
Metaclasses are First Class : the ObjVlisp Model

Pierre Cointe
Rank Xerox k LITP

RXF: DRBI, 12 Place de 1’Iris - Cedex 38,92071 La defense
LITP: Universitk Paris-%, 4 place Jussieu, Tour 55-65, 75223 Paris

Emaik . . . !seismo!inria!litp!pc cointe@inria.inria.fr.uucp

Abstract

This paper shows how an attempt at a uniform and re-
flective definition resulted in an open-ended system sup-
porting ObjVlisp, which we use to simulate object-oriented
language extensions.

We propose to unify Smalltalk classes and their terminal
instances. This unification allows us to treat a class as a
“first class citizen”, to give a circular definition of the first
metaclass, to access to the metaclass level and finally to
control the instantiation link. Because each object is an
instance of another one and because a metaclass is a real
class inheriting from another one, the metaclass links can
be created indefinitely.

This uniformity allows us to define the class variables at
the metalevel thus suppressing the Smalltalk- ambiguity
between class variables and instance variables: in our model
the instance variables of a class are the class variables of its
instances.

1 The Instantiation Mechanism

1.1 Classes & Metaclasses

We focus on the instantiation mechanism of object-oriented
languages which organizes objects in taxonomies along the
class abstraction. Let us recall that the class concept in-
vented by Simula and reimplemented by Smalltalk- is
used to express the behavior of a set of objects which share
the same semantics operating on the same attributes. This
approach considers a class as a mould, manufacturing pieces
called its instances. Alternatives to the class model - allow-
ing other organizations of knowledge - are well known, for
instance Hewitt’s actor model. An actor describes its own
structure and exists without a class. Defining generator ac-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct cornmerical advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise. or to republish, requires a fee and/
or specilic permission.

cc, 1987 ACM 0-89791-247-O/87/0010-0156 $1.50

tors, using a copy mechanism [9] or designing a delegation
mechanism [15] are other themes developed by 0.0 pro-
gramming.

‘One rvay of stating the Smalltalk philosophy is to choose a small

number of general ptinciplcs and apply them uniformly’ [14].

In most common class-oriented languages, despite Kras-
ner’s uniformity principle, a class is not a REAL object.

Some of them however, like Loops [l], Smailtalk-80 [111,
CommonLoops f2] and CLOS [3] introduced the ,metaclazs
concept to provide greater abstraction by allowing the de-
scription of a class by another class.

1.2 Smalltalk-

PThe primary role of a mttaelass in the Smalltalk- system is

to provide protocol for initializing class variables and for creating

initialized instances of the mctaclass’solc instance8 (P. 287(11]).

Smalltalk- uses the metaclass level facility to define
the behavior of a class as the behavior of a regular object
reacting to message passing (1). The role of a metaclass is
to (re)define the instantiation method (3,4), to control the
class variables initialization (2) or to explicitly explain the
semantics of a class by predefined examples (5):

(1) Point class
(2) DeductibleHistory initialize
(3) agointlt Point new
(4) aqointp-- point x: 20 y: 40
(5) Pen example

However, a Smalltalk metaclass is not a ordinary class
but an anonymous one (accessible by the unary selector
“class”), and which cannot be defined explicitly by users.
This metaclass which supports the definition of the class in-
stance variables and the class methods cannot exist without
the class that is its only instance. Conversely, Smalltalk-
associates a private metaclass to each class being created.
Two classes cannot share the same metaclass. The next fig-
ure summarizes the Smalltalk- instantiation hierarchy :

1% OOPSLA ‘87 Proceedings October 4-8, 1987

Metaclass class

th
Metaclass

M: Point class Object class Class class

c: Point Object Class

f42
i: . .

Because every metaclass is automatically an instance of
the Metaclass class, metaclasses are not true classes, the
number of metalevels is fixed and the metalink cannot be
created indefinitely [171.

From an inheritance point of view, the metaclass inher-
itance is also implicitly fixed by the system. The hierarchy
of the metaclasses is parallel to the hierarchy of the classes.
Because Object has no super class, the rule keeping a par-
allel hierarchy between classes and metaclasses, does not
apply, and Object class is a subclass of the abstract class
Class. Then, all Smalltalk metaclasses are subclasses of
Object class, itself a subclass of Class :

Object ()
Point (x y)
Behavior (superclass methodDict format subclasses)

ClassDescription (instancevariables organization)
Metaclass (thisClass).
Class (name classPool sharedPools)

<all metaclasses>
Object class ()

Point class ()
Behavior class ()
. . .

Consequently, a me&lass cannot be defined ex nihilo
as the subclass of a chosen class. This inheritance tree es-
tablishes the dichotomy between classes prototyped by the
class Class and the metaclasses prototyped by the class
Metaclass (even if they are both subclasses of ClassDe-
scription and Behavior). These limitations, and the fact

that a metaclass cannot exist without its class, introduce a
first boundary between the implementor - who controls the
metaclass level - and the user - who only has access to the
class level. A second boundary is made apparent by the
introduction of the instance method and class method
terminologies (cf. the -1 SwitchView of the
browser).

1.3 Loops

“For some special cases, the user may want to have more con-
trol over the creation of instances. For ezample, Loops itself uses
diferent Lkp data types to represent classes and instances. The
New message for classes is fielded by their metaclass, usually the

object MetaClass. This section shows how to create a met&ass.

Any metaclass should have Class has one of its super classes and
MetaClass as its metaclass. The easiest way to create a new

metaclass is to send a New message to MetaClass as follows :
(+ ($ Metaclass) New metaCLassName ‘(Class))B (P. 36 [I]).

The Loops scheme for metalevels is close to the Smalltalk
scheme. The basic idea is to introduce three levels corre-
sponding to three kinds of object: instances, classes and
metaclasses. This scheme is built on the “Golden Braid”
Object, Class and MetaClass (cf. P. 113 [l]);

MetaClass is the class which holds the default behav-
ior for metaclasses as objects, it is the metaclass of all
other metaclasses and its own metaclass. MetaClass

holds the New method which creates class data-types.

Class is the class which holds the default behavior
for classes as objects. Class is the default metaclass
for all classes. It holds the New method which creates
instance data-types. Consequently, if Class is not
the metaclass for a class, it must be on the supers list
of that metaclsss (which inherits its new method).
According to this rule Class is a super of Metaclass.

Object is the class which holds the default behavior
for all instances. Consequently, Object is the root of
the inheritance tree.

These three classes are used to create new metaclasses (I),
new classes (2 3) and new instances (4 5) :

(1) (+ (S Metaclass) New ‘ListMetaClass ‘(Class))
(2) (+- ($ Class) New ‘Point ‘(Object))
(3) (- ($ ListMetaClass) New ‘Book)
(4) (- ($ Point) New ‘aqointr)
(5) (- ($ Book) New ‘bl)

The next figure summarizes the instantiation and sub-
class links provided by Loops (the black arrow means in-
stanceof, the shaded arrow means subclassOf) :

Meta:

Class:

inst:

r MetaClass

)yf \

Class 4. - - - - - - - - - ListMetaClass

f ‘**iI\ 4

Point--* Object 4.------- Book

4
bl

f Instantiation

* * I Inheritance

October 4-8,1987 OOPSIA ‘87 Proceedings

Unlike Smalltalk-80, a metaclsss can be created explicitly
as the subclass of another one but must be an instance of
MetaClass. This last condition fixes the depth of the in-
stantiation tree and leads the Loops implementors to use a
non uniform representation for classes and terminal objects.
On the other hand, the Loops manual does not express any
circular definition of Metaclass as it would be suggested
by its self-instantiation.

1.4 Unification

To suppress the gap between class and object, we propose a
unification of the metaclass, class and object concepts. We
claim that a class must be an object defined by a real class
allowing greater clarity and expressive power.

The reverse question is “Is every object a class? -. The
answer is no : some objects are only instances of a class and
do not define a model. An instance of a Point class, e.g. an
object agointl, or an instance of the Number class, e.g.
3, are such non-instantiable objects. We call them terminal
instances.

Thus we consider only one’kind of object, without dis-
tinctions of structure or type between classes and terminal
instances (non-class). In fact, they only differ by their ca-
pacity to react. to the instantiation message. “If the class
oj an object owns the primitive instantiation method (new
selector, owned by the primitive class Class) or inherits
it, this object is a class. Otherwise it is a terminal in-
stance. A metaclaee is simply a class which instantiates

other classes. 1,

Every class declared ss a subclass of the metaclass Class
inherits its new method and becomes a metaclass. There-
fore the introduction of the metaclass concept is unnec-
essary and the discrimination between metaclasses, classes
and terminal instances’ is only a consequence of inheritance
and not a type distinction. We can distinguish between
class and non-class objects, however the ObjVlisp model
takes into account only one type of object.

This unification simplifies the instantiation and inheri-
tance concepts, using them simultaneously : for example,
a metaclass must be created as the subclass of another one
(as an “ultimate” subclass of Class).

2 The ObjVlisp Model

Historically, the ObjVlisp model comes from our work on
Smalltalk- [8]. 0 ur wish is to present a synthesis, using
operational semantics expressed in Lisp. We present here
the reflective version which integrates the previous unifi-
cation and gives a good solution to the problem of the
<class , instance> dichotomy.

‘To easily distinguish them, we use upper-case initial letters for
classes and metaclasaes plus bold letters for metaclasses, and lower-
cade letters for terminal instances.

2.1 ObjVlisp in six Postulates

Following the classical presentation of Smalltalk- [13], six
postulates fully describe the ObjVlisp model :

Pl: An object represents a piece of knowledge and a set of
capabilities :

object = c data , procedures >

P2: the only protocol to activate an object is message pass-
ing : a message specifies which procedure to apply
(denoted by its name, the selector), and its argu-
ments :

1 (send object selector Argsz . . . Args,) 1

P3: every object belongs to a class that specifies its data
(attributes called fields) and its behavior (procedures
called methods). Objects will be dynamically gener-
ated from this model, they are called instances of the
class. Following Plato, all instances of a class have
same structure and shape, but differ through the val-
ues of their common instance variables.

P4: a class is also an object, instantiated by another class,
called its metaclass. Consequently (P3), to each class
is associated a metaclass which describes its behavior
as an object. The initial primitive metaclass is the

class Class, built as its own instance.

P5:

P6:

2.2

a class can be defined as a subclass of one (or many)
other clsss(es). This subclassing mechanism allows
sharing of instance variables and methods, and is called
inheritance. The class Object represents the most

common behavior shared by all objects.

If the instance variables owned by an object define a
local environment, there are also class variables defin-
ing a global environment shared by all the instances of
a same class. These class variables are defined at the
metaclass level according to the following equation :

class variable [an-object] =
instance variable [an-object’s class]

Classes and objects

Structure of an object

The postulates Pl & P3 & P6 define an object as a “chunk”
of knowledge and actions whose structure is defined by its
class. More precisely:

Fields : are the set of variables defining the environment
of the object;

a) instance variables : this first environment is organized
as a “dictionary” split into two isomorphic parts :

1. the set of instance variables specified by the ob-
ject’s class,

2. the set of associated values.

158 OOPSLA ‘87 Proceedings October 4-8,1987

The set of instance variables belongs to the class, and
is shared by all its instances. The set of values is
owned by each instance; consequently an object can-
not, exist without its class. These two sets ’ are or-
dered - at creation time - by the inheritance rules
defined on the superclasses components. In particu-
lar, to store the name of its class, each object holds
as first instance variable one named isit. Each ob-
ject holds also the self “pseudo instance variable”
dynamically (at runtime) bound to the object itself
when it receives a message. These two pseudo vari-
ables are respectively analogs to iait and self in
Smalltalk- [lo].

b) class variables : Smalltalk- class variables are ac-
cessible to both the class (via instance methods) and
its metaclass (via class methods). Similarly, ObjVlisp
instance variables of a class (defined as an object) are
accessible to both its own methods and its metaclass
methods. Consequently, the instance variables of a
class are also the class variables of its instances, defin-
ing global environment at the metaclass level.

Methods : The met hods define the procedures shared by
all the instances of a class and owned by the class. To realize
the unification between class and instance, we represent the
method environment as a particular instance variable of its
metaclass; the methods dictionary of a class is the value
associated with a specific instance variable called methods.
As a common object, a class is defined by its class and the
values of the associated instance variables.

Structure of a class

As an object, a class owns also the isit instance variable
inherited from Object (cf. 3.2). This variable is bound
to the name of the metaclass when the class is created.
Because a class is also a generator of objects , we have to
introduce the minimal set. of instance variables describing a
class. Four explicit instance variables are owned by Class
as the primitive metaclass:

1. name : the name of the class, which means that each
class is a non-anonymous object,

2. supers : the list of the direct superclasses of the
class,

3. i-v : the list of instance variables that the class
specifies,

4. methods : the method-dictionary e.g. the list of
methods. held by the class expressed as a “P-list”,
with pairs <selector , X-expression>.

‘Each object is implemented as a pointer to an abstract structure
(for example a Iist, a vector, a hash-table or a Lisp structure) which
must be isomorphic to the list of instance variables held by its &se :

object = #(class-name i-vz* . . . i-vn*)
i-v [class-name] (instantiate/ #(class-name i-vz* . . . i-v, *)

Instantiation of a class

Unlike the Smalltalk- and Loops systems, ObjVlisp uses
only one method to create an object which can be a terminal
instance or a class.

Basicnew : this method is owned by the metaclass Class
and uses the makeInstance primitive of the virtual machine
s as expressed by the circular definition of Class (cf 3.1).
This method implements only the allocation of the struc-
ture with the nil default-value for each instance variable :

(send Aclass ‘basicnew) =+ #(Aclass nil . . . nil)

New : to allocate a new object and to initialize its in-
stance variables, ObjVlisp uses the new method, owned by
Class, This new method has two effects: to allocate a new
object and to give an initial value to each instance variable.
To distinguish these two functions, new composes the ba-
sicnew method with one of the two initialize methods
defined respectively in Class and Object.

Consequently, the instantiation semantic and syntax are
totally uniform: the new message sent, to a class always
receives as arguments the values related to the instance
variable specified by the receiver class and creates a new
instance built on the class model. To allow more expressive
power each argument of the new message must be prefixed
by a keyword (for example :name for an instance variable
called name) denoting the instance variable receiving the
associated value:

(send Aclass ‘new :iyz i-v2 . . . :i-v, i-v,,) *
#(Aclass i-v,* . . . i-v,*)

Examples : we define the class Point by instantiating
the metaclass Class; the receiver (here Class) specifies the
name of the model (the value of the implicit isit instance
variable) and the values associated to the four instance vari-
ables of Class must be expressed :

send Class ‘new
:name ‘Point
:supers
:i-v

yy4

:methods s(“I 0 0 4
3: (A (nv) (setq x nv) self)
init (A () (setq x 40 y 12) self)
display (A ()

(format ()
(catenate ‘-* x ‘D”)
“*‘I 1 1 1

Then we create instances of Point, using the same new
message’ :

(setq apoint (send Point ‘new :x 20 :y 30))
(setq apoint (send ,Point ‘new :y 30 :x 20))
(s&q apoints (send Point ‘new])
(setq apoint, (send Point ‘new :x nil :y nil))
(setq apoints (send Point ‘basicnew))

‘The makeInstance function creates a new object when receiving
WJ argument the name of itr class :

(defun makeInstance (aclass)
(tCon8 Adams (makelist (l- (length (send aclass ‘i-v))) nil)))

October 4-8,1987 OOPSLA ‘87 Proceedings 159

The auto-quoted keywords suppress the order of in-
stance variables values e.g. the two objects agointr and
aqointr are equal. Keywords may be also omitted, in this
case the associated instance variable is bound to the nil
default value (e.g. a-points, a-point4 and agoint5 are
equal).

Obviously, the user can modify the behaviour of the new
message by defining the initialize method at a subclass
level. For instance, to create all the instances of Point with
the 0 value for x and y, we will redefine in Point the ini-
tialize method : (X (i-v*> (setq x 0 y 0) self)

3 From Uniformity to Reflection

Since giving complete control to the users means a complete
transparency in the objects definitions, we adapt the reflec-
tive interpreter technique [16] to the construction of this
model. ObjVlisp is supported by two graphs: the instanti-
ation graph and the inheritance graph. The instantiation
graph represents the instanceof relationship (P3 & P4),
and the inheritance graph the subclassOf link (P5). Class
and Object are the respective roots of these two (acyclic)
graphs: they are defined in ObjVlisp as follows.

3.1 Class: Instantiation

Class is the first object of the system. As the root of
the instantiation graph, it defines the behavior for classes.
Because the new primitive is fielded by Class it will re-
cursively create all other objects. To prevent the infinite
regress provided by the instantation link (a metaclass is a
class which instantiates a class, a metametaclass is a class
which instantiates a metaclass, a metametametaclass . . .),
Class must be its own instance which severely constrains
its structure.

Reflective pattern matching of Class

To verify the previous statement, we have to guarantee that
the instance variables specified by Class match the corre-
sponding values also held by Class, as its own instance,
which is easily obtained by :

isit nune supera i-v metho&
Chl Clam (Object) (hit name aupen i-v methods) (new (A..)..)

Notice that the value associated with the instance vari-
able i-v is exactly the ordered set of instance variables
(isit. name, . . . , methods) itself, this reflective pat-
tern matching illustrates the definition of Class as an ob-
ject.

‘This table shows the dictionary of values owned by each object :
? (send agoi+ ‘i-values)
= #(Point 20 30)
? (send Point ‘i-values)
= #(Class Point (Object) (isit x y) (x Xr x: As init A3 display X4))
? (send Class ‘i-values)
= #(Class Class (Object) (isit name supers i-v methods) (new.. .))

To prepare the bootstrap: the Lisp skeleton

“A natural and fundamental question to ask, on learning of these

incredibly interlocking pieces of software and hardware is: #‘How

did they ever get started in the first place?‘. It is truly a bafiing

thing” [12].

Defining Class from itself necessitates specifying the
bootstrap mechanism. We create manualy the skeleton of
Class. If we represent objects as lists, we will use the
skeleton :

(setq Class ‘(
Class
Class
(Object)
(isit name supers i-v methods)

i
new

initialize

(A (self . i-values)
(send (makeInstance name)

‘iuitialiie i-values)
(A (self i-values)

(initIv self... . ..)
(setq i-v (he&-i-v supers i-v))
(setq methods (scan-methods . .
(set name self))))

-1)

In fact, we only defme the new and initialize methods
supporting the self-instantiation of Class.

This bootstrapping process then creates the real Class
object, by sending to the Class skeleton the appropriate
new message. Note that the skeleton is destroyed by the
circular (re)definition of Class.

The bootstrap: the Self Instantiation of Class

The Class definition establishes that Class is its own in-
stance, is a subclass of Object, and uses the instance vari-
ables previously mentioned. These definitions and exam-
ples are given for Le-Lisp [7] :

(send Class ‘new
:XItie ‘ClaEE
:supers ‘(Object)
:i-v ‘(name supersi-v methods)
:methods ‘(

new (A i-values
(send (send self ‘basicnew)

‘initialhe i_values))
basicnew (A () (makeInstance name))
initialize (A (i-values)

(run-super)
(setq i-v (he&-i-v supers i-v))
(setq methods . . .))
(set name self))

.

name 0 0 name1
super* 0 0 supers)
i-0 (A 0 i-4
metbodsDic (A () methods)

. . . I..
understand (A (selector method)

(defmethod self selector method))
selectors (A () (selectors methods))))

160 OOPSLA ‘87 Proceedings October 4-8, 1987

The definitions of the methods shows that all instance
variables are automatically bound to their values in a method
body. Consequently, the X-expressions associated with the
name, supers, i-v and methods selectors are quite easy
to express. Similarly, in the new method, self denotes
the generator (here Class). The initialize method uses
the run-super form to call the general allocator (makeIn-
stance) defined at the Object level.

3.2 Object: Inheritance

Postulate (P5) introduces the inheritance mechanism (which
concerns only classes). The ObjVlisp inheritance allows to
connect together instance variables and methods of several
classes but in two different ways:

l The inheritance of instance variables is static and
done once at creation time.

When defining a class, its instance variables are calcu-
lated as the union of a copy of the instance variables
owned by the superclasses with the instance variables
specified at creation (the value associated to the “:i-v”
keyword used by the new message).

l On the other hand, method inheritance is dynamic
and uses the virtual copy mechanism implemented by
the linkage of classes in the inheritance graph which
is supported by the supers instance variable. When
the method lookup fails in the receiver class then the
search continues in a depth-first/breadth-first way.

This lookup call may be locally modified by the run-
super form - same as in CommonLoops [2] and similar
to the super construct of Smalltalk- - which over-
rides the current method. The lookup starts (stati-
cally) at the superclass of the class containing the
method.

Classes vs Terminal Instances: the initialize method

The inheritance mechanism of instance variables is applied
only when creating classes. Thus we need to distinguish
creation of classes and creation of terminal instances. As
we pointed out already, a metaclass is a class which inherits
from Class the new method and the (name supers i-v
methods) instance variables”.

The reflective definition of ObjVlisp allows to use only
one allocator - the basicnew - and nevertheless to explicit
the difference between class and terminal instance creations:

the initialize method owned by Object treats the termi-
nal instance, and the initialize method owned by Class
implements the inheritance mechanism associated to in-
stance variables at a class creation time.

Object the most common class

The second primitive class is Object, instance of Class.
Object represents the most common class - the intersec-
tion of all classes - describing the most common behavior
(for classes and terminal instances). It is created during
the bootstrap mechanism, immediately before Class. The
isit instance variable is statically inherited by all classes.
Then isit provides the instantiation link (the umbilical
cord) between a class and its instances.

send Class ‘new
:name
:supers
: i-v
:methods

‘Object

‘0

?sit’
ClllSS (A () isit)
initialize (A (i-values)

(initIv self) self)
f (A (i-v-) (ref i-var self))
Ft (A (i-var i-val)

(setf (ref iyar self) i-val))
i-values 0 0 self)
mctocfassl (A () (memq ‘supers i-v))
class? (1 0

(send (i-v* kit) ‘metaclass?))
.

err*r (A msg ‘(A bs ‘,msg))))

From this definition Object has no superclasses and each
ObjVlisp object answers to the <selector> by <action>:

class
initialize
1
?i-
i-values
metaclass?
class 7
error

giving the name of its class
initializing the instance variables
returning the value of the field i-var
writing i-var with the new value
returning the list of values of the i-v
testing if the object is a metaclass
testing if the object is a class
implementing the standard treatment
of error

Notice that the ? and ?t methods which access the
value of any instance variable (read&write) respect their
lexical scoping (and violate the encapsulation principle).

3.3 Architecture of the ObjVlisp model

We summarize the general structure of the ObjVlisp model
by connecting together the instantiation graph and the
inheritance graph. At the creation of the system there
are only the Class and Object classes. The %aive” use of
the system will keep the depth of the instantiation tree to
three. See below for a similar example to Smalltalk- [Is];
all classes are instances of Class :

P
Class

Grit name ruperr I-V methods)

.*“f \

Object N.............. Point
(istt)

/7 Orit xy)

a-point)
4
. . .

K
a-points

‘The mttaclass? predicate defined in Object uses the supers in-
stance variable to recognize metackses.

October 4-8, 1987 OOPSIA ‘87 Proceedings 161

The rest of this paper establishes that creation of meta-
classes brings substantial benefits. There is no longer any
depth limitation of the instantiation tree, and the user can
extend it as much as he wants to specify different metalevels
of shared instance variables and methods.

4 From Reflection to Extensibility

4.1 Building new metaclasses

By combining the inheritance mechanism with the instanti-
ation one we can create multiple metaclasses. Ametaclass
is defined as a subclass of Class i.e. dynamically inherits
the new primitive (to create objects) and it receives a copy
of the basic instance variables defining a class (name, i-v,
supers and methods), copy extended by the CV; variables :

send Class ‘new
:n-e ‘Ametaclass
: i-v ‘(WI . . . CV”)
xupers ‘(Class)
:methods ‘(.-.I 1

Following this definition, the creation of Aclass needs
the instantiation of every basic instance variables plus the
instantiation of each new cvi :

(send Ametaclasa ‘new
:nme ‘Aclass
:i_v ‘(iv1 . ..ivn)
:supers
:methods l’*‘l . . .
:C”l WI*

.
:C”, c”,*)

Class variables by Example

Let us return to the Point class, previously defined. Now
we would like the constant character * to be a class variable
shared by all the points of a same class. We redefine the
Point class as before, but metaclass of which (let us call it
MetaPoint) specifies this common character :

send Class ‘new
:name ‘MetaPoint
:supers ‘(Clam)
: i-v ‘(char)
:methods ‘0 1

(send MetaPoint ‘new
:name ‘DefaultPoint
:supers
: i-v

ye4
X

:methoda '(init (A () (setq x 40 y 12) self)
z 0 0 4
2: (A (nx) (setqx nx) self)
display 0 0

(format ()
(catenate =-’ x ‘D*’
char)))

:char **r)

MetaPoint is declared as a subclass of Class (thus it is
a metaclass). It inherits the name, supers, i-v and meth-
ods instance variables from Class and adds to them the in-
stance variable char. Consequently, DefaultPoint specifies
the associated value of char, i.e. * by using the associated
keyword. Now we could create such a point :

? (s&q aqoint (send DefaultPoint ‘new :x 20))
= a DefaultPoint
? (send agoint ‘display)
= *

Class methods by Example

As for class variables, class methods are specified in the
metaclass as ordinary methods. Suppose we want to define
a new class method for DefaultPoint to create and initialize
a new point. We simply define the newinit method of
MetaPoint (assuming we define also an init method in
the Point class, or at least in the Object class) :

send Class ‘new
:name ‘MetaPoint
supers
:i-v :gy

:methods '(newinit (A 0
(send (send self ‘new) ‘init)))

Ch (A 0 char)
char: (A (newchar)

fseta char newChar) j 1

l newinit creates a new instance, (send self ‘new)
then receives the init message.

. char gives access to the char variable. We have in-
troduced this method to show that char is both ac-
cessible by the DefaultPoint display method and by
the MetaPoint char method,

. char : allows the modification of the char class vari-
able. For instance, the (send DefaultPoint char:
‘ ‘ @ ’ ’ 1 message provides the new B display for all the
instances of DefaultPoint.

4.2 Parametrization of a class

The DefaultPoint class is now parametrized by its display
character and the MetaPoint metaclass represents this ab-
straction. Let us define two new classes, called Point# and
Point62 with two different display characters. Obviously,
they are defined as a subclass of DefaultPoint :

Class
Grit name wperr I-V methods)

k
‘. .\

Object MetaPoint
(kit name supers i-v methods char)

Point# . ..+ DefaultPoint M*.. . . . Point@
(kit x y) (kit x y) (isit x y)

162 OOPSLA ‘87 Proceedings October 4-8, 1987

Notice that a same metaclass (here MetaPoint) can be
used to instantiate several classes (Point#, Point@ . . .) :
there is no one specific metaclass associated to each class.

? (send MetaPoint ‘new
:name ‘Point# :supers ‘(DefaultPoint) :char a#.)

= Point#
? (send ‘MetaPoint ‘new

:name ‘PointQ :supers ‘(DefaultPoint) :char Wn)
= Point@
? (send (send Point# ‘new :x 1) ‘display)
=#
? (send (send Pointa ‘new :x 9) ‘display)
= 0

Comparison with SmaIItalk-80

We have pointed in [5] that the Smalltalk- terminology
is not homogeneous. Smalltalk class variables are not the
instance variables of the class defined as an object but a
dictionary of variables shared between all the instances of
a same class hierarchy. For example, if the new method is
redefined to add the newly created instance of a class inside
a Collection’s class variable, the instances of its subclasses
will also be memorized.

Nevertheless, if we use the instance variables of a meta-
class, we can simulate the “MetaPoint” construction in
Smalltalk-80. Obviously we need to give an explicit access
to the char variable and we have to use a new different
metaclass for each class of Point :

Object subclass: #DefaultPoint
instanceVariableNames: ‘x y’
clasaVariableNames: ’
poolDictionaries: g
category: ‘Graphic-Primitives’.

DefaultPoint class instanceVariableNames: ‘char’.
DefaultPoint class methodsFor: ‘m&a-iv access’

initialise Ichart =*#.

DefaultPoint subclass: #Point@
instanceVariableNames: ’
classVsriableNames: ’
poolDictionaries: D
category: ‘Graphic-Primitives’.

Point0 class instanceVariableNames: ‘.
Point0 class methodsFor: ‘met&v access’

initialire tcharc ‘0”.

The DefaultPoint example illustrates a general knowl-
edge scheme (as does the Polygon example below). To gen-
eralize the solution, we have decided to extend the scope

of the instance variables of a class to each of its instances.
Unlike Smalltalk-80, our class variables are inherited but
not shared by the subclasses.

Each polygon is defined by its location (the first ver-
tex) and the length of any of its sides. To parametrize the
number of sides - 4 for a square, 6 for a hexagon, undef for
a polygon - we use the nSidea class variable. To simplify
the next figure, the inherited variables are not drawn :

’ Class

Object PolygonClass

Hexagon . . + Polygon d......Square
0 (locatmn lenght) 0

ft2 ft2 ft2
...

4.3 Filiation link (Set) :

To use classes which remember all their instances, we define
a new metaclass (Set

I
, as a subclass of Class with the new

sons instance variab e pointing the list of instances. We
just have to redefine the new method in Set to add the
newly created instance at the end of the sons list :

send Class ‘new
:name ‘Set
:supers ‘(Class)
5-v ‘(rona)
:methods ‘(sons 0 0 w -4)

new (A i-values
(nconc l onm

(cons (run-super) 0)))
mapSO%S

(x~::P~s)
(A (ret) (send ret unaryS))
(send self ‘sons))

UnaryS) 1)

(send Set ‘new
:name ‘Point
:i-v ‘b Y)
:supers ‘(Object)
:methods ‘(init (A () (setq x 40 y 12) self)

display (A () (print (format () . . .)) self))
:SOIlS ‘(hook))

The sons method gives access to the sons class vari-
able and the mapsons method distributes an unary message
(without arguments) to all the instances of a particular set.
The next session shows the behavior of Point defined as an
instance of Set

? (progl ‘ok (send Point ‘new :x 10) (send Point ‘new :x 20))
= ok
? (send Point ‘sons)
= (#(Point 10 nil) #(Point 20 nil))
? (send Point ‘mapsons ‘display)

*
*

= display

This solution provides a uniform extension of the meta-

class system and seems better than the Loops “class prop-
erty hook” used by the ListMetaClass definition in [l]
(P. 36).

October 4-8,1987 OOPSfA ‘87 Proceedings 163

4.4 MetaPoint as an instance of Set :

Now we can add a new metaclass level by defining Meta-
Point as a subclass of Set, allowing DefaultPoint, Point#
and Point@ to memorize their instances. Since a metaclass
is a ordinary class, such an extension is easy to repeat and
the metalinks can be created indefinitely.

5 Metaclasses are useful

“With respect to Simula, Smalltalk also abandons static scoping,

to gain jlezibility in interactive use, and strong typing, allowing

it to implement system introspection and to introduce the notion

of meta-classes [6].”

5.1 Metaclasses provide metatools to build
open-ended architecture

“The metaclass determines the form of inheritance used by its
classes and the representation of the instance of its classes. The

metaclass mechanism can be used to provide particular forma of

optimization or to tailor the Common Lisp Object System for

particular uses (such as the implementation of other languages
like Flavors, Smalltalk- and Loops))” /3].

From an implementor’s point of view, metaclasses are
very powerful because they provide hooks to extend or mod-
ify an existing kernel. For example, ObjVlisp uses the
metaclass facilities to simulate other object-oriented sys-
tems. Metaclasses may control :

1. the inheritance strategy (simple, multiple, method
wrapping [HI). T o implement variations on inheri-
tance schemes [lQ], we define at the metaclass level

a method (or an instance variable) parametrizing the
lookup method used by the send primitive,

2. the internal representation of objects by using differ-
ent makeInstance primitives creating lists, vectors,
hashtables or structures; each metaclass fielding a pri-
vate new method,

3. the access to methods by implementing a caching
technique. We associate with each class a private
memory (the cache instance variable) memorizing the
addresses of methods already called,

4. the access to instance variable values by distinguish-
ing between private and public variables or by imple-
menting active-values or demons.

5.2 Metaclasses remove the boundary be-
tween users and implementors

In our empirical studies, metaclasseo were regarded as the most
significant barrier to learnability by both students and teachers.
We propose that they be eIiminated. We have explored various

alternatives to metaclasses, such as the use of prototypes. How-

ever, for DeltaTalk we simply propose that the language revert to
the situation in Smalltalk-76. Every class would be instance of
class Class” [d].

Obviously we disagree with the Borning’s conclusion.
We consider that metaclasses provide an explicit definition
of the class system. They express the behavior of classes in
a transparent way. Because they have ability to manipulate
their own structures, they can implement system introspec-
tion. Consequently, metaclasses support a circular defini-
tion of the system reducing the boundary between users.
and implementors. But, to fully exploit this metalevel, the
metaclass concept must be simple enough to be understood
by the user. We believe this is not true in Smalltalk- but
that the ObjVlisp uniform and reflective architecture has
reached this goal.

6 Conclusions

6.1 Results

The ObjVlisp model’s primary advantage is uniformity.
There is now only.one kind of object: a class is an object
and a metaclass is a true class whose instances are classes.
This allows a simplification and economy of concepts, which
are thus more powerful and general. The second property is
reflection which provides a language completely and uni-
formly accessible by the user. The system is self-described
by the explicit definition of the root of the instantiation tree

(Class) and the root of the inheritance tree (Object). The
main results are that there is no limitation in the depth
of the instantiation tree, the metalinks can be created in-
definitely and class variables are defined at the metaclass
level. Finally, extensibility permits various applications
and modeling alternative semantics, for instance Thinglab
composite objects and partwhole hierarchy or Smalltalk-
dependencies [111.

6.2 New Improvements

A first version of this paper was presented at the work-
shop on Meta-Level Architectures and Reflection organized
in Alghero [16]. In this new version, the difference between
instance creation and class creation is explicitly defined at
the ObjVlisp level through two distincts initialize meth-
ods, respectively owned by Object and Class. Thus we do
pot need to add an extra metalevel (the metaclass level of
Loops or Smalltalk-80) [5] and the ObjVlisp instantiation
kernel is really minimal.

6.3 Future work

We have used the ObjVlisp model to study the instantiation
mechanism. We plan now to investigate three axes:

l experimentation in object-oriented methodologies by
writing relevant examples in ObjVlisp other than those
provided by the Smalltalk- image,

l development of an object kernel for EuLisp and IsoLisp.
This work is very close to the CLOS approach [3] but
we expect to use the ObjVlisp experience to propose
a cleaner metaclass level,

. implementing the ObjVlisp metaclasses architecture
in Smalltalk- by redefinition of the “kernel classes”.

164 OOPSLA ‘87 Proceedings October 4-8, 1907

Acknowledgements

We thank Jean-Pierre Briot for its major contribution to the Ob-
jVlisp model, Alain Deustch for its implementation of the tree.
walker, Jean-Francois Perrot, Henry Lieberman, Kris Van Mar-
eke, Glenn Kramer and Nicolas Graube for their helpful com-
ments on this text.

The ObjVlisp project ia part of the “O.O.P. Methodology”
group of the GRECO de Programmation

References

Bobrow, D.G., Stefik, M., The LOOPS Manual, Xerox
PARC, Palo Alto CA, USA, December 1983.

Bobrow, D.G., Kahn, K., Kiczales, G., Masinter, L.,
Stefik, M., Zdybel, F., CommonLoops: Merging Lisp
and Object-Oriented Programming, OOPSLA ‘86, Spe-
cial Issue of SIGPLAN Notices, Vol. 21, No 11, pp. 17-
29, Portland OR, USA, November 1986.

Bobrow, D.G., DeMichiel L.G., Gabriel R.P., Keene S.,
Kiczales G., Moon D.A, Common Lisp Object System
Specification, X3J13 (ANSI COMMON LISP), March
1987.

Borning A., O’Shea, ‘I’., DeltaTalk: An Empirically and
Aesthetical Motivated Simplification of the Smalltalk-
80 Language, ECOOP’87, to appear in Springer Verlag,
Beeivin J. B Cointe P. ed., Paris, France, 15-17 June

1987.

Briot, J-P., Cointe, P., A Uniform Model for Object-
Oriented Languages Using the Class Abstraction, IJ-
CAI’87, Milan, I, August 1987.

Cardelli, L., A Semantics of Multiple Inheritance, Bell
Laboratories, Murray Hill NJ, USA, 1984.

Chailloux, J., Devin, M., DuPont, F., Hullot, J.M., Ser-
pette, B., Vuillemin, J., LE LISP de I’INRIA, Version
15.2 (The manual), INRIA, Domaine de Voluceau, Roc-
quencourt 78153 le Chesnay, Mai 1986.

Cointe, P., A VLISP Implementation of SMALLTALK-
76, pp 89.102, Integrated Interactive Computing Sys-
tems, North-Holland, Degano, P. & Sandewall, E. edi-
tors, 1983.

Cointe, P., Briot J.P., Serpette B., The FORMES
language: a Musical Application of Object Oriented
Concurrent Programming, pp 221-258 in Object Ori-
ented Concurrent Programming, MIT Press, Cam-
bridge, Mass A Yonezawa & M. Tokoro editors, May
1987.

[ll] Goldberg, A., Robson, D., Smalltalk- - The Lan-
guage and its Implementation, Addison-Wesley, Read-
ing MA, USA, 1983.

[121 Hofstadter D.R., GOEDEL, ESCHER, BACH: an
Eternal Golden Braid, The Harvester Press, John Spiers
editor, Stanford Terrace, Hassocks, Sussex Publisher,
1979.

[13] Ingalls, D.H., The Smalltalk- Programming System
Design and Implementation, 5th ACM Symposium on
POPL, pp. 9-15, Tucson AZ, USA, January 1978.

[14] Kramer, G., Smalltalk- - Bits of History - Words of
Advice, Addison-Wesley, Reading MA, USA, 1983.

1151 Lieberman, H., Delegation and Inheritance, Two Mod-
ular mechanisms, Conf. Record of the 3rd Workshop on
OOP, Centre Georges Pompidou, Paris, Bigre+Globule
No 48, Bezivin J. and Cointe P. editors, January 1986.

[16] Maes, P., and al, Workshop on Meta-Level Architec-
tures and Reflection, to appear in North Holland, P.
Maes d D. Nardi cd., Alghero, Italy, 27-30 October
1986.

[17] Maes, P., Computational Reflection, PhD thesis, Vrije
Universiteit Brussel, AI-LAB Pleinlaan 2, B-1050 Brus-
sels, Belgium, Mars 1987.

[18] Moon, D., Object-Oriented Programming with Fla-
vors, OOPSLA’86, Special Issue of SIGPLAN Notices,
Vol. 21, No 11, pp. 1-16, Portland OR, USA, November
1986.

[19] Stefik, M., B o b row, D.G., Object-Oriented Program-
ing: Themes and Variations, The AI magazine, pp 40.
62, Winter 1985.

Smalltalk- and Loops are trademarks of Xerox Corpora-
tion.

Appendix

We give two alternatives implementations written in Le
Lisp representing objects as lists. The first one dynami-
cally binds the instance variables at the run-time (cf. the
send form), when the second one pre-compiles the methods
by using a tree-walker. The smacrolet form replaces each
instance variable name by its access function (cf. the ref
form). For instance, below are the definition of x, x: and
display methods of Point, after their textual expansion:

(A () (ref ‘x self))
P 0

(format () . . . char))
0 (nxl

(format () . . . (ref ‘char (class-of self))))
(A (4

(aetq x nx) self) (setf (ref ‘x self) nx) self)

[lo] Goldberg, A., Kay, A., Smalltalk- Instruction Man-
ual, Research Report SSL 76.6, Xerox PARC, Palo Alto
CA, USA, March 1976.

October 4-&I,1987 OOPSIA ‘87 Proceedings 165

(d
ef

ta
n

lo
ok

up

(~
1

i.i
t

ob
j)

;
D

yn
am

ic
 L

C
C

...

to

in
.tm

c.

v.
rl.

bl
.r

(ty
pe

en

t/
:

(ty
pe

en

S/
a)

)
(d

ef
rh

ar
p

I:
I

0
(w

ith

(
(ty

pe
en

X

/:
‘c

pi
&

(ty

p.
cn

t/m

‘c

pn
u.

)
1

(li
rt

(r.
.d

))
1)

(d

ef
ru

cl

...

‘n
ob

oo
t)

(d
.fr

.r
ob

jrc
t

0)

(d
.fr

u
..l

f
(1

)

(d
ie

d
ty

pe
-o

f
(m

u)

‘(C
U

.n

U
d)

(d

m
d

cl
&

..-
of

(o

bj
)

‘(I
-T

+
(tn

.-O
f

.o
bj

)))

(d
m

d
r.t

.c
l..

.-o
f

(o
bj

)
‘(I

-r*

h.
t.t

yp
.-o

f
.o

bj
)))

(d

m
d

ut
at

yp
a-

of

(o
bj

)
‘(t

yp
o-

of

(c
la

m
.-o

f
.o

bj
)))

(d

ad
 n

om
.

(n
u.

)
‘(c

dr

.n
m

U
))

(d

m
d

*u
po

n
(n

.m
.1

‘(e

.d
d?

.n

.W
))

)
(d

m
d

I-r

(n
.m

.)
‘(a

dd
&

.n

.m
.))

(d

m
d

1-
W

(x

)
‘(r

ya
.v

al

ax
))

(d
m

d
k.

yw
or

d.

(n
am

.)
‘(c

.d
dd

r
(e

dr

.n
.m

.))
))

(d

lp
d

m
.th

O
dD

Ic

(n
am

.)
‘(c

ad
dd

r
(c

dd
r

am
*)

)))

(d
m

d
m

et
ho

d.

(n
u.

)
‘(C

at

(P
lim

t-t
o-

di
.O

.=

.))
)

(d
m

d
..1

*c
t0

r.
(Il

.4

‘(c
u

(p
lir

t-t
.-d

I.0

*m
u.

))
)

(d
m

d
at

ta
ch

(.

1)

‘(r
pl

m
c

.1

.I
(C

on
.

(C
U

.I)

(C

’k

.I)
))

)

(d
m

d
m

ot
ho

df
or

(c

lu
..

..l
)

‘(g
.tl

(m

.th
O

dD
ic

.c

lm
..*

)
,..

I))

(d
ie

d
rw

rit
.

(in
.t

Iri
t)

‘(c
va

l-d
lc

o
(I-

V

(I-
T*

.i.

It)
)

.Im
m

t))

(d
ef

un

*e
nd

(o

bj

-..
l.c

tO
r-

-U
g.

-)
(if

(a

q
ob

j
*e

lf)

(a
pp

ly

(lo
ok

up

-..
l.c

to
r-

(I-
r*

Iri

t)
ob

j)
ob

j
-U

p-
)

(l.
tv

(I-

v
(m

.t.
cl

ur
-o

f
ob

j))

(e
lm

..-
of

ob

f)

(h
tr

(I-
V

(e

lm
..-

of

ob
j))

ob

j

(p
ro

t.c
t

(ti
pp

ly

(lo
ok

up

-..
l.c

to
r-

(I-
r*

Im

it)

O
bj

)
ob

j
-u

g*
-)

(r.
w

it.

ob
j

hi
t))

)))
)

(d
ud

ru

n-
.u

p.
r

()
‘(.

pp
ly

.(l

oo
ku

p
-..

1*
ct

0r
-

(i-
r*

(c

ar

hp
rra

(I-

.+

im
it)

)))

.*l
f)

..l
f

(d
ef

un

m
ak

.In
rta

ne
.

(a
od

.1
)

(tc
on

s
m

od
.1

 (
m

ak
.1

i.t

(l-

(le
ng

th

(i-
r

(i-
V

*
m

O
d.

1)
))

)
ni

l))
)

(d
of

un

In
itI

v
(.t

ru
ct

ur
.

llO
t#

Sl

ob
*)

(w

hi
l.

*lo
t.

(..
t

(n
.rt

l
*lo

t.)

(n
.x

tl
*lo

ts
*)

))
rtr

uc
tu

r.)

(d
ef

un

g.
tl

(1
 l

 .1
)

(c
on

d ((n
ot

(e

on
rp

1)

)
0)

((.

q
(c

u
1)

1.

1)

(c
m

dr
 1

))
(t

(g
.tl

(c

dd
r

1)

..l
))

))
(d

.iu
n

pl
lrt

-to
-d

ic
o

(m
.x

P
)

(w
he

n
(ry

m
bo

lp

r.r
p)

(..

tq

..x
p

(p
1i

.t
..x

p)
))

(1
.t

((.
.l

(a
eo

n.

ni
l))

(m

.th

(n
eo

!u

ni
l))

)
(le

tn

..l
f

((
91

.1

..l
)

(q
m

et
h

8r
th

)
(1

rrx

p)
)

(if
n

1
(c

on
a

(e
dr

..l

)
(e

dr

m
.th

))

(u
lf

(p
lm

cd
l

qr
rl

(n
.x

tl
1)

)
(p

lm
ed

l
qm

.th

(n
ox

tl
1)

)
1)

)))
)

(d
rfu

n
cv

m
l-d

ic
e

(d
ie

-~
.r

di
e-

v.
1)

(r

h.
n

di
e-

v.
1

(rp
l.c

a
di

e-
r.1

(i-

r*

(e
u

di
e-

vu
)))

(c

ra
l-d

ie
0

(c
ar

di

e-
Ta

r)
(c

dr

di
e-

V&
l))

)))
)

(ta
g

b.
&

ra
cL

(t.

g
ag

ai
n

(d
ep

th

1.
1

iri
t))

(re

nd

ob
j

‘.r
ro

r
‘lo

ok
up

)))

(d
of

uu

dr
pt

h
(Ir

ay

no
d.

)
(1

.t
((n

.th
od

(m

.th
od

fo
r

no
d.

k.

y)
))

(e
on

d (n
rth

od

(e
xi

t
ba

ck
tra

ck

m
et

ho
d)

)
((.

q
no

d.

ob
j.&

)
(e

xit

ag
ai

n
‘b

ae
kt

r.c
k)

)

(t
(b

r..
dt

h
ke

y
(a

up
er

.
no

d.
)))

)))

(d

ef
un

br

.m
dt

h
(k

ey

l-n
od

..)

(w
hi

l.
l-n

od
..

(ta
g

tig
al

n
(d

ep
th

ke

y
(I-

v*

(n
ex

t1

l-n
od

..)
)))

))

(d
of

un

#c
m

-u
tc

h
(p

at

d.
t-p

1I
.t)

(u

pc
u

(lu
bd

m

(m
m

g)
 (g

et
1

d.
t-p

lir
t

na
g)

)
pm

t))

(d
.fu

n
m

.k
.-k

ey
w

or
d.

(iv

)
(8

.p
e.

r
(l.

m
bd

.
(k

)
(..

tq

k
(c

on
c.

t
* :

 k
))

(..
t

k
k)

)
IT

))
(d

ef
t

m
ea

n-
..l

.c
to

rr
(d

ie
-m

.th
od

.1

(m
.P

c
(lu

bd
.

(m
rl)

(m

ak
r-d

w
rip

to
r

l .
1

d.
.c

rIp
to

r))

(r.
l.c

to
rm

di

em
et

ho
ds

)))

(d
hm

m

m
-Iv

*
(f

v)

(1
*t

((1

r
v)

(p

0)

)
(rh

il.

f
(if

v

(n
.x

tl
T)

(n

ov
l

p
0)

)
(n

.x
tl

f))

be
on

e
1~

 p
)))

)
(d

ef
un

*c

ur
-m

.th
od

(ll

m
bd

m
-fo

rm

cl
...

.)
(r

em
-p

uu
.t.

rm

lu
bd

m
-f

ar
m

 (
c.

dr

lm
bd

m
-f

or
a)

)
)

(d
.fu

n
l c

m
n-

pm
ru

.t.
r.

(1

1p
m

r)

(c
on

d
((n

ul
l

1p
m

r)

(r
pl

.e
m

(e

dr

1)

‘(s
el

f))
)

((
st

om
p

1p
u)

(rp

l.C
rn

(c

dr

1)

(c
on

.
‘r.

lf
1p

.r)
))

(t
(a

tt.
eh

‘..

lf
lp

rr)
)))

(d

m
fu

n
l e

m
n-

m
.th

od
m

 (
pl

el

ns
.)

(lf
n

(c
dd

r
pl

)
(r

h.
n

(c
c&

pl

)
(m

an
-m

rth
od

(c

.d
r

pl
)

sl
~r

r.)
)

(*
cm

-ro
th

od

(c
.d

r
pl

)
cl

...
.)

(r
cu

r-
m

rth
od

.
(c

dd
r

pl
)

cl
..r

.))

P
l)

(&
fu

n
d.

fm
.th

od

(c
l..

m

..l

m
&

ho
d)

(ra

n-
m

rth
od

m

.th
od

el

m
..)

(1

.t
((a

.th
od

D
Ic

(m

.th
od

D
Ic

cl

a.
.))

)
(*

M
ac

h
m

rth
od

m

.th
od

D
ic

)
(a

ttm
ch

m

.1
 m

.th
od

D
Ic

))
)

(d
.fu

n
rr

m
or

r-
du

p1
Ic

.t.
.

(1
.t)

(d

o
((1

lm

t
(c

dr

l))
(r.

.
()

))
((

m
to

m

1)

(n
r.v

er
..

re
m

))
(u

nl
...

(m

.m
b.

r
(c

u
1)

r..

)
(n

w
l

I..

(c
u

1)
)))

)
(d

.fu
n

h.
rIt

-I-
v

(.u
pe

lu
m

I-r

)
(r

.m
ov

.-d
up

1I
cm

t.s

(a
pp

m
d

(.p
pl

r
‘m

pp
.n

d
(m

.p
cu

(lu

bd
.

(C
l)

(I-
r

(1
-w

C

i))
)

.u
pc

1.
..)

)
i-v

)))

(w
k.

-k
.rr

or
d.

‘(a

u.

ru
p.

r.
i-r

k.

yr
or

d.

m
et

ho
d.

))

(rr
tq

C

1.
w

‘#

(C
l~

rr
C

l.r
r

(O
bj

.c
t)

(Im
it

11
11

1.
 l u

p.
r.

i-r

k.
y#

or
dr

l .

th
od

.)
(m

u
:.u

p.
r.

:1
-r

:k
.y

w
or

da

:m
.th

od
.)

(II
W

(lu

bd
a

(rr
lf

I-v
*)

(re

nd

(m
.k

.In
rtc

ln
e.

nm

m
.)

‘In
iti

al
IZ

.
i-V

*)
)

In
itI

m
lIz

.
(1

.&
d&

(..

lf
iv

*)

(in
itI

v
..l

f
(c

dr

(i-
r

(i-
r*

Iri

t))
)

(*
cm

-m
at

ch

(k
.y

vo
rd

.
(I-

r*

Iri
t))

IV

*)
)

(s
&q

i-v

(h

ar
lt-

i-v

w
ps

rs

i-v
))

(rr
tq

m

at
ho

d#

(#
ca

n-
m

et
ho

d.

m
et

ho
ds

#e

lf)
)

(s
at

q
ke

yw
or

ds

(m
ak

e-
ke

yw
or

ds

(c
dr

i-v

)))

(re
vr

ita

ae
lf

is
it)

be

t
na

m
e

se
lf)

1)

1)

(s
en

d
C

la
m

n
'IM

Y
:n

am
.

'O
bj

ec
t

:1
-v

* (

iri
t)

:m
et

ho
ds

' (

cl
as

s
(la

m
bd

a
0

ilit
)

cl
as

s?

(la
m

bd
a

()
(a

en
d

(i-
v*

is

it)

'm
et

ac
la

ss
?)

)
m

et
ac

la
m

*?

(la
m

bd
a

()
(m

em
q

'm
up

er
l

i-v
))

?
(la

m
bd

a
(iv

)
(i-

v*

iv
))

?<
-

(la
m

bd
a

(iv

VI

(s
et

iv

VI
)

er
ro

r
(la

m
b-

d.

-m
*g

-
(p

rin
t

*m
e1

ec
te

ur

in
co

nn
u

"
se

1
"

de

la

cl
as

se

"
is

it)

in
iti

al
iz

e
(la

m
bd

a
(iv

*)

(in
it1

v
W

lf
(c

dr

(i-
v

(i-
v*

ia

it)
))

(s
ca

n-
m

at
ch

(k

ey
w

or
ds

(i-

v*

is
it)

)
iv

*)
))

1)

(s
en

d
C

la
ss

'n

ew

:n
am

a
'C

la
ar

:s

up
er

s
-(O

bj
ec

t)
:i-

v
'(n

am
e

su
pe

r8

i-v

ke
yw

dr
da

m

et
ho

ds
)

:m
et

ho
da

'(

ba
ai

cn
sv

(la

m
bd

a
()

(m
&e

In
st

an
cs

na

m
e)

)
m

w

(la
m

bd
a

i-v
*

(B
en

d
(s

en
d

se
lf

'b
as

ic
ne

w
)

'in
iti

al
iz

e
i-v

*)
)

in
lti

a1
iz

e
(la

m
bd

a
(iv

*)

(ru
n-

m
up

er
)

(rs
tq

i-v

(h

or
it-

i-v

‘u
pe

rs

i-v
))

(m
et

q
m

et
ho

ds

(w
an

-m
et

ho
ds

m

et
ho

dm

se
lf)

)
(s

st
q

kq
w

or
dm

(m

ak
e-

ke
yv

or
dr

(c

dr

i-v
)))

(s

ot

m
.m

e
ee

li)
)

1-
v

(lm
bd

t
0

i-v
)

m
ub

cl
as

m
of

(la

m
bd

a
0

m
up

er

m
et

ho
ds

D
ie

(la

m
bd

a
()

m
et

ho
d@

)
na

m
e

(la
m

bd
a

(1

na
m

e)

se
le

ct
or

l
(la

m
bd

a
()

(s
al

ac
to

rs

m
et

ho
ds

))
m

st
ho

dr

(la
m

bd
a

0
(m

et
ho

dm

m
et

ho
ds

))
1)

;
St

at
ic

LC

C
.B

I
to

Im

ta
nc

.
va

ria
bl

es

(d
ef

un

ne
m

di
c

(v
u

l-v
u

1-
va

l)
(w

he
n

1-
va

r
(if

(rq

(c

ar

1-
va

r)
va

r)
1-

va
l

(m
em

di
c

va
r

(c
dr

l-v

ar
)

(c
dr

l-v

al
)))

))
(d

of
un

fn

ra
f

(a
lo

t
ob

j)
(c

ar

(m
am

di
c

#l
ot

(i-

v
(c

la
m

m
-o

f
ob

j))

ob
j))

)
(d

rfu
n

m
at

ra
f

(m
lo

t
va

l
ob

j)
(rp

la
ca

(m

om
di

c
sl

ot

(i-
v

(c
la

sr
-o

f
ob

j))

ob
j)

vm
l)

Va
l)

(d
m

d
rrf

(a

lo
t

ob
j)

'(c
ar

(m

em
dl

c
.e

lo
t

(l-
v

(c
la

sm
-o

f
.o

bj
))

.o
bj

)))

(d
rfu

n
sc

an
-m

et
ho

d
(1

cl

an
m

e)

(#
cm

-p
ua

m
et

sr
m

1

(c
ad

r
1)

)
(v

he
n

(c
dd

r
1)

(#

ca
n-

bo
dy

1

(i-
v

cl
as

ae
)

cl
an

em
)))

(d
ef

uu

m
ea

n-
bo

dy

(1

i-v

cl
ae

se
)

(1
m

t
((p

ar
am

at
ar

m

(c
ad

r
1)

)
(s

up
er

-i-
v

(1
-v

(c

la
ss

-o
f

cl
as

lle
)))

)

(m
at

i
(c

dd
r

1)

* (
(rm

ac
ro

lrt

, (
ap

pe
nd

(m

ap
cu

#'

(la
m

bd
a

(s
lo

t)
(li

nt

al
ot

sl

ot
))

pa
ra

m
et

er
s)

(m

ap
ca

r
#'

(la
m

bd
a

(s
lo

t)'
(.r

lo
t

(la
m

bd
a(

va
r)

‘h
i

‘.v
ar

se

lf)
)))

i-v

)
(m

ap
ca

r
X'

(la
m

bd
a(

sl
ot

)
‘(,

nl
ot

(la

m
bd

a
(v

u)
‘fr

ef

‘.v
ar

(e

la
aa

-o
f

se
lf)

)))
)

ru
pe

r-1
-v

))
,O

(c
dd

r
I))

))
1)

)

(d
ef

un

re
nd

(o

bj

-a
el

*C
tO

r-
-a

rg
a-

)
(a

pp
l7

(lo

ok
up

-n

el
m

ct
or

-
(c

la
m

a-
of

ob

j)
ob

j)
ob

j
-a

rg
m

-1
)

