
ObJect-Onented Database Support for 
Software Environments 

Scott E Hudson 

Department of Computer Science 
University of Anzona 

Tucson, Anzona 85721 

Abstract 

Cactrs is an object-onented, multi-user DBMS developed at 
the University of Colorado The Implementanon 1s self- 
adaptive and concurrent, and runs in the Umx/C Sun worksta- 
tlon environment A central, umque focus of Cacm 1s the sup- 
port of funcuonally-defined data m a manner which provides 
good performance Cams 1s intended for use m appllcatlons 
which are conducive to an oblect-onented approach and 
mvolve denved data Such apphcahons include software 
enwonments 

Cacus supports the construction of ObJects and type/subtype 
hlerarches, which are useful for managmg the complex and 
highly-interrelated data found m software enwOnments Such 
data types include programs, requirement spectications, rmle- 
stone reports, configurations, documentation, and many others 
Cacns uses techniques based on atmbuted graphs to ensure that 
functionally-defined atmbutes of objects, such as compilauon 
dependencies, cost calculations, and nulestone dependencies 
can be mamtamed efficiently Since It 1s necessary to dynarm- 
tally add new tools (such as debuggers and compllers) to a 
software envuonment, the DBMS allows the user to extend the 
type structure The system also supports an efficient rollback 
and recovery mechanism, which provides the framework for a 
software version facility 

1 Introduction 

A software environment provides a faclhty for managmg 
the design, construcuon, testmg, use, and eventual reuse of 
software There 1s currently a very active research area 

lius wor)r was suppomd III pit by ONR under contract number NO0014 86 K-C054 
and III prt by NSF under grsnt DMC 8505164 

PermIssIon to copy without fee all or part of this material IS granted 
provided that the copies are not made or dlstrlbuted for direct 
commercial advantage, the ACM copyright notlce and the title of 
the pubhcatlon and Its date appear, and notlce IS given that copymg 
1s by permlsslon of the Assoclatlon for Computmg Machmery To 
copy otherwlse, or to repubhsh, reqmres a fee and/or specfic 
permIssIon 

0 1987 ACM 0-89791-236-S/87/0005/0491 75F 

Roger Kmg 

University of Colorado 
Department of Computer Science 

Boulder, Colorado 80309 

focus& on the development of techmques for constructmg 
software enwonments One maJor effort 1s described m 
[Tay86] Cleary, one of the most Important requvements of a 
software environment 1s that It have a central store for manag- 
mg the mynad of ObJects which make up a software project A 
DBMS structures an othmse chaotic system of files. provides 
a framework for speclfymg ther mterrelatlonshlps and depen- 
dencies, and for defining the precise effects of the programs 
which act on these files In short, a DBMS can provide a 
powerful abstrachon. allowing a system of files to be vlewed as 
an orgamzed collection of objects and tools which use these 
ObJeCts 

In this paper, we argue that conventional database tech- 
nology 1s not sufficient for performmg these tasks We take the 
view that an object-onented approach is the appropnate data- 
base formalism for constructmg the central store of a software 
envuonment We &scuss an ObJect-onented DBMS called 
Cacns, and descnbe the mechanisms is uses to efficiently sup- 
port software envuonment apphcanons The umque conmbu- 
tlons of Cacus are centered around its abdlty to effectively 
manage constructed objects and functionally-defined data, and 

perform rollback 

1.1. Llmltatrons of Current Database Technology 

Current database technology, such as hierarchIca& net- 
work, and relauonal DBMS’s are hrmted m theu data abstrac- 
nons and representauonal power Bnefly, we mew the follow- 
mg four capabdmes as bemg central to supportmg software 
enwOnments 

1 The construction of recursively-defined objects and 
type/subtype hlerarches Software enwOnments include 
complex data types such as programs. reqmrement 
specifications, nulestone reports, configurations, docu- 
mentation, and many others These types are often 

491 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F38713.38763&domain=pdf&date_stamp=1987-12-01


deiined in terms of each other, and need to be broken 
down into categones For example, a configuration 1s 
made up of a number of mstances of the type program, 
source and obJect modules nught be viewed as subtypes 
of type program 

2 The defimhon of derived data Cacas supports denved 
data in the form of functionally-defined atmbutes of 
ObJects It uses a mechamsm based on attnbuted graphs to 
ensure that funcaonally-defined attnbutes, such as compl- 
lations, cost calculations, and rmlestone dependencies can 
be mamtamed efficiently It 1s parhcularly Important m a 
software envvonment that thus capabrhty be efficient, as a 
slgmficant amount of the mformauon m a software sys- 
tem IS denved 

3 The amity to extend the type structure This 1s necessary 
to allow users of the software envvonment to dynarmcally 
add new tools such as debuggers and compliers 

4 An efficient rollback and recovery mechanism, which 
provides the framework for the recall of versions It 1s of 
pmcular Importance that ve.rsions not be represented as 
largely redundant objects, as objects in a software 
enwonment are hkely to be quite large In Cachs, the 
rollback faclhty IS both space and tnne efficient, and 1s 
supported ~rltb a general-purpose Undo facrhty 

The capablhty number one. above, 1s promded by the sub- 
system of Cachs. called Sembase, a tool constructed at the 
Umverslty of Colorado (see IjJKIvISS, Km84]) The other three 
capabtitles were developed recently, and a prehmmary report 
on these efforts appears m [HuK86a] The system 1s now com- 
plete and consists of approximately 65,000 hnes of C code, and 
uses a timestampmg concurrency con& technique 

12 Related Work 

Recently, slgnlficant interest has developed in semantic 
and object-onented database models Cacm is both a semantic 
and an oblect-onented model It 1s the encorporation of both 
phllosophles m one model that makes Cacm uniquely suited to 
the support of software enwOnments 

A complete &scusslon of semannc models and thev rela- 
tlonshlp to titional models may be found m 
[HuK86d,KM85] Bnefly, tradmonal database models sup- 
port record-hke structures and/or mter-record hnks (e g , the 
relational, hlerarctical, and network models) Semanuc 
models support expressive data relationships, a typical seman- 
UC model allows a designer to specify complex ObJects, and 
also supports at least one form of denved relatronshlp. general- 
zatlon (sometunes called subtypmg) With generalization, one 

sort of object can be defined as belonging to a subcategory or 
subtype of a larger category of ObJects [CDF82,SkZ86] and 
[FKM85] mscuss data structures and access methods used to 
unplement semarmc databases 

ObJect-onented models emphasize the ability of a data 
obJect to encapsulate behavior, m thus way an ObJect may 
respond to changes elsewhere m the database For a discussion 
of a number of research efforts tiected at lmplementmg 
object-onented database systems, see [DlD86] Such systems 
vary from extensions to the relational model to handle complex 

data [StR86] to database lmplementatlons based on the mes- 
sage passmg paradigm of Smalltalk wS086,MaS86] An 
obJect-onented system which uses persistent programmmg 
techmques 1s described in [AtK83] An object-onented unple- 
mentauon deslgned to support extensible databases is 
described m [CDR86], this system provides specialized storage 
structures and access methods for accessing large ObJects 
Another extensible system, designed for such apphcatlons as 
engmeermg, is described in [MaD86] An ObJect-onented sys- 
tem designed to support multi-me&a databases 1s described m 
[WKL86] There have also been some work m the area of 
database support for software engmeenng, see [ZSG86] and 
[Nes86] 

Cacm supports the data structurmg faclhnes of a seman- 
UC model It also supports the encapsulation capabthties of an 
object-onented model by allowing an ObJect to contam the 
mechanisms which allow its atmbutes to be denved m terms of 
other ObJects m the database Other researchers have stressed 
the unportance of denved data m knowledge based databases 
[LaS84,Mor84,ShK84] Much of the previous work m thus 
area has come from AI research onented toward constramt 
based programmmg systems [Borg l] 

Durmg the development of the Sembase subsystem of 
Cactis a couple lessons were learned While this project &d 
produce a system capable of supportmg a Hrlde class of ObJect- 
onented systems. mcludmg some forms of denved mforma. 
&on, it fell short m two ways Fm,t of all, only a subset of first 
order pticate calculus expressloons may be used to manage 
derived data Secondly, the code, while very efficient, is mcky 
and inelegant Cacm supports a much wder class of denved 
mformatlon, and does so m a clean fashion, based on a simple 
algonthnuc model 

Cacm was Influenced by and extends techniques from 
atmbute grammexs (see [Knu68, Knu711) and incremental atm- 

bute evaluaaon (see [DRTII, RTD83]) to provide an effective 

model for performmg efficient mamtenance of funchonally- 
defined data and for performmg rollback The effecnveness of 

492 



this last capability 1s quite important, as databases ~rlth com- 
plex denved data have the potential of bemg very difficult to 
rollback 

In the next secuon. the Cactls data model 1s bnefly 
described,, and the lmplementatlon of Cachs 1s &scussed Sec- 

tion three discusses the database requirements of software 
environments, and section four describes specific examples of 
the apphcahon of Cacns to software envronments Finally, 
section five &scusses future dmztions 

2 Cact1.9 

In this section, we bnefly descnbe the Cachs data model, 
and &scuss the algonthnuc techniques used to support 
functionally-defined mformanon and Undo We also bnefly 
descnbe the physical lmplementanon of Cactus 

2.1. The Data Model and Attributed Graphs 

A Cactls database consists of a collecnon of abstract 
ObJects, atonuc objects (such as smngs, reals, integers, boole- 
ans, arrays, and records), types, relauonshlps, constramts, sub- 
types, and pre&cates Abstract and atormc objects consutute 
the “data” of the database, and abstract objects are bmld recur- 
sively out of atormc oblects via relaaonshrps. which define the 
log& connecuons which exist between the data objects The 
remammg constructs compnse the database schema Objects 
are broken mto type/subtype hlerarchles based on the values of 
relauonshlps and atmbutes (defined below), via pticates 
Thus, the type Persons may have a relationship called Mother, 
which points back to Persons, and a relahonship called Cars 
which points to the type Automobdes A Car Buff nught be 
defined as the subtype defined by the pre&cate which calcu- 
lates all Persons who own more than three cars A constramt 

nught be that all Persons must own at least one car 

Also, m a Cacns database, a data item may have atm- 

butes Atmbutes are atonuc-valued relahonshlps, such as Age 
of Persons, and may be of any C data type, except pomter 
This aspect of Cactls extends techniques denved from Knuth’s 
atmbute grammars mu68,Knu71] as well as from more 

recent work on mcremental atmbute evaluation 

[DRTSl, RTD83] used m syntax dmzcted e&tors These tech- 
mques have been used extensively in compiler construchon to 
represent the semantics of programmmg language text Thus, 
m a Cacns database, the relanonshlp structure between objects 
IS viewed as an attrtbuted graph Each node in the graph 1s an 
instance of a pamcular named type of data 

The Cacns model allows attribute evaluatm rules to be 

attached to certam atmbutes These rules allow atmbutes to be 
denved from other atmbutes wlthm a gven instance and from 
the values contamed in related instances Thus, ObJects may be 
active 111 respondmg to changes m their envlnlnment rather 
than simply passively stonng data Smce atmbute evaluahon 
rules can be constructed from arbitrary funcnons of atmbutes, 
it IS possible to model and manipulate the complicated seman- 
ncs that real world enhhes often possess It should be noted 
that, m an atmbuted graph, the atmbutes of a gven instance 
may be derived only 111 terms of atmbute values passed to It 
from instances the gven Instance 1s &ectly related to via 
named relanonshlps However, atmbute values may be passed 
transitively from instance to mstance Thus, If the data 
instance A 1s related to Instance B and instance B 1s related to 
instance C, A’s atmbutes may derived in terms of C’s atmbute 
values 

There are two lands of attnbutes m the atmbuted graph, 
derived and mmnslc Derived atmbutes have an atmbution 
rule attached to them, while mmnslc atmbutes do not. This 
means that only mmnslc atmbutes may be gwen new values 
dmctly Denved atmbutes are only changed mdnwztly by 
computahons resultmg from changes to mmnslc atmbutes 

An tihonal property of the Cactus data model IS the 
abihty to attach constramts to atmbutes In the data model, a 
constramt 1s implemented as a denved attnbute value which 
computes a boolean value mdlcatmg whether the constramt has 
been vlolated The atmbute evaluahon rule m this case 1s slm- 
ply the pr&cate defuung the constramt Whenever an atm- 
bute which is designated as teShng a constramt evaluates to 
false, rollback of the current transachon 1s performed Since 
constramt prticates are handled m the same manner as normal 
derived atmbute values, the constramt prdcate may be 
formed using any expressloon which returns a boolean value 

2.2. Effiaency Considerations 

A number of data models have made provlslons for func- 
honally derived data However, the actual lmplementahons of 
most of these systems use techniques eqmvalent to mggers 
[BuC79] attached to data While this method 1s adequate for 
sparsely interconnected data. it can present problems for more 
highly mterconnected data Since there 1s no resmcnon on the 
lands of achons performed by mggers, the order of their finng 
can change thev overall effect While this allows mggers to be 
extremely flexible, it can also become very tificult to keep 
track of the mterrelahonshlps between mggers Hence, It 1s 
easy for errors mvolvmg unforeseen mterrelahonshlps to occur, 
and much more tificult to pre&ct the behavior of the system 

493 



under unexpected cllcumstances 

By contrast, the effects of atmbute evaluation computa- 
tions used m the Cacus system are much easier to isolate and 
understand Each data type m the system can be understood m 
terms of the relationship and atmbute values it stores, the 
values it transrmts out across relationships, and the values it 
receives across relationshIps This allows the schema to be 
designed m a structured fashion and brmgs Hrlth it many of the 
advantages of modem structured programmmg techniques 
The ability to locahze behavior m this fashion IS particularly 

important m extensible systems, where end users are expand- 
mg the system durmg a session 

Even rf we can adequately deal wnh the unconstramed 
and unstructured nature of mggers, they can also be highly 
inefficient If we choose a niuve ordermg for recomputmg data 
values after a change, we may waste a great deal of work by 
computmg the same data values several tnnes For example, a 
simple mgger mechanism rmght work recursively, mvokmg 
new mggers as soon as data changes Any mgger mechanism 
which uses a fixed ordermg of some sort (e g depth first or 
breadth first) can needlessly recompute some values, m fact, m 
the worst case can recompute an exponential number of values 
On the other hand, the atmbute evaluaaon techmque used m 
the Cachs system will not evaluate any atmbute that IS not 
actually needed, and w111 not evaluate any gven atmbute more 
than once 

The Cactus pnmmves include operations for cxeatmg and 
deleting object type instances, establishing and breakmg rela- 
uonshps between instances, defining pre&cates and subtypes, 
and prnnmves for retnevmg and replacing atmbute values 
These pnmmve actions are augmented by the meta-acuon 
Undo Undo has the effect of forcing the rollback of one tran- 
saction Tlus meta-action allows the user to freely explore the 
database, knowing that no actions need have permanent effect 

Whenever changes are made to a database usmg one of 
the pnmmve data mampulanon acnons, Cacus must ensure 
that all observable attnbute values m the database retnn a 
value which IS consistent with the atmbute rules of the system 
This reqmres some sort of atmbute evaluauon strategy or algo- 
nthm One approach would be to recompute all atmbute 
values every time a change IS made to any part of the system 
This IS clearly too expensive What IS needed IS an algonthm 
for mcremental attnbute evaluation, which computes only 
those atmbutes whose values change as a result of a given 
database mtificatlon This problem also arises m the area of 

syntax dnected edmng systems, so it IS not surpnsmg that 
algonthms exist to solve this problem for the atmbute gram- 
mars used m that application The most successful of these 
algonthms IS due to Reps [Rep821 Reps’ algonthm IS optimal 
m the sense that only atmbutes whose values actually change 
are recomputed 

Unfortunately, Reps’ algonthm, while optimal for atm- 

buted trees, does not extend drrectly to the arbitrary graphs 
used by Cactls Instead, a new mcremental atmbute evaluauon 
algonthm has been deslgned for Cacfis This new algonthm 
exhibits performance which IS smular to Reps’ algonthm, but 
does have a slightly mfenor worst case upper bound on the 
amount of overhead mcurred 

The algonthm works by usmg a strategy which first deter- 
mmes what work has to be done, then performs the actual com- 
putations The algonthm uses the dependencies between atm- 

butes An attnbute IS dependent on another atmbute if that 
atmbute IS mentioned m Its atmbute evaluation rule (1 e IS 
needed to compute the denved value of that atmbute) When 
the value of an mmnslc atmbute IS changed, it may cause the 
atmbutes which depend on it to become out of date Hrlth 
respect to ther defining atmbute evaluation rules Instead of 
unmtiately recomputmg these values, we simply mark them 
as OUT of date We then find all atmbutes which are dependent 
on these newly out of dute atmbutes, and mark them OUT of 
date as well 

This process contmues until we have marked all affected 
atmbutes Durmg this process of markmg, we determme if 
each marked attnbute IS unportunt Atmbutes are siud to be 
Important If they have a constramt prticate attached to them, 
or if the user has asked the database to remeve their values 
When we have completed markmg atmbutes dunng the first 
phase of the algonthm, we w11l have obtamed a list of atm- 

butes which are both out of date and important We can ther. 
use a demand driven algonthm to evaluate these atmbutes in a 

simple recursive manner The calculation of atmbute values 
which are not unportant may be deferred, as they have no 
mum&ate affect on the database If the user explicitly 
requests the value of atmbutes (I e makes a query) they 

become unportant, and new computations of out of date atm- 

butes may be invoked in order to obtam correct values An 

implementation which IS smular, m that it uses lazy evaluation, 
IS described m [BFN82] 

In the worst case, the overhead of the algonthm (when 
amor~zed over the sequence of all possible transactions) IS 

Ofj Nodes(Could-Change(A)1 + 1 Edges(Could-Change(A)] ), 

494 



where Could-Change describes a dependency graph It 
represents all atmbutes and objects reachable from the site of 
the ongmal pnnuhve change A, via some senes of dependen- 
cies Edges model relatlonshlps and nodes model objects 
This behavior comes from the mark out of date phase of the 
algonthm 

However, this 1s the worst case behavior In many real 
cases this traversal ~11 be cut short by findmg atmbutes which 
are already out of date For example If an atmbute A were 
assigned 2 tierent values m a row before updatmg the sys- 
tem, the second assignment would only update A and not vlslt 
any other atmbutes and hence mcur only O(1) overhead In 
general the actual performance of the Cacns atmbute evalua- 
non algonthm will depend on the parhcular atmbutes 
involved, particularly on whether some atmbutes may reman 
as out of date for long penods of nme if they are not important 
and are not accessed Also, if a gven atmbute 1s changed as a 
result of two &fferent pnnuhve updates to mtnnac attnbutes, 
the given atmbute will only be reevaluated once (unless of 
course, the gven attnbute has been accessed before the second 
pnn-nme update is performed) 

In order to support the pnnunves which break and estab- 
hsh relationships, a process sm-nlar to that used for mmnslc 
atmbute changes is used When a relationship is broken, the 
system determmes which denved atmbutes depend on values 
that are passed across the relationship These atmbutes are 
marked out of date Just as if an mmnsic atmbute had changed 
When a relanonshlp IS established, the second half of the atm- 
bute evaluauon algonthm 1s mvoked to evaluate atmbutes 
which are out of date and nnportant In order to ensure that 
denved atmbutes can always be gven a vahd value, the data- 
base ensures that relatlonshlps are not left danglmg across atm- 
bute evaluations This 1s either done expllcltly by the transac- 
tion, or where necessary the system ~111 provide special 
dummy instances to ue off any danghng relauonshlps Also, 
the prnmuve to delete an instance can be treated the same as 
breakmg all relaaonshlps to the mstance, and the pnrmfive to 
create a instance does not affect attnbute evaluaaon untd rela- 
tionships are established 

Durmg the evaluation of atmbutes, certam atmbutes ~111 
have constramt prdcates attached to them After an atmbute 
1s evaluated, this constramt predicate 1s tested If It evaluates 
false, a constramt violation exists By default, this causes the 
transaction mvokmg the evaluation to foul and be rolled back or 
undone Optionally, a special recovery action assoctated with 
the constrant can be invoked to attempt to recover from the 
violanon In either case, the constramt must be satisfied or the 

transaction mvokmg the evaluation wrll fal and be undone 

With respect to supporung undo, we note that all of the 
acuons that take place as a consequence of changmg an atm- 
bute value can be undone simply by restonng the old value of 
the atmbute Updates resultmg from structural changes can be 
undone by restonng the old structure Thus, Undo may be per- 
formed with the same algonthnuc techniques used to support 
atmbute evaluation 

2 3. The Implementatron of Cactrs 

We now examme the methods that Cacns uses to perform 
atmbute xeevaluauon efficiently, gven that the system 1s a 
mass storage database, not an m-memory system Spectically, 
the techmques we have outlmed above axe efficient m terms of 
the number of attnbutes that they recompute when changes are 
made However, they are not necessanly efficient m terms of 
the number of &Sk accesses needed Therefore, Cactus is very 
careful m selectmg the order of computations when carrymg 
out the actions of a database pntrnuve 

If we examme the routmes which mark atmbutes as out of 
date and reevaluate attnbute values, we see that they are each 
Just a traversal of part of the atmbute dependency graph We 
may m fact choose any traversal order which vlslts the same 
attnbutes In particular, we are free to choose an order which 
reduces the number of &Sk accesses requmzd 

In the lmplementauon of the Cactls data model, we use an 
order of traversal which 1s chosen dynanucally The way we 
choose this order 1s to use a concurrent system in which a 
number of sub-traversals are (conceptually) running at the 
same time Each ttme we reach a node which has two or more 
descendents to traverse, we fork a sub-traversal process to 
traverse the graph m each dlrectlon For example, when we 
mark an atmbute out of date, we then schedule a traversal pro- 
cess for each of the atmbutes which depend on it When we 
evaluate an atmbute, we request all the values needed to 
recompute its value in parallel We can think of this as a paral- 
lel traversal of the graph where each branch of the traversal 
runs independently To optnmze &sk access we use a greedy 
technique Of all the sub-traversal processes which are runn- 
able at any gven tune we choose to execute the one which we 
expect to perform the least number of &Sk accesses 

In practice we do not create actual separate processes to 
accomphsh our parallel traversal but mstead simulate muluple 
processes m a smgle process We break all computations mto 
pieces or chunks to be scheduled independently For example, 
a normal attnbute evaluanon rule 1s implemented using two 
chunks The fnst schedules ,m evaluauon for each of the atm- 

495 



bute values It depends on, then makes arrangements to 
schedule the second chunk when all the values are avadable 
The second chunk, which 1s scheduled only after all the values 
It needs have been computed, executes the atmbute evaluation 
rule m order to compute the final value for the attnbute It then 
stores the value and informs any process wamng for the value 
that it 1s now avadable 

The scheme for rmplementmg concurrency that we have 
described 1s very simple, easy to Implement, and 1s qmte 
efficient The technique we use is smular to that used m the 
OWL, real-time concurrent programmmg language For addl- 
tlonal mformation about Implementation detads, expected per- 
formance, translation of programs mto chunks and expenence 
with the OWL, language see [Don831 

Once we have mtroduced concurrency to the system as 
outlmed above, the process of choosing a good traversal order 
simphfies to a scheduhng problem We choose a process to 
run which we expect to perform the least number of disk 
accesses The obvious choice for this process is one which can 
be processed usmg attnbutes currently m memory Note that 
each process 1s associated ~rltb one atmbute, the one It 1s com- 
puang or markmg out of date It may need other atmbute 
values to compute its own value, but these are the responslbf- 
lty of other processes Any needed values will have been col- 
lected m storage attached to the process before it 1s scheduled 
as runnable 

We use a simple hashmg scheme to index all pendmg 
processes by the mstances that contam the atmbute that they 
are associated with Whenever a &Sk block is read into 
memory, all processes which are associated with some instance 
stored on that block are promoted to a special very high pnor- 
lty queue When new processes are scheduled, we first check 

to see If the instance assocrated ~nth the process 1s already m 
memory, If so we schedule the request on the high pnonty 
queue Smce they can be executed without addmonal &Sk 
access, processes on the high pnotrty queue always have pnor- 
ity over other processes 

In order to improve the locahty of data references, we 
cluster data m the Cacns model on the basis of usage patterns 
We keep a count of the total number of times each instance m 
the database is accessed, as well as the number of times we 
cross a relationship between instances m the process of atm- 
bute evaluahon or markmg out of date We wdl then pen&- 
tally reorganize the database on the bans of this mformatron 
In pamcuhu we ~111 pack the database mto blocks using the 
followmg greedy algonthm 

Repeat 
Choose the most referenced instance m the database that 

has not yet been assigned a block 
Place this mstance m a new block 
Repeat 

Choose the relatlonshrp belongmg to some instance 
assigned to the block such that 

(1) The relahonshlp 1s connected to an unassigned 
instance outside the block and, 

(2) The total usage count for the relatlonshlp IS the 
highest 

Assign the mstance attached to this relauonshlp to the 
block 

Until the block 1s full 
Untd all mstances are assigned blocks 

This algonthm attempts to place mstances which are frequently 
referenced together, in the same block This will nghten the 
locahty of reference for the database 

When scheduling processes, once all In memory processes 
have been executed we must choose the next one to execute 
We would hke to choose the process which will cause the least 
number of Qsk accesses, however, we cannot know m advance 
which process this will be What we do instead, 1s use past 
behavior, or m the case of markmg out of date, a worst case 
estnnate, as a prtictor of future behavior We keep mforma- 
non about past behavior m the form of a decaymg average 
which changes over time This makes the database self- 

adaptive, allowmg changes m the structure of the database to 
be reflected 111 changmg averages and hence changmg schedul- 
ing pnormes 

In the Cacm data model values flow across relationships 
in order to communicate mformafion from one instance to 
another In order to provide statistics for self adaptive opnrm- 
zation of the atmbute evaluation process. we tag each relation- 
ship vrrlth a decaymg average of the number of instances vlslted 
(or alternately the actual amount of &Sk I/O mcurred) when the 
value transmttted across the relatlonshp was requested m the 
past We use these tags to assign a pnonty to pendmg 
processes m the schedulmg queue The highest pnonty is given 
to the process wth lowest expected &Sk I/O Processes which 
request values local to an instance rather than across a relatlon- 
ship are not of concern since they will be scheduled as high 
pnonty when the mstance IS brought mto memory A special 
pnonty 1s given to processes which are the &t user requests 
that start a cham of computaaons 

In the case of evaluatmg an atmbute, we update ~tah~tzs 
when we return to the attnbute m order to store Its new value 
However, 111 the case of markmg out of date, we do not return 
and hence cannot store an updated stausnc In this case we use 

496 



an alternate worst case stahst~ computed when clustermg was 
last performed This stamhc tells how many &Sk blocks ~11 
be visited m the worst case (1 e assummg that no atmbutes to 
be vlslted are already marked out of date) A smnlar worst 
case statlstlc 1s used as an mlhal estimate for the dynarmcally 
changmg decaymg averages 

To summanze our strategy for performmg updates, we 
treat the traversals needed to implement atmbute evaluation as 
a concurrent computahon This allows us to dynanucally 
choose a traversal o&r that reduces &Sk access In this 
framework, the choice of a traversal order slmphfies to the 
choice of a scheduling order Sub-traversal processes which 
can be executed Hrlthout d:sk access are gven highest 
scheduling pnonty Once all computations that can be per- 
formed on m memory data have been completed we choose 
processes which have the smallest expected number of &Sk 
accesses to mn first Expected &Sk accesses are measured by 
either usmg self adaptive past performance statlstlcs in the 
form of a decaying average, or on the basis of worst case statls- 
ncs gathered at cluster time 

3 Issues Concerning the Apphcatron of Cactus to Software 
Envrronments 

Software envmmments are an example of an apphcafion 
domam that 1s not well supported by tnuhtlonal database sys- 
tems A software enwonment serves as a means for managmg 
the design, understandmg, use, and reuse of software Cactls 
was constructed with such applications as CAD/CAM, PCB 
design, VLSI design, and m part~ular, software environment 
support m mmd The idea was to provide a database tool that 
would serve as the central reposttory of an environment, and to 
allow the sorts of denved information needed m an enwon- 
ment to be spectied with as httle ad&nonal code as possible 
We are currently m process of Implementmg various parts of 
an enwOnment with Cacns, m this section we descnbe these 
efforts 

Below, we will first look at the specific requirements of 
software environments which do not seem to be met by trade- 
tlonal DBMS’s, then see how each reqmrement 1s supported by 
Cactis Then m the next section we will consider several 
specific tasks m detiul to gve a broader view of the use of 
Cacns in a software envronment 

Software envuonments typically deal with highly struc- 
tured and interrelated objects A pnmary example of this is of 
course computer programs, but software environments may 
also wish to deal with oblects mvolvmg the management and 

control of an overall software development project The sorts 
of object generally mcluded in descnphons of existing and 

proposed enwonments, such as [CKT86, Pen861, include 
software components and software dependencies, versions, 
documentations, reqmrements, rmlestone reports, test data, 
venficatlon results, bug reports, etc Note that “software com- 
ponents” which are themselves highly structured and mterre- 
lated entmes are only one element of this list Because of the 
complexity of the mterrelafionshps defined m this model, it 1s 
essential that the consistency of the database 1s maintained 
automatically or senuautomatlcally Without some form of 
automatic support it 1s very hkely that inconsistent data will be 
entered mto the database 

The land of highly structured and interrelated data used 
by a software enmnment is precisely the kmd of data that the 
Cactls data model 1s deslgned to handle In Cactus, relauon- 
ships can be named and typed, and objects may be bmlt using 
arbmanly typed internal atmbute values Furthermore, com- 
posite ObJects may be built usmg relahonshps representmg 
contamment This allows us to model ObJects such as com- 
puter programs which may use a complex recursively defined 
structure, m the same framework as simpler ObJects such as 
problem reports or bug fixes which refer to parts of programs 

In addmon to handling complex, highly interrelated data, 
another pnmary reqmrement of a database to support envlron- 
ments 1s extenslhhty [Cle84, WaP86] We would hke to be 
able to extend the software environment with new tools to 
meet new or speclahzed needs This ablhty to create new tools 
which work m harmony with the exlstmg system is, for exam- 
ple, one of the maJor strong points of the overall Unix pro- 
grammmg envmnment To support extenslhhty, a database 
must be able to add new types of data and refine or modify 
exutmg types The object onented subtypmg structure of the 
Cacus data model 1s a good base for suppomng these kmds of 
dynarmc extensloas 

Finally. software enwonments, unhke most applications, 
deal with entmes which change dramahcally over hme The 

ablhty to remeve and manipulate multiple versions of pro- 
grammmg entities can be crucial to the programmmg process 
In ad&non, we need the ability to manipulate versions and ver- 
sion streams as ObJects in themselves in order to support 
configuration management tools ~rlthln the system All this 
must be done efficiently (see [ReG86]) We can agam see that 
the formahsm of funcaonally-defined data helps us accomphsh 
this As we did m our discussion of Undo, we can note that all 
of tha actlons that take place as a consequence of changing an 
atmbute value can be undone simply by restonng the old value 

497 



of the atmbute Sumlarly, updates resultmg from structural 
changes can be undone by restormg the old structure This 
means that although we may denve wide ranging effects from 
small changes to data, we need only remember the small 
changes made in order to restore the database to its old status 

This gves us an efficient delta mechanism which allows 
us to recover old versions from the current one In particular, 
the mformation needed to remember a delta 1s propomonal m 
size to the mmal changes made to the database rather then the 
total change m the database which may result because of 
derived data Because we can support data of arbmary types 
as ObJects 111 the Cachs model it is easy to create ObJects which 
represent the edit operaaons that make up a delta Since these 
deltas are normal objects they can be attached to other objects 
such as change descnpuons, and in general can be integrated 
with the rest of the database 

To reiterate the requirements we have stated, a aatabase 
which supports a software envuonment should 

support highly structured and interrelated data 

provide automattc or serm-automatic mechanisms for 
mamtammg consistency within interrelated data 

allow addmon of new types of data v4un the framework 
of the exmng system and allow refinement or extension of 
the types of existing data to meet new needs 

support retention, recall, and management of multiple 
related versions of objects 

While this list 1s not exhaustive, it 1s representatwe of 
some reqmrements found m the literature [Ost86] and 1s in&- 
catlve of current research tiections [BeE86, GMT86, W1A86] 
Cacm has been deslgned to meet these needs m an efficient 
fashion 

ObJect Class rmlestone IS 

Relationships 
depends-on 
consists-of 

nulestone-dep Multr Socket, 
mdestone-dep Multr Plug, 

Attrlbutes 
sched-compl time, 
local-work timef, 
exp-compl time, 
late boolean, 

Rules 
exp-compl = 

Begm 
latest tune, 

/* ongmally scheduled completion time 
/* nme to complete nulestone alone */ 
/* expected completion time */ 
/* 1s this rmlestone expected late */ 

*/ 

/* sum local work and latest of things depended on */ 
latest = TIMEO, 
For Each dep Related To depends-on Do 

latest = later-of(latest,dep exp-time), 
End, 

retum(latest + locaLtime), 
End, 

late = later-than(exp-compl, sched-compl), 

consists-of exp-Ume = exp-compl, 
End, 

Figure 1 Class Definition for Milestone Objects 

498 



4 Specific Apphcatlons of Cactus to Software Envu-on- 
med.9 

As described above, software environments typically deal 
W&I data that 1s interrelated m such a way that changmg one 
piece of data can have effects on many other data items It IS 

important that the database be able to mnntam consistency in 
this situation In this section, we descnbe concrete apphca- 
tlons of Cacm to denved mformatlon in a software environ- 
ment We descnbe the construcaon of a rmlestone manager, 
which 1s currently under construction, and a make faclhty, 
which has been completed 

The data type “rmlestone” within an envmnment typi- 
tally models the scheduled and expected completion rimes of a 
software component One mdestone may depend on another, 
and changing the expected completion date for one nulestone 
may have effects that npple throughout the expected comple- 
tlon dates for other rmlestones in the system Changmg a rmle- 
stone 1s an Instance of a simple mtification which affects the 
consistency of the database If the expected compleuon date of 
a rmlestone 1s changed without also updating all the nulestones 
that directly or mdvectly depend on it, the database will be 
1nconSistent and incorrect 

In the Cacns data model we may include a rule which 
defines expected compleuon dates as a funcaon of the xmle- 
stones that they depend upon We may also compute an atm- 

bute that mchcates whether the current expected completion 

date of a milestone 1s after its ongmally scheduled completion 
date, hence 1s expected to be late Rgure 1 shows how an 
ObJect class for rmlestones unplementmg these attnbutes has 
been constructed 

Using its incremental atmbute evaluation algonthm and 
appropnate atmbute evaluation rules as outlined above, the 
system 1s able to efficiently ensure that all rmlestones always 
have consistent values Under the Cactus data model, ensunng 
the integnty of the database 1s no longer dependent on the 
entie collection that tools that operates on It, but can be han- 
dled m a centralized way by the database itself This increases 
confidence m the correctness of the database and simphfies the 
construction of mchvidual tools that will use it or operate upon 
lt In addmon, new tests and constraints can be added to the 
database without modlfymg existing tools 

Tuxnmg to the issue of extennhhty, we have already 
m&cated that automanc propagation of changes based on 
functionally-defined data allows new tests and constramts to be 
added to a database without dtsturtung the operanon of existmg 
tools As an example, we can add a “very-late” atmbute to a 

rmlestone which m&cates if the rmlestone’s expected comple- 
uon date exceeds its scheduled completion date by more than a 
fixed hunt However, Since the database itself 1s responsible 
for change propaganon, existmg tools which mdvectly m&fy 
the expected completion date of mdestones would not be 
affected at all by this new atmbute Consequently we can add 
new functionality mthout havmg to mtify existmg tools 

It 1s useful to note that, because of the subtypmg mechan- 
ism of the Cactls model, it 1s possible to use values such as the 
very-late attnbute above to the change subtype membership of 
an ObJect dynanucally Thus we can add new atmbutes and 
hence new functionality to particular objects dynarmcally 
based on their propemes - agam without disturbing exutmg 
tools Because of these properties the Cactis model 1s well 
suited to applications such as software environments where 
extensihhty 1s a key issue 

One unique feature of using the Cactus data model to sup- 
port enwonments 1s its abrhty to represent the entlre range of 
data w&m a system This can include data rangmg from syn- 
tactic elements wlthm programs, to module intexconnechons, 
to scheduling data, all the way up to facts about the persortnel 
involved tn a proJect All these forms of data can all be sup- 
ported in a single umfied framework In pamcular, Since the 

Cachs model mcludes an atmbute evaluanon capabihty that 
was rnsplred by the work on syntax directed titers and incre- 
mental atmbute evaluation [DRTIl, Rep84, TeR811 we can 
support a whole range of capabihtles for dealing with programs 
based on atmbute grammars Examples of existmg envlron- 
ments and envronment generators based on atmbute grammar 
formalisms mclude the Cornell Program Synthesizer Generator 
[ReT85], the Poe system [FJM841, and the SAGA system 
[CaK85] among others These systems provide a number of 
program development ads implemented as atmbute computa- 
tions Among the more powerful of the xpertowe of tech- 
niques aviulable 1s program flow analysis Program flow 
analysis can promde important mformation for teshng, analysis 
and optumzation of programs [FoO76,Ost8 11 While we will 
not &scuss them specifically here, techniques for flow amlys~s 

based on attnbute evaluation are described in detad in 
[BaT78, Far77, NM811 Bnefly, Since Cacas does not support 
data cycles, it can only handle flow analysis for sunple 
languages such as a goto-less Pascal, however, the techniques 
described m [Far861 are bemg mcorporated into Cactls so that 
lt may support more general forms of flow analysis 

In ad&non to tasks that operate at a level internal to pro- 
grams, a software envronment may need to work urlth pro- 
grams as a unit A good example of such a capatnhty 1s the 

499 



ObJect Class makeJule IS 

Relatlonshqs 
output 
depends-on 

AttrIbutes 
file-name 
make-command 

Rules 

make-result Multi Plug, /* to things that depend on this object */ 
make-result Multl Socket, /* to things this obJect depends on */ 

strmg, /* path name of file to create */ 
string, /* text of command to create the file */ 

End ObJeCt, 

Figure 2 Class Definmon for Make-Rule ObJects 

output mod-time 
Begm 

= /* compute and return the youngest of dungs this object depends on */ 

youngest rime-val, 

youngest = file-mod-Ume(file-name), 
For Each dep Related To depends-on Do 

youngest = later-of(youngest,dep mod-time), 
End, 

return(youngest), 
End, 

Figure 3 Evaluanon Rule for Make-Rule ObJeCt 

output up-to-date = 
Begm 

need-recreate boolean. 
ths-tnne time-val, 

need-recreate = False, 
this-nme = file-modJme(file-name), 

/* loop over all thmgs this ObJect depends on */ 
For Each dep Related To depends-on Do 

/* make sure thmg depended on IS up to date */ 
VOID(dep up-to-date), 

/* is tlus ObJect out of date */ 
If later-than(dep mod-time&s-time) Then need-recreate = True, 

End For, 

/* recreate thts ObJect if necessary */ 
If need-recreate Then system-command(make-command), 

return(l), 
End, 

Figure 4 Ewluanon Rule for Make-Rule Object 

500 



ablhty to control recompllahon of programs source code ba& 
on last mtificahon times and mutual dependencies The idea 
1s to use dependencies and modtficaaon ames to determme 
exactly those modules or files which could need recompllahon 
and to automatically issue the commands necessary to do those 
recompilatlons This capabtltty is provided by the Make pro- 
gram Fe1791 found in the Unix system as well as m other tools 
LCle841 Because the Cacns data model can support arbmary 
types, It IS possible to supply this sort of capahhty wlthtn a 
Cactus database 

While the Cactis model cannot duectly handle the fles 
that usually consatute source, ObJeCt, and executable programs, 
It can deal with them mdmzctly In part~ular, it can represent 
a file stored m a normal file system stmply by its nami. The 
file name can be used w&m Cacas obJects hke the one 
declared m Rgures 2, 3, and 4 to Implement a make capablhty 
Figure 2 gtves the mam body of an ObJeCt class representmg a 
dependency rule We have declared two relaaonshlps which 
relate thts object to the things it depends on (via dependr_on) 
and dungs that depend on It (via ourput) Because we need a 
many to many relattonshlp here, there is an auxiliary obJect 
class not shown that 1s used to connect output relauonshlps to 
depends-on relationships We have also declared two attn- 
butes, one of which represents the file name of the file we wish 
to create The other IS the text of a command which, when 
executed by the operatmg system, will create the file Figures 
3 and 4 gve attnbute evaluatton rules for compuang values 
transnutted across the output relaaonshtp of the ObJect 

Figure 3 shows an evaluation rule which computes the 
earliest modlficatton Ume among the local object to be created 
Itself and all the things It depends on We assume the routme 

jik-mod_tlme returns the last modrficanon time of the named 
file, or a tnne m the Qstant future if the file does not extst Fig- 
ure 4 shows an evaluaaon rule which, when executed, will 
ensure that the obJect of interest as well as all the objects it 
depends on are up to date It begtns by asking for and dtscard- 
mg the up to dare value for each ObJeCt it depends on This - - 
will ensure that all recursively dependent objects are recreated 
as needed and m an appropnate order Next, if the 
modlficatton ame of some object depended upon IS later than 
the modtficafion ttme of the object of mterest lt issues the com- 
mand to recreate the obJect 

What we have designed here IS a very simple make capa- 
b&y Using the subtypmg capabilmes of the Cactus model, 
we have built on this simple capabtilty For example, we can 
create a make-rule which msists that the obJect it mamtamsd 
was always kept m an up to date state, or better, one which 

forces an obJect to be constantly up to date tf a certam boolean 
atmbute were true, or acted normally otherwtse The ablhty to 
make such small changes and improvements can make creatmg 
new tools much easier, parucularly when exlshng funcnonahty 
can be left unQsturbed as in the Cacus model 

As a final example of how the Cacas model can support 
software envmnments we note that Cactls atmbuted graphs 
can be used to manage the user mterface by makmg use of a 
new graphical presentanon system created by the authors The 
basic tdea behmd this approach mvolves constructmg and com- 
posmg special program fragments that, when combmed, are 
able to redraw a graphical display screen Atmbute evaluation 
rules are used to create, combme and control these program 
fragments m order to manage a user mterface This allows the 
user mterface to automatically reflect the state of the underly- 
mg data regardless of how it is modtfied For a full explana- 
tlon of how this system works see [HuK86b, HuK86c] 

5. DIrectIons 

We are 111 the process of constructmg a &smbuted version 
of Cachs, with the effort Just gettmg under way As modern 
software envuonments wtll most hkely be used m dtsmbuted 
workstation apphcatlons, thts facdlty 1s vtewed as crucld It 
~111 be necessary to allow Qfferent users at &fferent machines 
to configure their own envmnments pnvately and share mfor- 
maaon Cacm IS well-suited this task, as it allows the end user 
to convemently tador a local database Also, the concurrent 
implementahon of Cacns is naturally sulted to a parallel or &s- 
mbuted system In this way, various sub-traversals may actu- 
ally be runnmg at the same tune. 

Acknowledgements 

The authors would l&e to thank the team that constructed 
the software described m this paper Pam Drew, Shehab 
Gamalel-dm, Janet Jacobs, Deacon Lancaster, Carla Mowers, 
LOrame Neuberger, Evan Patten, Don Ravenscroft, Tom Reb- 
man, Kurt Izlvard, Jerry Thomas, and Gary Vanderlmden In 
pamcular, Pam Drew and Tom Rebman deserve much c&t 
for constructmg Cactn, and Jerry Thomas constructed the data 
language processor 

501 



References 

[AtK83] 

[BaJ78] 

[BeE86] 

[Borg11 

[B&79] 

[BFN82] 

[CaK85] 

[CDR86] 

[CDF82] 

[Cle84] 

[CKT86] 

[DRT81] 

M P Adanson and K G Kulkarm, 
“Expemnentmg with the Functional Data 
Model”, Techmcal Report on Penstent 
Programmmg, Umversuy of Edinburgh 5 
(Semptember, 1983) 
W A Babich and M Jazayen, “The Method of 
Atmbutes for Data FLow Analysis Part I 
Exhausnve Analysis Part II Demand Analysis”, 
Acta Injormatlca 10 (October 1978), 245-272 
N Belkhaur and J Estubher, “Expenence vvlth a 
Database of Programs”, Proceedmgs of the 
Second Symposium on Practtcal Software 
Envtronments,, December 1986 
A Bommg, “The Pmgrammmg Language 
Aspects of ThmgLab, a Constramt-Onented 
Slmulanon Laboratory”, ACM Transacttons on 
Programming Languages and Systems 3 (October 
1981), 353-387 
0 P Buneman and E K Clemons, “Efficiently 
Momtonng Relational Databases”, Trans 
Database Systems 4 (Sept 1979), 368-382 
P Buneman, R E Frankel and R Nlkhll, “An 
Implementation Techmque for Database Query 
Languages”, ACM Transactions on Database 
Systems 7 (June 1982), 164-186 
R H Campbell and P A KYshs, “The SAGA 
Project A System for Software Development”, 
Proceedrngs of Symposum on Practical Software 
Development Environments, Pittsburgh, 1985, 73- 
80 

M J Carey, D J Dewitt, J E kchardson and E 
J Shelata, “GbJect and File Management in the 
EXODUS Extensible Database System”, 
Proceedrngs of the Twelfth Internanonal 
Conference on Very Large Databases, August, 
1986,91-100 
A Ghan, S Danberg, S Fox, W Lm, A Non and 
D &es, “Storage and Acces Structures to Support 
a Semantic Data Model”, Proceedmgs of the 
Eight Internatronal Conference on Very Large 
Databases, September g-10,1982 
G M Clemm, “Odm An Extensible Software 
Environment, Report and Users Reference 
Manual”, Unlversrty of Colorado at Boulder 
Technical Report 262-84, March, 1984 
K Cooper, K Kennedy and L Torczon, “The 
Impact of Interprocedure Analysis and 
Opturnza~on in the Rn programrmng 
Environment”, ACM Transactions on 
Programming Languages and Systems, October 
1986,491-523 
A Demers, T Reps and T Teltelbaum, 
“Incremental Evaluauon for Atmbute Grammars 
mth Apphcatton to Syntax Dnected Editors”, 
Conference Record of the 8th Annual ACM 
Symposrum on Principles of Programming 
Languages, Jan 1981, 105-116 

[DlD86] 

[Don831 

[FKM85] 

[Far771 

[Far861 

[Fe1791 

[FJM84] 

[FoO76] 

[GMT861 

[HuK86a] 

[HuK86b] 

[HuK86c] 

[HuK86d] 

[Km841 

[fiM85] 

[Knu68] 

K Dltmch and U Dayal, International Workshop 
on Object-oriented Databases, Pacific Grove, 
Cahfomla, September 23-26, 1986 
M D Donner, “The Deagn of OWL A Language 
for Walking”, SIGPLAN Notices 18 (June 1983), 
158-165 
D Farmer, R Kmg and D Myers, “The Semantic 
Database Constructor”, IEEE Transacnons on 
Software Engmeermg SE-II (July 1985), 583-590 
R W Farrow, “Atmbuted Grammar Models for 
Data Flow Analyns”, PhD Dlssertatron Rice 
Untversrty, May 1977 
R Farrow, “Automatic Generation of Flxed- 
Point-Fmdmg Evaluators for Circular, But Well- 
Defined Attnbute Grammars”, SIGPLAN Notices 
Notices 21 (July, 1986), 85-98 
S I Feldman, “Make -- A Program for 
Mamtammg Computer F’rograms”, Software - 
Practrce and Experience 9 (Apnl1979), 255-265 
C N Fischer, G F Johnson, J Mauney, A Pal 
and D L Stock, “The Poe Language-Based 
Editor ProJect”, Proceedmgs of Symposium on 
Practical Software Development Environments, 
Pmsburgh, Apnl 1984,21-29 
L D Fosdlck and L J Osterweil, “Data Flow 
Analysis in Software Reliability”, ACM 
Computing Surveys 8 (September 1976), 305-330 

F Galio, R Mmot and I Thomas, “The Object 
Management System of PCTE as a Software 
Engmeenng Database Management System”, 
Proceedmgs of the Second Sympoum on 
Practical Software Envrronments, December 1986 
S Hudson and R Kmg, “CACTIS A Database 
System for Speclfymg Funchonally-Defined 
Data”, Proceedings of the Workshop on Object- 
Oriented Databases, Pacific Grove, Cahfomla, 
September 23-26,1986,26-37 
S E Hudson and R Kmg, “Implementmg a User 
Interface as a System of Attnbutes”, Proceedings 
of the Second Symposium on Practical Software 
Envtronments, December 1986 
S E Hudson and R Kmg, “Semantic Feedback m 
the figgens UIMS”, submuted to IEEE 
Transactions on Software Engmeenng, 1986 
R Hull and R Kmg, “Semantic Database 
Modelmg Survey, Apphcatlons, and Research 
Issues”, USC Technrcal Report Tech Rep -86-201 
(Apnl 1986) 

R Us, “Sembase A Semantic DBMS”, 
Proceedrngs of 1st Int’l Workshop on Expert 
Database Systems, lawah Island, South Carohna, 
Ott 1984,151-171 
R Kmg and D McLeod, “Semantic Database 
Models”, m Database Design, S B Yao (editor), 
Prentice Hall, 1985 
D E Knuth, “Semanhcs of Context-Free 
Languages”, Math Systems Theory J 2 (June 
1968), 127-145 

502 



[Knll71] 

[LaS84] 

[MS0861 

[MaS86] 

[MaD86] 

[Mor84] 

[Nes86] 

[Ost81] 

[Ost86] 

[Pen861 

[ReG86] 

Rep821 

[RTD83] 

D E Knuth, “Semantics of Context-Free 
Languages Correction”, Math Systems Theory J 
5 (Mar 1971), 95-96 
G M E Lafue and R G Srmth, “Implementa~on 
Of A Semantic Integnty Manager With A 
Knowledge Representaaon System”, Proc First 
Internatlonal Worksohop on Expert Database 
Systems, &awah Island, South Carolina, Ott 24- 
27,1984,172-185 
D Mner, J Stem, A Otis and A Purdy, 
“Development of an ObJect-Onented DBMS”, 
Proceedings of the conjierence on Object-Oriented 
Programming Systems, Languages, and 
Applrcanons, September 29-October 2, 1986, 
472-482 
D Miuer and J Stem,, “Indexmg in an ObJect- 
Onented DBMS”, Proceedwgs of the First 
International Workshop on Object-Oriented 
Database, Pactic Grove, Cahfomla, September 
23-26, 1986, 171-182 
F Manola and U Dayal, ” “PDM An ObJect- 
Onented Data Model”“, Proceedings of the 
Workshop on Object-Oriented Databases, Pacific 
Grove, Cahfomia, September 23-26, 1986, 18-25 
M Morgenstem, “The Role of Constramts m 
Databases, Expert Systems, and Knowledge 
Representation”, Proc First Internatronal 
Worksohop on Expert Database Systems, Kiawah 
Island, South Carolina, Ott 24-27, 1984,207-223 
J R Nestor, “Recreatton and Evolution m a 
Programmmg Envuonment”, Proceedmgs of the 
Workshop on Object-Onented Databases, Pacific 
Grove, Cahfomla, September 23-26, 1986,230 
L Osterwell, “Using Data Flow Tools m Software 
Engmeenng”, in Program Flow Analysis Theory 
and Apphcatrons, S S Muchmck and N D Jones 
(dtor), Prentice-Hall, Englewood, NJ, 1981, 
237-263 
L Osterwell, “A Process-ObJect Centered View 
of software Environment Architecture”, 
Unwerslty of Colorado at Boulder Technical 
Report 332-86, May, 1986 
M H Penedo, “Prototypmg a ProJect Master Data 
Base for Software Engmeenng Envuonments”, 
Proceedrngs of the Second Symposuun on 
Practical Software Envwonments, December 1986 
J J Reppy and E R Gansner, “A Foundatton for 
Programmmg Enwonments”, Proceedmgs of the 
Second Symposium on Practical Software 
Ennronments, December 1986 
T Reps, “Ophmal-time Incremental Semantic 
Analysis for Syntax-&&d E&tors”, Conference 
Record of the 9th Annual ACM Symposuun on 
Pnncrples of Programmrng Languages, Jan 1982, 
169-176 
T Reps, T Teltelbaum and A Demers, 
“Incremental Context-Dependent Analysis for 
Language-Based Editors”, Trans Prog Lang and 
Systems 5 (July 1983), 449-477 

VW841 

[ReT85] 

[ShK84] 

[SkZ86] 

[StR86] 

[WW 

[TeR8 I] 

[WaP86] 

[WlA86] 

[W1181] 

[WKLW 

[ZsG861 

T W Reps, Generating Language-Based 
Environments, MIT Press, Cambndge, Mass, 
1984 
T Reps and T Teltelbaum, “The Synthesizer 
Generator”, Proceedrngs of Symposuun on 
Practical Software Development Envzronments, 
Pittsburgh, 1985,42-48 
A Shepherd and L Kerschberg, “Constramt 
Management m Expert Database Systems”, Proc 
First International Worksohop on Expert 
Database Systems, &awah Island, South Carolma, 
Ott 24-27,1984,522-546 
A H Skarra and S B Zdomk, “The Management 
of Changmg Types m an ObJect-Onented 
Database”, Proceedmgs of the conference on 
Object-Onented Programming Systems, 
Languages, and Apphcatlons, September 29- 
October 2,1986,483-495 
M Stonebraker and L A Rowe, “The Design of 
Postgres”, Proceedings of International 
Conference on the Management of Data, May, 
1986, pages 340-355 
R Taylor, “Arca&a A Software Development 
Envuonment Research Pqect”, Unwerstty of 
Calrforma at Irvmne, Dept of Informatron and 
Computer Scmece, Techmcal Report, Apnl 1986 
T Teitelbaum and T Reps, “The Cornell Program 
Synthesizer A Syntax-tiected Programmmg 
Enwonment”, Comm of the ACM 24 (Sept 81), 
563-573 
A I Wasserman and P A &her, “A Graphlcal, 
Extensible Integrated Enwonment for Software 
Development”, Proceedings of the Second 
Symposwn on Practical Software Enwronments, 
December 1986 
D S Wile and D G Allard, “Worlds an 
Orgamzmg Smlcture for ObJect-Bases”, 
Proceedmgs of the Second Symposwn on 
Practical Sofrware Envrronments, December 1986 
R Wilhelm, “Global Flow Analysis and 
Optmuzatton m the MUG2 Complier Generatmg 
System”, m Program Flow Analysts Theory and 

Applrcanons, S S Muchmck and N D Jones 
(erlltor), Prentice-Hall, Englewood, NJ, 1981 
132-159 
D Woe& W I(lm and W Luther, “An ObJect- 
Onented Approach to Multnne&a Databases”, 
proceedmgs of ACM SIGMOD conference, May, 
1986,31 l-325 
C Zarohagls, P Soupos, S Goutas ad D 
Chnstodoulalus, “The GRASPIN DB - A Syntax 
Directed, Language Independent Software 
Engmeenng Database”, Proceedrngs of the 
Workshop on Object-Oriented Databases, Pa&c 
Grove, Cahfona, September 23-26, 1986, 235- 
236 

503 


