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Abstract 

Inheritance and delegation are alternate methods 
for incremental definition and sharmg. It has commonly 
been believed that delegation provides a more powerful 
model. This paper demonstrates that there is a 
“natural” model of inheritance which captures all of the 
properties of delegation. Independently, certain con- 
stramts on the ability of delegation to capture inheri- 
tance are demonstrated. Finally, a new framework which 
fully captures both delegation and inheritance is outlined, 
and some of the ramifications of this hybrid model are 
explored. 

1. Introduction 

Delegation and inheritance are mechanisms for 
sharing in object-oriented systems. Inheritance collects 
objects into groups according to their “type,” or category;. 
much of the sharing provided by inheritance is achieved 
through these category, or class, objects. Delegation does 
not define category objects in this way, but rather allows 
sharing among arbitrary objects. 

[Lieberman] gives perhaps the most complete com- 
parison of these two systems to date; however, he does so 
in informal terms. Thus, he is able to give the outline for 
a simulation of inheritance using delegation, but goes on 
to conclude that the reverse mapping-given inheritance, 
performmg delegation-is impossible. 

This paper develops a natural model for inheri- 
tance which also captures delegation in its entirety. In 
this scheme, class (isu) inheritance is delegation. This 
inheritance scheme is simply inheritance with strict 
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subtyping; what is unusual is that it is the classes, and 
not the instances, which are used to simulate delegation. 

While this type of inheritance properly contains 
delegation, supporting all the functionality of 
Lieberman’s “prototype” system, no delegation simula- 
tion of inheritance has this property with respect to 
inheritance. In particular, while delegation can capture 
the state of several types of inheritance hierarchies at any 
moment in time, it cannot model the constraints on 
change over time imposed by inheritance. This result is 
independent of the map from inheritance to delegation. 

The model for inheritance described below has 
natural extensions which allow for a more dynamic struc- 
ture. Unique objects can be incorporated into a hierarchy 
without the creation of extraneous classes; similar objects 
can be allowed to accumulate around these extended 
instances; and new classes can be created from these 
objects as the need arises. The model presented in sec- 
tion 4 provides the full functionality of both inheritance 
and delegation, as well as the additional functions of 
minimal (us. absolute) guarantee, accumulation, and pro- 
motion. 

1.1. Notations and Conventions 

In the discussion below, I use limited models for 
both delegation and inheritance. Specifically, only single 
inheritance and single-parent delegation are described, 
and actual cancellation of attributes is not discussed. 
The problems introduced by allowing multiple inheritance 
or delegation, and the difficulties of cancellation, are simi- 
lar in the two frameworks and do not in general add 
insight into the underlying models. Where exceptions 
occur, these are noted. 

In the formal models below, the distinctions 
between types of attributes of an object-variables and 
methods-is blurred. This represents no reduction in the 
power of the model, since a variable can be treated sim- 
ply as a pair of get and set messages. However, the need 
for local, persistent storage, as in the case of the variable 
to be gotten and set, cannot be entirely eliminated. Any 
attribute may require, either implicitly or explicitly, such 
persistent storage. This need refers to any values that 
remain constant from one invocation of an attribute to 
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the next, until such times as they are explicitly changed. 
A special notation is introduced to identify those places 
where such persistent storage must be allocated, 

For an attribute z valid for an object a, ual,(z) 
indicates that a maintains its own copy of any values 
required by message z VaL,(z) may be empty, if the 
attribute z needs no permanent local storage (e.g. 
square-root, which has nothing to store but computes its 
value anew each time it is called) Alternatively, it may 
“store” values for several “variables,” if attribute z 
requires static storage of these multiple values. If more 
than one attribute uses a single “variable,” one attribute 
is (arbitrarily but in a reproducible manner) selected to 
maintain its value, while the others are able to use and 
change that value; i.e. n uaf,(z) = 0 

For example, the pens in figure 1 require X and Y. 
These can be simulated with get-X and get-Y mes- 
sages, but somewhere values allowing the computation of 
X and Y need to be stored. Saying ual,,,,,(gez’-X) differs 

from saying X in that X and Y need not be stored expli- 
citly; for example, uaf,,,l(get-X) may be { r, 8 } if the 
pen’s location is actually stored in polar coordinates In 
this case, va&,(g et-Y) would be (21, since it would use 

the values of r and B managed by get-X. 

Many of the figures and examples used in this 
paper are borrowed from or based upon the Logo exam- 
ples of [Lieberman]. 

2. Mechanisms and Models 

2.1. Inheritance 

Inheritance schemes involve two kinds of objects: 
classes and instances. A class defines the “shape” of its 
instances attributes that each of its instances will have. 
Each instance maintains its own storage for the values of 
these attributes. The state of an object is given by the 
values of its attributes at any point in time. An example 
of inheritance is given in figure 1. The dotted boxes 
denote instance templates, the attributes defined by the 
class for its instances. 

Inheritance allows incremental definition of classes, 
that is, the “type” of an instance may be defined in terms 
of the “types” of other instances (turtles, as a group, are 
like pens), but an individual instance may not be defined 
directly in terms of another instance (this turtle is like 
that pen or that turtle). 

Inheritance allows instances to share attributes, 
but not values Since all instances of a class (and its 
subclasses) use the definitions of attributes stored m the 
class, any change to the attribute stored in the class will 
change all of the instances. However, values are store&in 
the instance, not in the class, and so are not shared. In 
inheritance, instances are independent. Changing the 
state (values) of one instance cannot affect any other 
instances This implies that one instance cannot depend 

subcimrs 

Figure 1. Inheritance. 

on another. 

Instance objects in an inheritance hierarchy must 
be grouped by type. That is, the instance template 
ensures that all instances of a single class will be of the 
same “type”- i.e. have exactly the same “shape”. and 
that all instances with the same “shape” will be Instances 
of the same class. This arrangement of the hierarchy is 
extremely useful for type checking and compilation, as 
well as for indexing in a database system. 

2.2. Delegation 

In delegation, there is only one type of object 
Since individual real-world items are represented by these 
objects, they are often taken to be “instances without 
classes.” In fact, their behavior is really closer to that of 
classes. Figure 2 gives two examples of a delegat.ion 
hierarchy. In figure Za, the turtle always sits directly on 
top of its parent pen-it depends on the pen for its loca- 
tion. In figure 2b, however, the three oblects are indepen- 
dent. This is the basis for [Lieberman]‘s proof that. dele- 
gation can capture the behavior of inheritance, and is 
valid to a limited extent. Some of the problems with it 
are discussed at the beginning of section 3.4 

Delegation allows incremental definition of all 
objects. Any object may be defined directly in terms of 
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(a) Dependent objects. 

Figure 2. Delegation. 
(6) Independent objects. 

any other. There are no “type” objects, like classes, and 
attributes cannot be declared without being “stored”, in 

-the way that instance templates allow classes to declare 
attributes for their instances. 

Delegation allows sharing of both methods and 
variables If an object delegates an attribute-method or 
variable-to a prototype, then any changes to those 
attributes-or their values-will affect both the object 
and the prototype. In this way, objects in a delegation 
hierarchy may be dependent on one another. 

Delegation does not enforce grouping by type. In a 
delegation hierarchy, two objects of different “type,” or 
“shape,” may delegate to the same prototype. Similarly, 
two objects of the same “shape” may delegate to different 
prototypes-in fact, they may be in radically different 
parts of the hierarchy. 

inheritance could be like instance inheritance-each class 
would have its own copy of all class variables. Alterna- 
tively, it could be like delegation, and a class could use 
the values of variables supplied by its superclass unless it 
redefined these variables locally. 

The Adorn of Upwarda Compatibility ‘makes a 
strong argument that disallowing sharing provides the 
wrong semantics for class variable inheritance. The 
Axiom of Upwards Compatibility, or the Strict Is-A Rule, 
says that if A isa B (i.e. A is a subclass of E, or “all As 
are Bs), then anything that is true of B must also be true 
of A. Since a subclass isa a superclass, anything true of 
the superclass-like having a class attribute-must be 
true of the subclass. Further, any changes to the super- 
class must be reflected immediately by the subclass: the 
subclass depends on the superclass. This solution to class 
inheritance is illustrated in figure 3. 

2.3. Classes and the Axiom Of Upwards Corn@&- One nice consequence of this is that -it gives us a 
bility good way to model delegation in inheritance. [Lieberman] 

In an inheritance model, classes are objects. As 
shows that several different ways of mapping prototypes 

such, they may have attributes of their own. These may 
to instances fail, essentially because there is no way to 

be attrlbutes defined in the class, like attributes in a dele- 
have one instance depend on another in inheritance. 

gation system, or-in a world where classes are them- 
However, he does not consider the possibility of mapping 

selves instances of a metaclass-they may be instance 
prototypes into classes. In fact, since class inheritance is 

attrlbutes of the metaclass. 
fundamentally the same as delegation, this mapping pro- 
vides the necessary key to showing that delegation really 

The rules for classes inheriting from metaclasses isn’t any more powerful than inheritance.. The mapping 
are exactly the same as for tnstances inheriting from from delegation to inheritance is given formally in the 
classes-since in that case classes are just instances, and next section. 
metaclasses classes whose instances happen also to be 
classes. The hard question is in determining how classes 
should Inherit attributes from their superclasses. This 
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Figure 3. Clama Variables. 

3. Formal Models 

This section contains the formal proofs that inheri- 
tance and delegation can be used to model one another 
The demonstration that delegation can model inheritance 
is based on the idea that while delegation allows objects 
to depend on one another, it does not require it, and the 
independence of instances in inheritance can be simulated 
in delegation. While this observation is correct, it has 
flaws, these are discussed at the beginning of section 3.4. 
The proof that inheritance can model delegation is based 
on the observation that strict isa inheritance is simply 
delegation; rather than mapping prototype objects to 
instances, the proof makes them classes in an inheritance 
hierarchy without instances. This then captures the full 
functionality of a delegation hierarchy. 

3.1. Delegation 

Let D be a delegation hierarchy. Then 

D - { 0, x, v 1, h w ere 0 is a set of objects, X is a set 
of attributes, and V is a set of storage for the values of 
attributes in X. 

Each object o E 0 is defined by its prototype, 
proto( its attributes, attrilutes(o), and the values it 
maintains for these attributes, 

V(o) = ( d,(z) I z E attributes(o) } If o is a root of the 
hierarchy, we define proto - 0. Since proto() IS acy- 
chc, we define proto*( the transitive closure of 
proto( i.e., 

{ 0, proto( proto(proto(o)), .., proton(o) } 

where n is the least integer such that proto”+1( o) = 0 
We can also define a recursive relation: 

~oEO, if proto - @ then p-depth(o) - 0 
else p-depth(o) - p-depth(proto(o)) + 1 

The Axiom of Delegation defines what delegatron 
means on this hierarchy: 

Axiom of Delegation 

~oEO, attribute z is valid for o with value t’ 
iff either 

(i) z E &rib&es(o) and u - u&(z) or 

(ii) Case (i) fails and z is valid for proto wrth 
value v 

3.2. Inheritance 

Let 1 be an inheritance hierarchy Then 

I- { C, I, Y, I+’ ), h w ere C is a set of classes, I is a set 
of instances, Y is a set of attributes, and M’ is a set of 
storage for the values of attributes in X. C and I need 
not be disjoint; together, they form the objects tn I. 

Each class object c E C is defined by its superclass, 
super(c), its attributes, class-attributes(c), and the values 
it maintains for these attributes, 
V(c) - { d,(z) I z E class-attributes(c) } It also has 
an instance-template(c). For simplicity, I will assume 
throughout that 

Y classattributes( o)n 
v 

instance-tempfate( 0) P: a-- 
OE LlC 0.5 IIC 
Le. rhat it is possible to dist$guish between class and 
instance attributes. This is not, however, strictly neces- 
sary. Since super0 is acyclic, so we can define super*(c) 
in the same manner as proto’( and c-depth(c) in the 
same way as p-depth(o). Note, however, that c-depth IS 
not defined on I - C. 

An instance object i E I is defined by its class 
class(i), and V(i), th e values it assigns to the attributes 
in the instance templates of its class, Its class’s super- 
class,...; i.e. the instance templates of all the classes in 
mper’( class(i)). That IS 
V(i) - { vial,(z) I 2 E ( lJ instance-template(c) ) ) 

c E I.)CI (CIPSI(I)) 

Classattributes represents those attributes of c 
that are not instance attributes of its meta-class, but are 
simply defined at c. It IS entirely possible for an object. In 
I to have both class attributes, which it defines for itself, 
and instance attributes, defined by its metaclass In this 
case, it acts as a member of both C and I. 

The rules for inheritance are described below The 
asymmetry of class inheritance (Axiom 1) and instance 
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inheritance (Axiom 2) reflects the different mechanisms 
used to implement sharing in the two types of objects, In 
systems where classes are instances, these objects inherit 
by both the rules for aEC and UEI; Axiom 3 makes both 
Axioms 1 and 2 iffs. 

First Axiom of Inheritance 

~cEC, attribute z is valid for c with value u 
if either 

0) I E clnssattributes( c) and v - u&(z) or 

(ii) Case (i) fails and z is valid for super(c) with 
value u 

Second Axiom of Inheritance 

a r there ViEI, tt ib ute z is valid for i with value v if 
exists c E super’(class(i)) such that 

z E instance-template(c) and M/,(Z) = v 

Third Axiom of Inheritance 
These are the only rules that apply. 

3.3. From Delegation to Inheritance 

Definition: Two models, A and B, are equivalent iff 
for each object a in A, there is a unique 
corresponding object b in B such that attribute z 
is valid for u with value v iff z is valid for b with 
value u. 

Let 9 be a function which takes a delegation model 
D = { 0, X, U }, and yields an inheritance model 
s(D) - { C, 1, Y, WI, as follows: 

i) Q(0) - 0 
ii)vzEX, e(z)- 2 
iii) VVEU, Y(v) - v 

iu)v’oEO, define 9(o) as: 

super(*( 0)) - Q(proto( 0)) 
class-attributes(\k( o)) = Lj ‘P(z) 

where 
c = yaw 

r-0 
Y-X 
W-U 

Lemma 1. v’o~0, z E class-attributes(~(o)) with 
v~le(~Jz) - v iff z E attributes(o) with v&(z) - v. 

Proof: This follows directly from the definition of 
class-attributes(*( 0)). Class-attributes(\II(o)) 

- u Vz) - IJ z - attributes(o). Since the sets 
I E aftrtb.fes(o) I E dtrrbvtes(o) 

are equal, their membership is the same. By the 

definition of Q’, v 
zEclussattributes(r3(o)), v&(,)(z) - v&(z). 

0 

Lemma 2. \doEO, c-depth(\Ir(o)) = p-depth(o) 

Proof: By Induction 

Base Case: C-depth(q(o)) = 0 iff super(*(o)) = 0. But 
super(Y(0)) - *(p&o(o)) = 0 iff proto(0) - 0 iff 
p-depth(o) - 0. 

Induction Hypothesis: Assume that 
c-depth(*(o)) = p-depth(o) for all o with 
p-depth(o) 5 k, for some k 2 0. 

Inductive Case: Consider some object o E 0, such that 
p-depth(o) = k + 1. Then p-depth(proto(o)) - k. 
By the induction hypothesis, this means that 
c-depth(P(proto(o)) - p-depth(proto(o)) - k. But 

definition 
Zper(Y(f$+- Y(protofo)), 

of c-depth, 
and 

c-depth(*(o)) - c-depth(super(*(o))) + 1. 
c-depth(Q(o)) - k + 1. 

so 

u 

Theorem 1. For every delegation model, D, there is an 
equivalent inheritance model, q(D) 

Proof: By induction. To show these models equivalent, 

Base 

we must demonstrate that for any object o E 0, 
an attribute z is valid for o with value v iff z is 
valid for *Ir( o) with value v. 

Case: If o is a root of the hierarchy, then 
proto = +(proto(o)) - super(Q(o)) = 0. By 
Delegation, z is valid for o with value v iff 
z E attributes(o) and u&(z) = v. By Lemma 1, 

this is true if-I z E attributes(\lr(o)) and 
val*(,)(z) - v,. 

Induction Hypothesis: Assume that z is valid for o with 
value u iff z is valid for q(o) with value u for all o 
such that p-depth( o ) 5 k 

Inductive Case: Consider o such that 
p-depth(o) - k + 1. Delegation describes two 
cases: 

Case (i): z E attributes(o), and W&(Z) = u. By Lemma 
1, this is true iff z E class-nttributes(~(o)), and 
valp(,Jz) = vaf,(z) - u. 

Case (ii): Case (i) f ai s, 1 and z is valid for proto with 
value v. But p-depth(proto(o)) < p-depth(o), so 
the induction hypothesis holds, and z is valid for 
1Ir(proto(o)) = super(Sf(o)), with value v. Since 
Case (i) fails, z e class.attributes(rIr(o)); by Inheri- 
tance, this means that z is valid for It(o) with 
value IJ since it is valid for super(q(o)) with value 
V. 

q 
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3.4. From Inheritance to Delegation 

In order to make the same proof work in the other 
direction, one additional definition needs to be made: 
Delegation does not allow attributes to be defined by one 
object, but have their values stored in another. Since this 
is exactly what instance templates do, any simulation of 
inheritance by delegation must somehow “fix” this prob- 
lem. The solution chosen in this proof is one of several; 
however all share the property that the mapping only 
holds up to instance templates. 

Definition: Two models, A and B, are equivalent up to 
instance templates iff for each object a in A, there 
is a unique corresponding object b in B such that 
attribute z is valid for a with value v iff z is valid 
for 6 with value v or there is some a’ E super*(a), 
such that z E instance-template(a’), and if 6’ 
corresponds to a’, then vafb.fz) = #, where # is 
some marker value not in U. 

In addition to the restriction that delegation can 
simulate inheritance only up to instance templutes, sys- 
tems allowing only single-parent delegation can only 
simulate those inheritance systems in which 
C n I - @-all objects are either classes or instances, 
but not both. If an object in an inheritance hierarchy is 
both an instance-and so has a class-and a class-and 
so has a super-, then in the corresponding delegation 
hierarchy, it must have two parents: one representing its 
class, the other its super. It is, however, possible to 
extend the proof below to allow for both multiple inheri- 
tance and multiple-parent delegation. 

Let 0 be a function which takes a delegation model 
1 = { C, 1, Y, W }, and yields an inheritance model 
*(I) - { 0, X, U}, as follows: 

4 a(0)=0 
ii) VzEY, a(z) = 2 
iii) VvE W, a(v) - v 
iv) VCEC, define 9(c) as: 

proto(q c)) - Q(supet( c)) 
attributes(@( c)) - 

( u Q(z) 1 u ( u Q(z) 1 
I E cl~ssattrlbrtcs(c) sE~asfunceJtmplott (c) 

Vl~~cN - 

t&Jw 1 u ( u # 1 
zE~*sloncr-lrmpl~tr(s) 

i.e. vzEattributes(cD(c)), . 
V&(&g - Ed, 

and VzEinstance-template(c), 

V4b(c) - # , 
u) ViEI, define Q(i) as: 

proto (@( i)) = @(class(i)) 
uttributes(@(i)) = U a(z) 

If 
v 

~nsloRcltrmp/ote (c) 

c E rrpcr (&~(I)) 

V@(i)) = 
v 

@(VI, 
“E 6) 

i.e., tJzEuttfibutes(+(i)), 

v&(,Jz) - vu&(z) 

4 @(I) - ( 0, .Y ul, 
where 

Lemma 3a. V’cf C, z E attribzltes(@(c)) with 
vul+(,)(z) = v iff 2 E class-uttributes( c) with 
val,(z) = v, or z E instance-templute( c) and 
v&+)(4 = # 

Proof: Attributes(@(c)) - instance-templute( c) 
- U O(z) = U 2 - classattributes 

I E c/okattrlbufcs(s) I E c/assolfrsbrfc~ (c) 

If z E attributes(@(c)) - instance-template(c), 
uufq,)(z) = uul,(z). If z E instance-template(c), 
then 2 E attributes(O(c)), and uul+t,)(z) = # 

CI 

Lemma 3b. ViEI, z E uttributes(@( i)) with 
vabq,)(z) - v iff there exists c E super’(class(i)) 
such that 2 E instance-templute( c), and 
val,(z) - 7J 

Proof: Attributes(@(i)) = U @(z) 
rE cl drnce-tcmp/otr(c) 

c E rrprr (cl.ss(:)) 

1 ::,~~(~,~~~~~-Ip,~~*(~) =c E *~p~~~~~~~,~nce-tempf4te~c ) 

,By the definition of a, tjzEuttributes(+(i)), 
UUl*(s)(Z) = VUli(2). 

0 

Lemma 4. tjcEC - I, p-depth(*(c)) = c-depth(c). 

Proof: By Induction. 

Base Case: P-depth(+(c)) = 0 iff proto(@(c)) = 0. But 
proto(@(c)) = O(supef(c)) = 0 iff super(c) - 0 iff 

c-depth(c) - 0. 

Induction Hypothesis: Assume that 
p-depth(@(c)) = c-depth(c) for all c E C - I with 
c-depth(c) 5 k, for some k 2 0. 

Inductive Case: Consider some object c E C - I, such 
that c-depth(c) - k + 1. Then 
depth(supet(c)) - k. By the induction 
hypothesis, this means that 
p-depth(Q(super(c)) = c-depth(super(c)) = k. But 
by the definition of p-depth, 
p-depth(@(c)) - p-depth(proto(@(c))) + 1, and 
psoto(@(c) = @(super(c)). so 
p-depth(@(c)) = k + 1. 

0 

Theorem 2. For every inheritance model, I, with 
CnI= 

B 

there is an equivalent inheritance 
model, 0 Ij, up to instance templates. 
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Proof: To show these models equivalent up to instance 
templates, we must demonstrate that for any 
object a E C u I, an attribute z is valid for a 
with value v iff z is valid for @(a) with value u, or 
z E instance-template(a) and ual+(,Jz) - # 

Base 

Instances: 

ViEI, z is valid for i with value v iff there exists 
c E supet*(cfass(i)) such that 
z E instance-templute(c) and v&(z) = v (by Inher- 
itance) iff z is valid for Q(i) with value v (by 
Lemma 3b). 

Classes: 

Case: If c is a root of the hierarchy, then 
super(c) - @(super(c)) = proto(@(c)) - 0, By 
Delegation, x is valid for +(c) with value v iff 
z E attributes(Q(c)) and vale(,)(z) = v. By Lemma 
3a, this is true iff z E class-attributes(c) and 
val,(z) = u, or z E instance-template(c) and 
vab(,)(x) - # 

Induction Hypothesis: Assume that z is valid for e(c) 
with value u iff either z is valid for c with value u 
or there is a c’ E super’(c) for which 
z E instance-template( c’) and ual&z) = #, for 
all c such that c-depth(c) 5 k 

Inductive Case: Consider c such that 

Case 

Case 

c-depth(c) = k + 1. Inheritance allows two possi- 
bilities: 

(i): x E atttibutes(@(c)), and valy,)(z) - Y. By 
Lemma 3a, this is true iff z E classatttibutes(c) 
with val,(z) - u or z E instance-template(c) atid 
v&p(,)(z) - #. 

tiih Case (i) f ails, and z is valid for proto(+(e)) 
value 

p-depth(proto(+(c))) < c-depth(cL.so the inducEI: 
hypothesis holds, and either z is valid for 
@(super(c)) - proto(+( c)), with value u, or there is 
a c’ E super ‘(super(c)) for which 
2 E instance-template( c’). 
Super’(super(c)) E super’(c), so c’E super’(c), 
and the instance template condition holds. Other- 
wise, since Case (i) fails, z 4 attributes(+(c)); by 
Delegation, this means that z is valid for a(c) with 
value v since it is valid for psoto(@( c)) with value 
v. 

0 

4. Conclusions and Extensions 

4.1. Limitations on the Proof 

In discussing the features of inheritance and delega- 
tion, I highlighted four ways in which the mechanisms 
differed. To wit: 

(I) Incremental definition: inheritance allows it only 
on classes; delegation, on all objects. 

(2) Sharing of attributes: inheritance allows sharing of 
class attributes, but oniy instance methods; delega- 
tion, all attributes of all objects. 

(3) Dependence o/ instances: inheritance forbids it; 
delegation allows it. 

(4) Grouping by type: inheritance requires it; delega- 
tion does not. 

It should now be apparent that all four of these distinc- 
tions depend on the instance template. It is the instance 
template which forbids one instance to be defined in 
terms of the other-all instances are defined in terms of 
the template. The instance template declares the 
instance attributes, allowing them to be shared by all 
instances, but does not store their values. Since instances 
are required to have their own, private values for all 
attributes, this disallows sharing of attributes and 
prevents dependent instances. Finally, the instance tem- 
plate guarantees the structure of all instances of a class, 
ensuring certain grouping properties of the hierarchy. 

But it is precisely this instance template that is 
lost in the translation from inheritance to delegation; 
indeed, it is this instance template that delegation lacks. 
This is both good and bad, in that it allows delegation a 
flexibility not present in inheritance, but prevents delega- 
tion from providing any structural guarantees on the ele- 
ments in the hierarchy. In the model of inheritance 
presented above, the class structure provides all that 
delegation provides; the instance structure adds rigidity. 

4.2. The Hybrid Model 

Depending on the needs of the application, certain 
properties of inheritance and delegation may be more or 
less desirable. For example, grouping properties provide 
typing guarantees that are useful for compilation and 
database indexing. On the other hand, the fast copy- 
creation and small object size of delegation can provide 
important runtime speedups in a system with rapidly 
changing objects. 

One solution is to provide all the mechanisms of 
both, and to let the user pick and choose among them. 
The formal model for inheritance presented above does 
this, in that the objects called “classes” delegate, while 
those called “instances” inherit. However, these names 
and their common assbciations make it harder to see how 
rich this system is. 

In order to take full advantage of the potential of 
such a system, objects must be treated simply as objects, 
rather than as classes or instances. In this model, 
C = I-all objects are both classes and instances, 
although some may have instance-template - 0.’ Three 
new operations can now be defined in terms of the inheri- 
tance mechanisms available in the formal model above. 

’ This is in fact what the world looks like after applying 
@ to make it delegation, then returning it (through q) to inher- 
itance. 

144 OOPSLA ‘87 Proceedings October q-8,1987 



Figure 4. Minimal guarantee. 

Extended 

Suppose, as in figure 4, that we discover an object 
much like a pen, but with an extra Erase attribute. This 
object can be made an “instance” of “class” pen, its 
extra attribute is simply added as a classattribute. This 
transforms the instance-template into a 
minimaUemplate : rather than guaranteeing the exact 
shape of an instance, it guarantees a minimal shape. The 
aspects in the minimal template can still be typechecked 
and indexed, but not all attributes of the “instance” need 
be in the template of the class This avoids the need for 
creation of extraneous classes every time some object does 
not precisely fit the definition of its class. 

If at some later time many more pens are found 
with an Erase attribute, they may simply be added to the 
hierarchy as extensions to the “prototype” Erase-able 
pen. This accumulation of extensions corresponds to 
objects delegating to a single ‘prototype, or many 

subclasses of one class. It is illustrated in figure 5. The 
new Erase-able pens may depend on the original one, or 
not, as the case may be. In either case, the mmimal 
guarantees of the template hold for these objects to the 
extent that they either possess the attributes or share 
their prototype’s copy. 

At some point, this may become insufficient, and a 
new class may need to be created. In this case, the “pro- 
totype” can be promoted to a class, shifting attributes 
into the template and copying down values as necessary 
The class-instance relationship becomes a class-subclass 
relationship, and a new instance is created to take the 
place of the one promoted to class. The result is shown 
in figure 6 

These extensions to inheritance are natural out- 
growths of a new way of looking at objects in a hierarchy. 

Figure 5. Accumulation. 
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Figure 8. Promotion. 

If strict subtyping is observed, the traditional “class- 
subclass” relationship precisely captures-delegation. The 
class-instance relationship is distinguished by the pres- 
ence of an instance template, which provides indepen- 
dence of value and typing guarantees. These two rela- 
tionships combine to allow the hierarchy to take on 
unusual and useful shapes. By disregarding traditional 
naming convent.ions, “classes” can be treated as delega- 
tion objects, while instance templates can be used to 
ensure minimal consistency. The dynamism of delegation 
and the structured behavior of inheritance can be merged 
rn a flexible but regulated way. 
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