
Delegation Is Inheritance

Lynn Andrea Stein
Brown University

Department of Computer Science
Providence, R.I. 02912

Abstract

Inheritance and delegation are alternate methods
for incremental definition and sharmg. It has commonly
been believed that delegation provides a more powerful
model. This paper demonstrates that there is a
“natural” model of inheritance which captures all of the
properties of delegation. Independently, certain con-
stramts on the ability of delegation to capture inheri-
tance are demonstrated. Finally, a new framework which
fully captures both delegation and inheritance is outlined,
and some of the ramifications of this hybrid model are
explored.

1. Introduction

Delegation and inheritance are mechanisms for
sharing in object-oriented systems. Inheritance collects
objects into groups according to their “type,” or category;.
much of the sharing provided by inheritance is achieved
through these category, or class, objects. Delegation does
not define category objects in this way, but rather allows
sharing among arbitrary objects.

[Lieberman] gives perhaps the most complete com-
parison of these two systems to date; however, he does so
in informal terms. Thus, he is able to give the outline for
a simulation of inheritance using delegation, but goes on
to conclude that the reverse mapping-given inheritance,
performmg delegation-is impossible.

This paper develops a natural model for inheri-
tance which also captures delegation in its entirety. In
this scheme, class (isu) inheritance is delegation. This
inheritance scheme is simply inheritance with strict

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commerical advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

.C 1987 ACM 0-89791-247-O/87/0010-0138 $1.50

subtyping; what is unusual is that it is the classes, and
not the instances, which are used to simulate delegation.

While this type of inheritance properly contains
delegation, supporting all the functionality of
Lieberman’s “prototype” system, no delegation simula-
tion of inheritance has this property with respect to
inheritance. In particular, while delegation can capture
the state of several types of inheritance hierarchies at any
moment in time, it cannot model the constraints on
change over time imposed by inheritance. This result is
independent of the map from inheritance to delegation.

The model for inheritance described below has
natural extensions which allow for a more dynamic struc-
ture. Unique objects can be incorporated into a hierarchy
without the creation of extraneous classes; similar objects
can be allowed to accumulate around these extended
instances; and new classes can be created from these
objects as the need arises. The model presented in sec-
tion 4 provides the full functionality of both inheritance
and delegation, as well as the additional functions of
minimal (us. absolute) guarantee, accumulation, and pro-
motion.

1.1. Notations and Conventions

In the discussion below, I use limited models for
both delegation and inheritance. Specifically, only single
inheritance and single-parent delegation are described,
and actual cancellation of attributes is not discussed.
The problems introduced by allowing multiple inheritance
or delegation, and the difficulties of cancellation, are simi-
lar in the two frameworks and do not in general add
insight into the underlying models. Where exceptions
occur, these are noted.

In the formal models below, the distinctions
between types of attributes of an object-variables and
methods-is blurred. This represents no reduction in the
power of the model, since a variable can be treated sim-
ply as a pair of get and set messages. However, the need
for local, persistent storage, as in the case of the variable
to be gotten and set, cannot be entirely eliminated. Any
attribute may require, either implicitly or explicitly, such
persistent storage. This need refers to any values that
remain constant from one invocation of an attribute to

13 OOPSLA ‘87 Proceedings October q-8,1987

http://crossmark.crossref.org/dialog/?doi=10.1145%2F38807.38820&domain=pdf&date_stamp=1987-12-01

the next, until such times as they are explicitly changed.
A special notation is introduced to identify those places
where such persistent storage must be allocated,

For an attribute z valid for an object a, ual,(z)
indicates that a maintains its own copy of any values
required by message z VaL,(z) may be empty, if the
attribute z needs no permanent local storage (e.g.
square-root, which has nothing to store but computes its
value anew each time it is called) Alternatively, it may
“store” values for several “variables,” if attribute z
requires static storage of these multiple values. If more
than one attribute uses a single “variable,” one attribute
is (arbitrarily but in a reproducible manner) selected to
maintain its value, while the others are able to use and
change that value; i.e. n uaf,(z) = 0

For example, the pens in figure 1 require X and Y.
These can be simulated with get-X and get-Y mes-
sages, but somewhere values allowing the computation of
X and Y need to be stored. Saying ual,,,,,(gez’-X) differs

from saying X in that X and Y need not be stored expli-
citly; for example, uaf,,,l(get-X) may be { r, 8 } if the
pen’s location is actually stored in polar coordinates In
this case, va&,(g et-Y) would be (21, since it would use

the values of r and B managed by get-X.

Many of the figures and examples used in this
paper are borrowed from or based upon the Logo exam-
ples of [Lieberman].

2. Mechanisms and Models

2.1. Inheritance

Inheritance schemes involve two kinds of objects:
classes and instances. A class defines the “shape” of its
instances attributes that each of its instances will have.
Each instance maintains its own storage for the values of
these attributes. The state of an object is given by the
values of its attributes at any point in time. An example
of inheritance is given in figure 1. The dotted boxes
denote instance templates, the attributes defined by the
class for its instances.

Inheritance allows incremental definition of classes,
that is, the “type” of an instance may be defined in terms
of the “types” of other instances (turtles, as a group, are
like pens), but an individual instance may not be defined
directly in terms of another instance (this turtle is like
that pen or that turtle).

Inheritance allows instances to share attributes,
but not values Since all instances of a class (and its
subclasses) use the definitions of attributes stored m the
class, any change to the attribute stored in the class will
change all of the instances. However, values are store&in
the instance, not in the class, and so are not shared. In
inheritance, instances are independent. Changing the
state (values) of one instance cannot affect any other
instances This implies that one instance cannot depend

subcimrs

Figure 1. Inheritance.

on another.

Instance objects in an inheritance hierarchy must
be grouped by type. That is, the instance template
ensures that all instances of a single class will be of the
same “type”- i.e. have exactly the same “shape”. and
that all instances with the same “shape” will be Instances
of the same class. This arrangement of the hierarchy is
extremely useful for type checking and compilation, as
well as for indexing in a database system.

2.2. Delegation

In delegation, there is only one type of object
Since individual real-world items are represented by these
objects, they are often taken to be “instances without
classes.” In fact, their behavior is really closer to that of
classes. Figure 2 gives two examples of a delegat.ion
hierarchy. In figure Za, the turtle always sits directly on
top of its parent pen-it depends on the pen for its loca-
tion. In figure 2b, however, the three oblects are indepen-
dent. This is the basis for [Lieberman]‘s proof that. dele-
gation can capture the behavior of inheritance, and is
valid to a limited extent. Some of the problems with it
are discussed at the beginning of section 3.4

Delegation allows incremental definition of all
objects. Any object may be defined directly in terms of

Odobw 4-8,1987 OOPSLA ‘87 Proceedings 139

(a) Dependent objects.

Figure 2. Delegation.
(6) Independent objects.

any other. There are no “type” objects, like classes, and
attributes cannot be declared without being “stored”, in

-the way that instance templates allow classes to declare
attributes for their instances.

Delegation allows sharing of both methods and
variables If an object delegates an attribute-method or
variable-to a prototype, then any changes to those
attributes-or their values-will affect both the object
and the prototype. In this way, objects in a delegation
hierarchy may be dependent on one another.

Delegation does not enforce grouping by type. In a
delegation hierarchy, two objects of different “type,” or
“shape,” may delegate to the same prototype. Similarly,
two objects of the same “shape” may delegate to different
prototypes-in fact, they may be in radically different
parts of the hierarchy.

inheritance could be like instance inheritance-each class
would have its own copy of all class variables. Alterna-
tively, it could be like delegation, and a class could use
the values of variables supplied by its superclass unless it
redefined these variables locally.

The Adorn of Upwarda Compatibility ‘makes a
strong argument that disallowing sharing provides the
wrong semantics for class variable inheritance. The
Axiom of Upwards Compatibility, or the Strict Is-A Rule,
says that if A isa B (i.e. A is a subclass of E, or “all As
are Bs), then anything that is true of B must also be true
of A. Since a subclass isa a superclass, anything true of
the superclass-like having a class attribute-must be
true of the subclass. Further, any changes to the super-
class must be reflected immediately by the subclass: the
subclass depends on the superclass. This solution to class
inheritance is illustrated in figure 3.

2.3. Classes and the Axiom Of Upwards Corn@&- One nice consequence of this is that -it gives us a
bility good way to model delegation in inheritance. [Lieberman]

In an inheritance model, classes are objects. As
shows that several different ways of mapping prototypes

such, they may have attributes of their own. These may
to instances fail, essentially because there is no way to

be attrlbutes defined in the class, like attributes in a dele-
have one instance depend on another in inheritance.

gation system, or-in a world where classes are them-
However, he does not consider the possibility of mapping

selves instances of a metaclass-they may be instance
prototypes into classes. In fact, since class inheritance is

attrlbutes of the metaclass.
fundamentally the same as delegation, this mapping pro-
vides the necessary key to showing that delegation really

The rules for classes inheriting from metaclasses isn’t any more powerful than inheritance.. The mapping
are exactly the same as for tnstances inheriting from from delegation to inheritance is given formally in the
classes-since in that case classes are just instances, and next section.
metaclasses classes whose instances happen also to be
classes. The hard question is in determining how classes
should Inherit attributes from their superclasses. This

140 OOPSM ‘87 Proceedings October 4-8,1987

,C..__......._.......-...... : \ sckwsrd :
I

T-- FOW8fd

:

ei7

? :

Herding
‘._.____-_.____.--__.---.-.-.’ .:

Figure 3. Clama Variables.

3. Formal Models

This section contains the formal proofs that inheri-
tance and delegation can be used to model one another
The demonstration that delegation can model inheritance
is based on the idea that while delegation allows objects
to depend on one another, it does not require it, and the
independence of instances in inheritance can be simulated
in delegation. While this observation is correct, it has
flaws, these are discussed at the beginning of section 3.4.
The proof that inheritance can model delegation is based
on the observation that strict isa inheritance is simply
delegation; rather than mapping prototype objects to
instances, the proof makes them classes in an inheritance
hierarchy without instances. This then captures the full
functionality of a delegation hierarchy.

3.1. Delegation

Let D be a delegation hierarchy. Then

D - { 0, x, v 1, h w ere 0 is a set of objects, X is a set
of attributes, and V is a set of storage for the values of
attributes in X.

Each object o E 0 is defined by its prototype,
proto(its attributes, attrilutes(o), and the values it
maintains for these attributes,

V(o) = (d,(z) I z E attributes(o) } If o is a root of the
hierarchy, we define proto - 0. Since proto() IS acy-
chc, we define proto*(the transitive closure of
proto(i.e.,

{ 0, proto(proto(proto(o)), .., proton(o) }

where n is the least integer such that proto”+1(o) = 0
We can also define a recursive relation:

~oEO, if proto - @ then p-depth(o) - 0
else p-depth(o) - p-depth(proto(o)) + 1

The Axiom of Delegation defines what delegatron
means on this hierarchy:

Axiom of Delegation

~oEO, attribute z is valid for o with value t’
iff either

(i) z E &rib&es(o) and u - u&(z) or

(ii) Case (i) fails and z is valid for proto wrth
value v

3.2. Inheritance

Let 1 be an inheritance hierarchy Then

I- { C, I, Y, I+’), h w ere C is a set of classes, I is a set
of instances, Y is a set of attributes, and M’ is a set of
storage for the values of attributes in X. C and I need
not be disjoint; together, they form the objects tn I.

Each class object c E C is defined by its superclass,
super(c), its attributes, class-attributes(c), and the values
it maintains for these attributes,
V(c) - { d,(z) I z E class-attributes(c) } It also has
an instance-template(c). For simplicity, I will assume
throughout that

Y classattributes(o)n
v

instance-tempfate(0) P: a--
OE LlC 0.5 IIC
Le. rhat it is possible to dist$guish between class and
instance attributes. This is not, however, strictly neces-
sary. Since super0 is acyclic, so we can define super*(c)
in the same manner as proto’(and c-depth(c) in the
same way as p-depth(o). Note, however, that c-depth IS
not defined on I - C.

An instance object i E I is defined by its class
class(i), and V(i), th e values it assigns to the attributes
in the instance templates of its class, Its class’s super-
class,...; i.e. the instance templates of all the classes in
mper’(class(i)). That IS
V(i) - { vial,(z) I 2 E (lJ instance-template(c)))

c E I.)CI (CIPSI(I))

Classattributes represents those attributes of c
that are not instance attributes of its meta-class, but are
simply defined at c. It IS entirely possible for an object. In
I to have both class attributes, which it defines for itself,
and instance attributes, defined by its metaclass In this
case, it acts as a member of both C and I.

The rules for inheritance are described below The
asymmetry of class inheritance (Axiom 1) and instance

October 441987 OOPSLA ‘87 Proceedings 141

inheritance (Axiom 2) reflects the different mechanisms
used to implement sharing in the two types of objects, In
systems where classes are instances, these objects inherit
by both the rules for aEC and UEI; Axiom 3 makes both
Axioms 1 and 2 iffs.

First Axiom of Inheritance

~cEC, attribute z is valid for c with value u
if either

0) I E clnssattributes(c) and v - u&(z) or

(ii) Case (i) fails and z is valid for super(c) with
value u

Second Axiom of Inheritance

a r there ViEI, tt ib ute z is valid for i with value v if
exists c E super’(class(i)) such that

z E instance-template(c) and M/,(Z) = v

Third Axiom of Inheritance
These are the only rules that apply.

3.3. From Delegation to Inheritance

Definition: Two models, A and B, are equivalent iff
for each object a in A, there is a unique
corresponding object b in B such that attribute z
is valid for u with value v iff z is valid for b with
value u.

Let 9 be a function which takes a delegation model
D = { 0, X, U }, and yields an inheritance model
s(D) - { C, 1, Y, WI, as follows:

i) Q(0) - 0
ii)vzEX, e(z)- 2
iii) VVEU, Y(v) - v

iu)v’oEO, define 9(o) as:

super(*(0)) - Q(proto(0))
class-attributes(\k(o)) = Lj ‘P(z)

where
c = yaw

r-0
Y-X
W-U

Lemma 1. v’o~0, z E class-attributes(~(o)) with
v~le(~Jz) - v iff z E attributes(o) with v&(z) - v.

Proof: This follows directly from the definition of
class-attributes(*(0)). Class-attributes(\II(o))

- u Vz) - IJ z - attributes(o). Since the sets
I E aftrtb.fes(o) I E dtrrbvtes(o)

are equal, their membership is the same. By the

definition of Q’, v
zEclussattributes(r3(o)), v&(,)(z) - v&(z).

0

Lemma 2. \doEO, c-depth(\Ir(o)) = p-depth(o)

Proof: By Induction

Base Case: C-depth(q(o)) = 0 iff super(*(o)) = 0. But
super(Y(0)) - *(p&o(o)) = 0 iff proto(0) - 0 iff
p-depth(o) - 0.

Induction Hypothesis: Assume that
c-depth(*(o)) = p-depth(o) for all o with
p-depth(o) 5 k, for some k 2 0.

Inductive Case: Consider some object o E 0, such that
p-depth(o) = k + 1. Then p-depth(proto(o)) - k.
By the induction hypothesis, this means that
c-depth(P(proto(o)) - p-depth(proto(o)) - k. But

definition
Zper(Y(f$+- Y(protofo)),

of c-depth,
and

c-depth(*(o)) - c-depth(super(*(o))) + 1.
c-depth(Q(o)) - k + 1.

so

u

Theorem 1. For every delegation model, D, there is an
equivalent inheritance model, q(D)

Proof: By induction. To show these models equivalent,

Base

we must demonstrate that for any object o E 0,
an attribute z is valid for o with value v iff z is
valid for *Ir(o) with value v.

Case: If o is a root of the hierarchy, then
proto = +(proto(o)) - super(Q(o)) = 0. By
Delegation, z is valid for o with value v iff
z E attributes(o) and u&(z) = v. By Lemma 1,

this is true if-I z E attributes(\lr(o)) and
val*(,)(z) - v,.

Induction Hypothesis: Assume that z is valid for o with
value u iff z is valid for q(o) with value u for all o
such that p-depth(o) 5 k

Inductive Case: Consider o such that
p-depth(o) - k + 1. Delegation describes two
cases:

Case (i): z E attributes(o), and W&(Z) = u. By Lemma
1, this is true iff z E class-nttributes(~(o)), and
valp(,Jz) = vaf,(z) - u.

Case (ii): Case (i) f ai s, 1 and z is valid for proto with
value v. But p-depth(proto(o)) < p-depth(o), so
the induction hypothesis holds, and z is valid for
1Ir(proto(o)) = super(Sf(o)), with value v. Since
Case (i) fails, z e class.attributes(rIr(o)); by Inheri-
tance, this means that z is valid for It(o) with
value IJ since it is valid for super(q(o)) with value
V.

q

142 OOPSIA ‘87 Proceedings October4-8,1987

3.4. From Inheritance to Delegation

In order to make the same proof work in the other
direction, one additional definition needs to be made:
Delegation does not allow attributes to be defined by one
object, but have their values stored in another. Since this
is exactly what instance templates do, any simulation of
inheritance by delegation must somehow “fix” this prob-
lem. The solution chosen in this proof is one of several;
however all share the property that the mapping only
holds up to instance templates.

Definition: Two models, A and B, are equivalent up to
instance templates iff for each object a in A, there
is a unique corresponding object b in B such that
attribute z is valid for a with value v iff z is valid
for 6 with value v or there is some a’ E super*(a),
such that z E instance-template(a’), and if 6’
corresponds to a’, then vafb.fz) = #, where # is
some marker value not in U.

In addition to the restriction that delegation can
simulate inheritance only up to instance templutes, sys-
tems allowing only single-parent delegation can only
simulate those inheritance systems in which
C n I - @-all objects are either classes or instances,
but not both. If an object in an inheritance hierarchy is
both an instance-and so has a class-and a class-and
so has a super-, then in the corresponding delegation
hierarchy, it must have two parents: one representing its
class, the other its super. It is, however, possible to
extend the proof below to allow for both multiple inheri-
tance and multiple-parent delegation.

Let 0 be a function which takes a delegation model
1 = { C, 1, Y, W }, and yields an inheritance model
*(I) - { 0, X, U}, as follows:

4 a(0)=0
ii) VzEY, a(z) = 2
iii) VvE W, a(v) - v
iv) VCEC, define 9(c) as:

proto(q c)) - Q(supet(c))
attributes(@(c)) -

(u Q(z) 1 u (u Q(z) 1
I E cl~ssattrlbrtcs(c) sE~asfunceJtmplott (c)

Vl~~cN -

t&Jw 1 u (u # 1
zE~*sloncr-lrmpl~tr(s)

i.e. vzEattributes(cD(c)), .
V&(&g - Ed,

and VzEinstance-template(c),

V4b(c) - # ,
u) ViEI, define Q(i) as:

proto (@(i)) = @(class(i))
uttributes(@(i)) = U a(z)

If
v

~nsloRcltrmp/ote (c)

c E rrpcr (&~(I))

V@(i)) =
v

@(VI,
“E 6)

i.e., tJzEuttfibutes(+(i)),

v&(,Jz) - vu&(z)

4 @(I) - (0, .Y ul,
where

Lemma 3a. V’cf C, z E attribzltes(@(c)) with
vul+(,)(z) = v iff 2 E class-uttributes(c) with
val,(z) = v, or z E instance-templute(c) and
v&+)(4 = #

Proof: Attributes(@(c)) - instance-templute(c)
- U O(z) = U 2 - classattributes

I E c/okattrlbufcs(s) I E c/assolfrsbrfc~ (c)

If z E attributes(@(c)) - instance-template(c),
uufq,)(z) = uul,(z). If z E instance-template(c),
then 2 E attributes(O(c)), and uul+t,)(z) = #

CI

Lemma 3b. ViEI, z E uttributes(@(i)) with
vabq,)(z) - v iff there exists c E super’(class(i))
such that 2 E instance-templute(c), and
val,(z) - 7J

Proof: Attributes(@(i)) = U @(z)
rE cl drnce-tcmp/otr(c)

c E rrprr (cl.ss(:))

1 ::,~~(~,~~~~~-Ip,~~*(~) =c E *~p~~~~~~~,~nce-tempf4te~c)

,By the definition of a, tjzEuttributes(+(i)),
UUl*(s)(Z) = VUli(2).

0

Lemma 4. tjcEC - I, p-depth(*(c)) = c-depth(c).

Proof: By Induction.

Base Case: P-depth(+(c)) = 0 iff proto(@(c)) = 0. But
proto(@(c)) = O(supef(c)) = 0 iff super(c) - 0 iff

c-depth(c) - 0.

Induction Hypothesis: Assume that
p-depth(@(c)) = c-depth(c) for all c E C - I with
c-depth(c) 5 k, for some k 2 0.

Inductive Case: Consider some object c E C - I, such
that c-depth(c) - k + 1. Then
depth(supet(c)) - k. By the induction
hypothesis, this means that
p-depth(Q(super(c)) = c-depth(super(c)) = k. But
by the definition of p-depth,
p-depth(@(c)) - p-depth(proto(@(c))) + 1, and
psoto(@(c) = @(super(c)). so
p-depth(@(c)) = k + 1.

0

Theorem 2. For every inheritance model, I, with
CnI=

B

there is an equivalent inheritance
model, 0 Ij, up to instance templates.

Odober 4-0,1987 OOPSLA ‘87 Proceedings 143

Proof: To show these models equivalent up to instance
templates, we must demonstrate that for any
object a E C u I, an attribute z is valid for a
with value v iff z is valid for @(a) with value u, or
z E instance-template(a) and ual+(,Jz) - #

Base

Instances:

ViEI, z is valid for i with value v iff there exists
c E supet*(cfass(i)) such that
z E instance-templute(c) and v&(z) = v (by Inher-
itance) iff z is valid for Q(i) with value v (by
Lemma 3b).

Classes:

Case: If c is a root of the hierarchy, then
super(c) - @(super(c)) = proto(@(c)) - 0, By
Delegation, x is valid for +(c) with value v iff
z E attributes(Q(c)) and vale(,)(z) = v. By Lemma
3a, this is true iff z E class-attributes(c) and
val,(z) = u, or z E instance-template(c) and
vab(,)(x) - #

Induction Hypothesis: Assume that z is valid for e(c)
with value u iff either z is valid for c with value u
or there is a c’ E super’(c) for which
z E instance-template(c’) and ual&z) = #, for
all c such that c-depth(c) 5 k

Inductive Case: Consider c such that

Case

Case

c-depth(c) = k + 1. Inheritance allows two possi-
bilities:

(i): x E atttibutes(@(c)), and valy,)(z) - Y. By
Lemma 3a, this is true iff z E classatttibutes(c)
with val,(z) - u or z E instance-template(c) atid
v&p(,)(z) - #.

tiih Case (i) f ails, and z is valid for proto(+(e))
value

p-depth(proto(+(c))) < c-depth(cL.so the inducEI:
hypothesis holds, and either z is valid for
@(super(c)) - proto(+(c)), with value u, or there is
a c’ E super ‘(super(c)) for which
2 E instance-template(c’).
Super’(super(c)) E super’(c), so c’E super’(c),
and the instance template condition holds. Other-
wise, since Case (i) fails, z 4 attributes(+(c)); by
Delegation, this means that z is valid for a(c) with
value v since it is valid for psoto(@(c)) with value
v.

0

4. Conclusions and Extensions

4.1. Limitations on the Proof

In discussing the features of inheritance and delega-
tion, I highlighted four ways in which the mechanisms
differed. To wit:

(I) Incremental definition: inheritance allows it only
on classes; delegation, on all objects.

(2) Sharing of attributes: inheritance allows sharing of
class attributes, but oniy instance methods; delega-
tion, all attributes of all objects.

(3) Dependence o/ instances: inheritance forbids it;
delegation allows it.

(4) Grouping by type: inheritance requires it; delega-
tion does not.

It should now be apparent that all four of these distinc-
tions depend on the instance template. It is the instance
template which forbids one instance to be defined in
terms of the other-all instances are defined in terms of
the template. The instance template declares the
instance attributes, allowing them to be shared by all
instances, but does not store their values. Since instances
are required to have their own, private values for all
attributes, this disallows sharing of attributes and
prevents dependent instances. Finally, the instance tem-
plate guarantees the structure of all instances of a class,
ensuring certain grouping properties of the hierarchy.

But it is precisely this instance template that is
lost in the translation from inheritance to delegation;
indeed, it is this instance template that delegation lacks.
This is both good and bad, in that it allows delegation a
flexibility not present in inheritance, but prevents delega-
tion from providing any structural guarantees on the ele-
ments in the hierarchy. In the model of inheritance
presented above, the class structure provides all that
delegation provides; the instance structure adds rigidity.

4.2. The Hybrid Model

Depending on the needs of the application, certain
properties of inheritance and delegation may be more or
less desirable. For example, grouping properties provide
typing guarantees that are useful for compilation and
database indexing. On the other hand, the fast copy-
creation and small object size of delegation can provide
important runtime speedups in a system with rapidly
changing objects.

One solution is to provide all the mechanisms of
both, and to let the user pick and choose among them.
The formal model for inheritance presented above does
this, in that the objects called “classes” delegate, while
those called “instances” inherit. However, these names
and their common assbciations make it harder to see how
rich this system is.

In order to take full advantage of the potential of
such a system, objects must be treated simply as objects,
rather than as classes or instances. In this model,
C = I-all objects are both classes and instances,
although some may have instance-template - 0.’ Three
new operations can now be defined in terms of the inheri-
tance mechanisms available in the formal model above.

’ This is in fact what the world looks like after applying
@ to make it delegation, then returning it (through q) to inher-
itance.

144 OOPSLA ‘87 Proceedings October q-8,1987

Figure 4. Minimal guarantee.

Extended

Suppose, as in figure 4, that we discover an object
much like a pen, but with an extra Erase attribute. This
object can be made an “instance” of “class” pen, its
extra attribute is simply added as a classattribute. This
transforms the instance-template into a
minimaUemplate : rather than guaranteeing the exact
shape of an instance, it guarantees a minimal shape. The
aspects in the minimal template can still be typechecked
and indexed, but not all attributes of the “instance” need
be in the template of the class This avoids the need for
creation of extraneous classes every time some object does
not precisely fit the definition of its class.

If at some later time many more pens are found
with an Erase attribute, they may simply be added to the
hierarchy as extensions to the “prototype” Erase-able
pen. This accumulation of extensions corresponds to
objects delegating to a single ‘prototype, or many

subclasses of one class. It is illustrated in figure 5. The
new Erase-able pens may depend on the original one, or
not, as the case may be. In either case, the mmimal
guarantees of the template hold for these objects to the
extent that they either possess the attributes or share
their prototype’s copy.

At some point, this may become insufficient, and a
new class may need to be created. In this case, the “pro-
totype” can be promoted to a class, shifting attributes
into the template and copying down values as necessary
The class-instance relationship becomes a class-subclass
relationship, and a new instance is created to take the
place of the one promoted to class. The result is shown
in figure 6

These extensions to inheritance are natural out-
growths of a new way of looking at objects in a hierarchy.

Figure 5. Accumulation.

October 4-0,1987 OOPSIA ‘87 Proceedings 145

Figure 8. Promotion.

If strict subtyping is observed, the traditional “class-
subclass” relationship precisely captures-delegation. The
class-instance relationship is distinguished by the pres-
ence of an instance template, which provides indepen-
dence of value and typing guarantees. These two rela-
tionships combine to allow the hierarchy to take on
unusual and useful shapes. By disregarding traditional
naming convent.ions, “classes” can be treated as delega-
tion objects, while instance templates can be used to
ensure minimal consistency. The dynamism of delegation
and the structured behavior of inheritance can be merged
rn a flexible but regulated way.

[Goldberg & Robson]
Goldberg, A., and D. Robson. Smalltalk-80: The
Language and its Implementation. Addison-Wesley,
1983.

[LaLonde]
LaLonde, W. “An Exemplar Based Smalltalk.”
Proceedings of the First ACM Conjerence on
Object-Oriented Programming Systems, Languages,
and Applications, September 1986.

[Lieberman]
Lieberman, H. “Using Prototypical Objects to
Implement Shared Behavior in Object Oriented
Systems ” Proceedings oj the First ACM Conjer-
ence on Object-Oriented Programming Systems,
Languages, and Applications, September 1986.

(Stefik & Bobrow]

5. Acknowledgements

Many thanks are due to Peter Wegner and Stan
Zdonik, without whom this paper could not have been
written, and to Scott Meyers, Richard Hughey, Mark Hor-
nick, Maurine Neiberg, and Jim Bloom, for their help and
patience

References

[Bornmg]
Borning, A. H., “Classes Versus Prototypes in
Object-Oriented Languages.” ACM/IEEE Fall
Joint Computer Con/erence, November 1986.

(Briot & Yonezawa]
Briot, J., and A. Yonezawa. “Inheritance Mechan-
isms in Oblect-Oriented Concurrent Languages ”
Extended abstract. 1987.

[Cardelli & Wegner]
Cardelli, L, and P. Wegner. “On Understanding
Types, Data Abstraction, and Polymorphism.”
Computing Surveys, August 1986.

Stefik, M) and D. Bobrow. “Oblect-Oriented Pro-
gramming: Themes and Variations.” AI Mugazine,
December 1985.

[Touretsky]
Touretsky, D. The Mathematical Theory of Inheri-
tance. Morgan-Kaufman, 1986.

[Wegner & Zdonikj
Wegner, P., and S. Zdonik. “Why Like Isn’t Like
Isa.” Brown University Technical Report, March
1987.

146 OOPSIA ‘87 Proceedings October 441987

