Prentice Hall, 1985

D E Knuth, ‘‘Semanucs of Context-Free
Languages’, Math Systems Theory J 2 (June
1968), 127-145

[Knu71]

[LaS84]

[MSO86]

[MaS86]

[MaD86]

[Mor84]

[Nes861

[Ost81]

[Ost86]

[Pen86]

[ReG86]

[Rep82]

[RTD83]

D E Knuth, ‘“‘Semantcs of Context-Free
Languages Correcuon’’, Math Systems Theory J
5 Mar 1971), 95-96

G M E Lafucand R G Smuth, ‘‘Implementation
Of A Semantic Integnty Manager With A
Knowledge Representation System’’, Proc First
International Worksohop on Expert Database
Systems, Kiawah Island, South Carolina, Oct 24-
27, 1984, 172-185

D Mater, J Stem, A Ous and A Purdy,
“Development of an Object-Onented DBMS”’,
Proceedings of the conference on Object-Oriented

,,,,,, Systems, Languages, and
Applicanons, September 29-October 2, 1986,
472-482

D Mater and J Stein,, ‘‘Indexing 1n an Object-
Onented DBMS*’, Proceedings of the First
International Workshop on Object-Oriented
Database, Pacific Grove, California, September
23-26, 1986, 171-182

F Manola and U Dayal, " “PDM An Object-
Onented Data Model"”, Proceedings of the
Workshop on Object-Oriented Databases, Pacific
Grove, California, September 23-26, 1986, 18-25

M Morgenstern, ‘“The Role of Constraints 1n
Databases, Expert Systems, and Knowledge
Representation’’, Proc First International
Worksohop on Expert Database Systems, Kiawah
Island, South Carolina, Oct 24-27, 1984, 207-223

J R Nestor, ‘‘Recreation and Evolution in a
Programming Environment”, Proceedings of the
Workshop on Object-Oriented Databases, Pacific
Grove, California, September 23-26, 1986, 230

L Osterweil, ‘‘Using Data Flow Tools in Software
Engmeening’’, in Program Flow Analysis Theory
and Applications, S S Muchnick and N D Jones
(editor), Prentice-Hall, Englewood, NJ, 1981,
237-263

L Osterwell, “‘A Process-Object Centered View
of Software Environment Architecture’’,
Unwversity of Colorado at Boulder Technical
Report 332-86, May, 1986

M H Penedo, ‘‘Prototyping a Project Master Data
Base for Software Engineering Environments’’,
Proceedings of the Second Symposium on
Practical Software Environments, December 1986

J J Reppy and E R Gansner, ‘‘A Foundation for
Programming Environments’’, Proceedings of the
Second Symposium on Pracncal Software
Environments, December 1986

T Reps, “‘Optimal-time Incremental Semantic
Analysis for Syntax-directed Editors’’, Conference
Record of the 9th Annual ACM Symposwum on
Pninciples of Programming Languages, Jan 1982,
169-176

T Reps, T Teutelbaum and A Demers,
‘“‘Incremental Context-Dependent Analysis for
Language-Based Edutors™’, Trans Prog Lang and
Systems 5 (July 1983), 449-477

503

[Rep84]

[ReT85]

[ShK84]

[SkZ86]

[StR86]

[Tay86]

[TeR81]

[WaP86]

[W1A86]

[Wil81]

[WKLS6]

[ZSG86]

T W Reps, Generanng Language-Based
Environments, MIT Press, Cambridge, Mass,
1984

T Reps and T Tertelbaum, ‘“‘The Synthesizer
Generator’’, Proceedings of Symposwum on
Practical Software Development Environments,
Pattsburgh, 1985, 42-48

A Shepherd and L Kerschberg, ‘‘Constraint
Management 1n Expert Database Systems”’, Proc
First International Worksohop on Expert
Database Systems, Kiawah Island, South Carolina,
Oct 24-27, 1984, 522-546

A H Skarraand S B Zdonik, ‘“The Management
of Changing Types 1 an Object-Orniented
Database™, Proceedings of the conference on
Object-Oriented Programming Systems,
Languages, and Apphcations, September 29-
October 2, 1986, 483-495

M Stonebraker and L A Rowe, ‘“The Design of
Postgres’’, Proceedings of International
Conference on the Management of Data, May,
1986, pages 340-355

R Taylor, ‘‘Arcadia A Software Development
Environment Research Project’’, Umwversity of
Califorma at Irvine, Dept of Information and
Computer Scinece, Techmical Report, April 1986

T Teitelbaum and T Reps, ‘“The Cornell Program
Synthesizer A Syntax-directed Programming
Environment’’, Comm of the ACM 24 (Sept 81),
563-573

A T Wasserman and P A Pircher, ““A Graphical,
Extensible Integrated Environment for Software
Development’, Proceedings of the Second
Symposium on Practical Software Environments,
December 1986

D S Wile and D G Allard, ‘“Worlds an
Orgamzing Structure for Object-Bases”’,
Proceedings of the Second Symposium on
Pracucal Software Environments, December 1986

R Wilhelm, “Global Flow Analysis and
Opumzation 1 the MUG2 Compiler Generating
System’’, 1n Program Flow Analysis Theory and

Apphcatons, S S Muchmck and N D Jones
(editor), Prentice-Hall, Englewood, NJ, 1981
132-159

D Woelk, W Kim and W Luther, ‘‘An Object-
Oriented Approach to Multimedia Databases’’,
proceedings of ACM SIGMOD conference, May,
1986, 311-325

C Zarohagis, P Soupos, S Goutas and D
Chrnistodoulakss, ‘“The GRASPIN DB - A Syntax
Durected, Language Independent Software
Engmeening Database”, Proceedings of the
Workshop on Object-Oriented Databases, Pacific
Grove, Califorma, September 23-26, 1986, 235-
236

