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Abstract 

This paper shows how an attempt at a uniform and re- 
flective definition resulted in an open-ended system sup- 
porting ObjVlisp, which we use to simulate object-oriented 
language extensions. 

We propose to unify Smalltalk classes and their terminal 
instances. This unification allows us to treat a class as a 
“first class citizen”, to give a circular definition of the first 
metaclass, to access to the metaclass level and finally to 
control the instantiation link. Because each object is an 
instance of another one and because a metaclass is a real 
class inheriting from another one, the metaclass links can 
be created indefinitely. 

This uniformity allows us to define the class variables at 
the metalevel thus suppressing the Smalltalk- ambiguity 
between class variables and instance variables: in our model 
the instance variables of a class are the class variables of its 
instances. 

1 The Instantiation Mechanism 

1.1 Classes & Metaclasses 

We focus on the instantiation mechanism of object-oriented 
languages which organizes objects in taxonomies along the 
class abstraction. Let us recall that the class concept in- 
vented by Simula and reimplemented by Smalltalk- is 
used to express the behavior of a set of objects which share 
the same semantics operating on the same attributes. This 
approach considers a class as a mould, manufacturing pieces 
called its instances. Alternatives to the class model - allow- 
ing other organizations of knowledge - are well known, for 
instance Hewitt’s actor model. An actor describes its own 
structure and exists without a class. Defining generator ac- 
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tors, using a copy mechanism [9] or designing a delegation 
mechanism [15] are other themes developed by 0.0 pro- 
gramming. 

‘One rvay of stating the Smalltalk philosophy is to choose a small 

number of general ptinciplcs and apply them uniformly’ [14]. 

In most common class-oriented languages, despite Kras- 
ner’s uniformity principle, a class is not a REAL object. 

Some of them however, like Loops [l], Smailtalk-80 [ 111, 
CommonLoops f2] and CLOS [3] introduced the ,metaclazs 
concept to provide greater abstraction by allowing the de- 
scription of a class by another class. 

1.2 Smalltalk- 

PThe primary role of a mttaelass in the Smalltalk- system is 

to provide protocol for initializing class variables and for creating 

initialized instances of the mctaclass’solc instance8 (P. 287(11]). 

Smalltalk- uses the metaclass level facility to define 
the behavior of a class as the behavior of a regular object 
reacting to message passing (1). The role of a metaclass is 
to (re)define the instantiation method (3,4), to control the 
class variables initialization (2) or to explicitly explain the 
semantics of a class by predefined examples (5): 

(1) Point class 
(2) DeductibleHistory initialize 
(3) agointlt Point new 
(4) aqointp-- point x: 20 y: 40 
(5) Pen example 

However, a Smalltalk metaclass is not a ordinary class 
but an anonymous one (accessible by the unary selector 
“class”), and which cannot be defined explicitly by users. 
This metaclass which supports the definition of the class in- 
stance variables and the class methods cannot exist without 
the class that is its only instance. Conversely, Smalltalk- 
associates a private metaclass to each class being created. 
Two classes cannot share the same metaclass. The next fig- 
ure summarizes the Smalltalk- instantiation hierarchy : 
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Because every metaclass is automatically an instance of 
the Metaclass class, metaclasses are not true classes, the 
number of metalevels is fixed and the metalink cannot be 
created indefinitely [ 171. 

From an inheritance point of view, the metaclass inher- 
itance is also implicitly fixed by the system. The hierarchy 
of the metaclasses is parallel to the hierarchy of the classes. 
Because Object has no super class, the rule keeping a par- 
allel hierarchy between classes and metaclasses, does not 
apply, and Object class is a subclass of the abstract class 
Class. Then, all Smalltalk metaclasses are subclasses of 
Object class, itself a subclass of Class : 

Object () 
Point (x y) 
Behavior (superclass methodDict format subclasses) 

ClassDescription (instancevariables organization) 
Metaclass (thisClass). 
Class (name classPool sharedPools) 

<all metaclasses> 
Object class () 

Point class () 
Behavior class () 
. . . 

Consequently, a me&lass cannot be defined ex nihilo 
as the subclass of a chosen class. This inheritance tree es- 
tablishes the dichotomy between classes prototyped by the 
class Class and the metaclasses prototyped by the class 
Metaclass (even if they are both subclasses of ClassDe- 
scription and Behavior). These limitations, and the fact 

that a metaclass cannot exist without its class, introduce a 
first boundary between the implementor - who controls the 
metaclass level - and the user - who only has access to the 
class level. A second boundary is made apparent by the 
introduction of the instance method and class method 
terminologies (cf. the -1 SwitchView of the 
browser). 

1.3 Loops 

“For some special cases, the user may want to have more con- 
trol over the creation of instances. For ezample, Loops itself uses 
diferent Lkp data types to represent classes and instances. The 
New message for classes is fielded by their metaclass, usually the 

object MetaClass. This section shows how to create a met&ass. 

Any metaclass should have Class has one of its super classes and 
MetaClass as its metaclass. The easiest way to create a new 

metaclass is to send a New message to MetaClass as follows : 
(+ ($ Metaclass) New metaCLassName ‘(Class))B (P. 36 [I]). 

The Loops scheme for metalevels is close to the Smalltalk 
scheme. The basic idea is to introduce three levels corre- 
sponding to three kinds of object: instances, classes and 
metaclasses. This scheme is built on the “Golden Braid” 
Object, Class and MetaClass (cf. P. 113 [l]); 

MetaClass is the class which holds the default behav- 
ior for metaclasses as objects, it is the metaclass of all 
other metaclasses and its own metaclass. MetaClass 

holds the New method which creates class data-types. 

Class is the class which holds the default behavior 
for classes as objects. Class is the default metaclass 
for all classes. It holds the New method which creates 
instance data-types. Consequently, if Class is not 
the metaclass for a class, it must be on the supers list 
of that metaclsss (which inherits its new method). 
According to this rule Class is a super of Metaclass. 

Object is the class which holds the default behavior 
for all instances. Consequently, Object is the root of 
the inheritance tree. 

These three classes are used to create new metaclasses (I), 
new classes (2 3) and new instances (4 5) : 

(1) (+ (S Metaclass) New ‘ListMetaClass ‘(Class)) 
(2) (+- ($ Class) New ‘Point ‘(Object)) 
(3) (- ($ ListMetaClass) New ‘Book) 
(4) (- ($ Point) New ‘aqointr) 
(5) (- ($ Book) New ‘bl) 

The next figure summarizes the instantiation and sub- 
class links provided by Loops (the black arrow means in- 
stanceof, the shaded arrow means subclassOf) : 

Meta: 

Class: 

inst: 

r MetaClass 

)yf \ 

Class 4. - - - - - - - - - ListMetaClass 

f ‘**iI\ 4 

Point--* Object 4.------- Book 

4 
bl 

f Instantiation 

* . . . . . * I Inheritance 
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Unlike Smalltalk-80, a metaclsss can be created explicitly 
as the subclass of another one but must be an instance of 
MetaClass. This last condition fixes the depth of the in- 
stantiation tree and leads the Loops implementors to use a 
non uniform representation for classes and terminal objects. 
On the other hand, the Loops manual does not express any 
circular definition of Metaclass as it would be suggested 
by its self-instantiation. 

1.4 Unification 

To suppress the gap between class and object, we propose a 
unification of the metaclass, class and object concepts. We 
claim that a class must be an object defined by a real class 
allowing greater clarity and expressive power. 

The reverse question is “Is every object a class? -. The 
answer is no : some objects are only instances of a class and 
do not define a model. An instance of a Point class, e.g. an 
object agointl, or an instance of the Number class, e.g. 
3, are such non-instantiable objects. We call them terminal 
instances. 

Thus we consider only one’kind of object, without dis- 
tinctions of structure or type between classes and terminal 
instances (non-class). In fact, they only differ by their ca- 
pacity to react. to the instantiation message. “If the class 
oj an object owns the primitive instantiation method (new 
selector, owned by the primitive class Class) or inherits 
it, this object is a class. Otherwise it is a terminal in- 
stance. A metaclaee is simply a class which instantiates 

other classes. 1, 

Every class declared ss a subclass of the metaclass Class 
inherits its new method and becomes a metaclass. There- 
fore the introduction of the metaclass concept is unnec- 
essary and the discrimination between metaclasses, classes 
and terminal instances’ is only a consequence of inheritance 
and not a type distinction. We can distinguish between 
class and non-class objects, however the ObjVlisp model 
takes into account only one type of object. 

This unification simplifies the instantiation and inheri- 
tance concepts, using them simultaneously : for example, 
a metaclass must be created as the subclass of another one 
(as an “ultimate” subclass of Class). 

2 The ObjVlisp Model 

Historically, the ObjVlisp model comes from our work on 
Smalltalk- [8]. 0 ur wish is to present a synthesis, using 
operational semantics expressed in Lisp. We present here 
the reflective version which integrates the previous unifi- 
cation and gives a good solution to the problem of the 
<class , instance> dichotomy. 

‘To easily distinguish them, we use upper-case initial letters for 
classes and metaclasaes plus bold letters for metaclasses, and lower- 
cade letters for terminal instances. 

2.1 ObjVlisp in six Postulates 

Following the classical presentation of Smalltalk- [13], six 
postulates fully describe the ObjVlisp model : 

Pl: An object represents a piece of knowledge and a set of 
capabilities : 

object = c data , procedures > 

P2: the only protocol to activate an object is message pass- 
ing : a message specifies which procedure to apply 
(denoted by its name, the selector ), and its argu- 
ments : 

1 (send object selector Argsz . . . Args,) 1 

P3: every object belongs to a class that specifies its data 
(attributes called fields) and its behavior (procedures 
called methods). Objects will be dynamically gener- 
ated from this model, they are called instances of the 
class. Following Plato, all instances of a class have 
same structure and shape, but differ through the val- 
ues of their common instance variables. 

P4: a class is also an object, instantiated by another class, 
called its metaclass. Consequently (P3), to each class 
is associated a metaclass which describes its behavior 
as an object. The initial primitive metaclass is the 

class Class, built as its own instance. 

P5: 

P6: 

2.2 

a class can be defined as a subclass of one (or many) 
other clsss(es). This subclassing mechanism allows 
sharing of instance variables and methods, and is called 
inheritance. The class Object represents the most 

common behavior shared by all objects. 

If the instance variables owned by an object define a 
local environment, there are also class variables defin- 
ing a global environment shared by all the instances of 
a same class. These class variables are defined at the 
metaclass level according to the following equation : 

class variable [an-object] = 
instance variable [an-object’s class] 

Classes and objects 

Structure of an object 

The postulates Pl & P3 & P6 define an object as a “chunk” 
of knowledge and actions whose structure is defined by its 
class. More precisely: 

Fields : are the set of variables defining the environment 
of the object; 

a) instance variables : this first environment is organized 
as a “dictionary” split into two isomorphic parts : 

1. the set of instance variables specified by the ob- 
ject’s class, 

2. the set of associated values. 
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The set of instance variables belongs to the class, and 
is shared by all its instances. The set of values is 
owned by each instance; consequently an object can- 
not, exist without its class. These two sets ’ are or- 
dered - at creation time - by the inheritance rules 
defined on the superclasses components. In particu- 
lar, to store the name of its class, each object holds 
as first instance variable one named isit. Each ob- 
ject holds also the self “pseudo instance variable” 
dynamically (at runtime) bound to the object itself 
when it receives a message. These two pseudo vari- 
ables are respectively analogs to iait and self in 
Smalltalk- [lo]. 

b) class variables : Smalltalk- class variables are ac- 
cessible to both the class (via instance methods) and 
its metaclass (via class methods). Similarly, ObjVlisp 
instance variables of a class (defined as an object) are 
accessible to both its own methods and its metaclass 
methods. Consequently, the instance variables of a 
class are also the class variables of its instances, defin- 
ing global environment at the metaclass level. 

Methods : The met hods define the procedures shared by 
all the instances of a class and owned by the class. To realize 
the unification between class and instance, we represent the 
method environment as a particular instance variable of its 
metaclass; the methods dictionary of a class is the value 
associated with a specific instance variable called methods. 
As a common object, a class is defined by its class and the 
values of the associated instance variables. 

Structure of a class 

As an object, a class owns also the isit instance variable 
inherited from Object (cf. 3.2). This variable is bound 
to the name of the metaclass when the class is created. 
Because a class is also a generator of objects , we have to 
introduce the minimal set. of instance variables describing a 
class. Four explicit instance variables are owned by Class 
as the primitive metaclass: 

1. name : the name of the class, which means that each 
class is a non-anonymous object, 

2. supers : the list of the direct superclasses of the 
class, 

3. i-v : the list of instance variables that the class 
specifies, 

4. methods : the method-dictionary e.g. the list of 
methods. held by the class expressed as a “P-list”, 
with pairs <selector , X-expression>. 

‘Each object is implemented as a pointer to an abstract structure 
(for example a Iist, a vector, a hash-table or a Lisp structure) which 
must be isomorphic to the list of instance variables held by its &se : 

object = #(class-name i-vz* . . . i-vn*) 
i-v [class-name] (instantiate/ #(class-name i-vz* . . . i-v, *) 

Instantiation of a class 

Unlike the Smalltalk- and Loops systems, ObjVlisp uses 
only one method to create an object which can be a terminal 
instance or a class. 

Basicnew : this method is owned by the metaclass Class 
and uses the makeInstance primitive of the virtual machine 
s as expressed by the circular definition of Class (cf 3.1). 
This method implements only the allocation of the struc- 
ture with the nil default-value for each instance variable : 

(send Aclass ‘basicnew) =+ #(Aclass nil . . . nil) 

New : to allocate a new object and to initialize its in- 
stance variables, ObjVlisp uses the new method, owned by 
Class, This new method has two effects: to allocate a new 
object and to give an initial value to each instance variable. 
To distinguish these two functions, new composes the ba- 
sicnew method with one of the two initialize methods 
defined respectively in Class and Object. 

Consequently, the instantiation semantic and syntax are 
totally uniform: the new message sent, to a class always 
receives as arguments the values related to the instance 
variable specified by the receiver class and creates a new 
instance built on the class model. To allow more expressive 
power each argument of the new message must be prefixed 
by a keyword (for example :name for an instance variable 
called name) denoting the instance variable receiving the 
associated value: 

(send Aclass ‘new :iyz i-v2 . . . :i-v, i-v,,) * 
#(Aclass i-v,* . . . i-v,*) 

Examples : we define the class Point by instantiating 
the metaclass Class; the receiver (here Class) specifies the 
name of the model (the value of the implicit isit instance 
variable) and the values associated to the four instance vari- 
ables of Class must be expressed : 

send Class ‘new 
:name ‘Point 
:supers 
:i-v 

yy4 

:methods s(“I 0 0 4 
3: (A (nv) (setq x nv) self) 
init (A () (setq x 40 y 12) self) 
display (A () 

(format () 
(catenate ‘-* x ‘D”) 
“*‘I 1 1 1 

Then we create instances of Point, using the same new 
message’ : 

(setq apoint (send Point ‘new :x 20 :y 30)) 
(setq apoint (send ,Point ‘new :y 30 :x 20)) 
(s&q apoints (send Point ‘new]) 
(setq apoint, (send Point ‘new :x nil :y nil)) 
(setq apoints (send Point ‘basicnew)) 

‘The makeInstance function creates a new object when receiving 
WJ argument the name of itr class : 

(defun makeInstance (aclass) 
(tCon8 Adams (makelist (l- (length (send aclass ‘i-v))) nil))) 
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The auto-quoted keywords suppress the order of in- 
stance variables values e.g. the two objects agointr and 
aqointr are equal. Keywords may be also omitted, in this 
case the associated instance variable is bound to the nil 
default value (e.g. a-points, a-point4 and agoint5 are 
equal). 

Obviously, the user can modify the behaviour of the new 
message by defining the initialize method at a subclass 
level. For instance, to create all the instances of Point with 
the 0 value for x and y, we will redefine in Point the ini- 
tialize method : (X (i-v*> (setq x 0 y 0) self) 

3 From Uniformity to Reflection 

Since giving complete control to the users means a complete 
transparency in the objects definitions, we adapt the reflec- 
tive interpreter technique [16] to the construction of this 
model. ObjVlisp is supported by two graphs: the instanti- 
ation graph and the inheritance graph. The instantiation 
graph represents the instanceof relationship (P3 & P4), 
and the inheritance graph the subclassOf link (P5). Class 
and Object are the respective roots of these two (acyclic) 
graphs: they are defined in ObjVlisp as follows. 

3.1 Class: Instantiation 

Class is the first object of the system. As the root of 
the instantiation graph, it defines the behavior for classes. 
Because the new primitive is fielded by Class it will re- 
cursively create all other objects. To prevent the infinite 
regress provided by the instantation link (a metaclass is a 
class which instantiates a class, a metametaclass is a class 
which instantiates a metaclass, a metametametaclass . . .), 
Class must be its own instance which severely constrains 
its structure. 

Reflective pattern matching of Class 

To verify the previous statement, we have to guarantee that 
the instance variables specified by Class match the corre- 
sponding values also held by Class, as its own instance, 
which is easily obtained by : 

isit nune supera i-v metho& 
Chl Clam (Object) (hit name aupen i-v methods) (new (A..)..) 

Notice that the value associated with the instance vari- 
able i-v is exactly the ordered set of instance variables 
(isit. name, . . . , methods) itself, this reflective pat- 
tern matching illustrates the definition of Class as an ob- 
ject. 

‘This table shows the dictionary of values owned by each object : 
? (send agoi+ ‘i-values) 
= #(Point 20 30) 
? (send Point ‘i-values) 
= #(Class Point (Object) (isit x y) (x Xr x: As init A3 display X4)) 
? (send Class ‘i-values) 
= #(Class Class (Object) (isit name supers i-v methods) (new.. .)) 

To prepare the bootstrap: the Lisp skeleton 

“A natural and fundamental question to ask, on learning of these 

incredibly interlocking pieces of software and hardware is: #‘How 

did they ever get started in the first place?‘. It is truly a bafiing 

thing” [12]. 

Defining Class from itself necessitates specifying the 
bootstrap mechanism. We create manualy the skeleton of 
Class. If we represent objects as lists, we will use the 
skeleton : 

(setq Class ‘( 
Class 
Class 
(Object) 
(isit name supers i-v methods) 

i 
new 

initialize 

(A (self . i-values) 
(send (makeInstance name) 

‘iuitialiie i-values) 
(A (self i-values) 

(initIv self... . ..) 
(setq i-v (he&-i-v supers i-v)) 
(setq methods (scan-methods . . 
(set name self)) )) 

-1) 

In fact, we only defme the new and initialize methods 
supporting the self-instantiation of Class. 

This bootstrapping process then creates the real Class 
object, by sending to the Class skeleton the appropriate 
new message. Note that the skeleton is destroyed by the 
circular (re)definition of Class. 

The bootstrap: the Self Instantiation of Class 

The Class definition establishes that Class is its own in- 
stance, is a subclass of Object, and uses the instance vari- 
ables previously mentioned. These definitions and exam- 
ples are given for Le-Lisp [7] : 

(send Class ‘new 
:XItie ‘ClaEE 
:supers ‘(Object) 
:i-v ‘(name supersi-v methods) 
:methods ‘( 

new (A i-values 
(send (send self ‘basicnew) 

‘initialhe i_values)) 
basicnew (A () (makeInstance name)) 
initialize (A (i-values) 

(run-super) 
(setq i-v (he&-i-v supers i-v)) 
(setq methods . . . )) 
(set name self)) 

. . . . . . 

name 0 0 name1 
super* 0 0 supers) 
i-0 (A 0 i-4 
metbodsDic (A () methods) 

. . . I.. 
understand (A (selector method) 

(defmethod self selector method)) 
selectors (A () (selectors methods)) ) ) 
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The definitions of the methods shows that all instance 
variables are automatically bound to their values in a method 
body. Consequently, the X-expressions associated with the 
name, supers, i-v and methods selectors are quite easy 
to express. Similarly, in the new method, self denotes 
the generator (here Class). The initialize method uses 
the run-super form to call the general allocator (makeIn- 
stance) defined at the Object level. 

3.2 Object: Inheritance 

Postulate (P5) introduces the inheritance mechanism (which 
concerns only classes). The ObjVlisp inheritance allows to 
connect together instance variables and methods of several 
classes but in two different ways: 

l The inheritance of instance variables is static and 
done once at creation time. 

When defining a class, its instance variables are calcu- 
lated as the union of a copy of the instance variables 
owned by the superclasses with the instance variables 
specified at creation (the value associated to the “:i-v” 
keyword used by the new message). 

l On the other hand, method inheritance is dynamic 
and uses the virtual copy mechanism implemented by 
the linkage of classes in the inheritance graph which 
is supported by the supers instance variable. When 
the method lookup fails in the receiver class then the 
search continues in a depth-first/breadth-first way. 

This lookup call may be locally modified by the run- 
super form - same as in CommonLoops [2] and similar 
to the super construct of Smalltalk- - which over- 
rides the current method. The lookup starts (stati- 
cally) at the superclass of the class containing the 
method. 

Classes vs Terminal Instances: the initialize method 

The inheritance mechanism of instance variables is applied 
only when creating classes. Thus we need to distinguish 
creation of classes and creation of terminal instances. As 
we pointed out already, a metaclass is a class which inherits 
from Class the new method and the (name supers i-v 
methods) instance variables”. 

The reflective definition of ObjVlisp allows to use only 
one allocator - the basicnew - and nevertheless to explicit 
the difference between class and terminal instance creations: 

the initialize method owned by Object treats the termi- 
nal instance, and the initialize method owned by Class 
implements the inheritance mechanism associated to in- 
stance variables at a class creation time. 

Object the most common class 

The second primitive class is Object, instance of Class. 
Object represents the most common class - the intersec- 
tion of all classes - describing the most common behavior 
(for classes and terminal instances). It is created during 
the bootstrap mechanism, immediately before Class. The 
isit instance variable is statically inherited by all classes. 
Then isit provides the instantiation link (the umbilical 
cord) between a class and its instances. 

send Class ‘new 
:name 
:supers 
: i-v 
:methods 

‘Object 

‘0 

?sit’ 
ClllSS (A () isit) 
initialize (A (i-values) 

(initIv self . . . . . . ) self) 
f (A (i-v-) (ref i-var self)) 
Ft (A (i-var i-val) 

(setf (ref iyar self) i-val)) 
i-values 0 0 self) 
mctocfassl (A () (memq ‘supers i-v)) 
class? (1 0 

(send (i-v* kit) ‘metaclass?)) 
. . . . . . 

err*r (A msg ‘(A bs ‘,msg)) ) ) 

From this definition Object has no superclasses and each 
ObjVlisp object answers to the <selector> by <action>: 

class 
initialize 
1 
?i- 
i-values 
metaclass? 
class 7 
error 

giving the name of its class 
initializing the instance variables 
returning the value of the field i-var 
writing i-var with the new value 
returning the list of values of the i-v 
testing if the object is a metaclass 
testing if the object is a class 
implementing the standard treatment 
of error 

Notice that the ? and ?t methods which access the 
value of any instance variable (read&write) respect their 
lexical scoping (and violate the encapsulation principle). 

3.3 Architecture of the ObjVlisp model 

We summarize the general structure of the ObjVlisp model 
by connecting together the instantiation graph and the 
inheritance graph. At the creation of the system there 
are only the Class and Object classes. The %aive” use of 
the system will keep the depth of the instantiation tree to 
three. See below for a similar example to Smalltalk- [Is]; 
all classes are instances of Class : 

P 
Class 

Grit name ruperr I-V methods) 

.*“f \ 

Object N.............. Point 
(istt) 

/7 Orit xy) 

a-point) 
4 
. . . 

K 
a-points 

‘The mttaclass? predicate defined in Object uses the supers in- 
stance variable to recognize metackses. 
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The rest of this paper establishes that creation of meta- 
classes brings substantial benefits. There is no longer any 
depth limitation of the instantiation tree, and the user can 
extend it as much as he wants to specify different metalevels 
of shared instance variables and methods. 

4 From Reflection to Extensibility 

4.1 Building new metaclasses 

By combining the inheritance mechanism with the instanti- 
ation one we can create multiple metaclasses. Ametaclass 
is defined as a subclass of Class i.e. dynamically inherits 
the new primitive (to create objects) and it receives a copy 
of the basic instance variables defining a class (name, i-v, 
supers and methods), copy extended by the CV; variables : 

send Class ‘new 
:n-e ‘Ametaclass 
: i-v ‘(WI . . . CV”) 
xupers ‘(Class) 
:methods ‘(.-.I 1 

Following this definition, the creation of Aclass needs 
the instantiation of every basic instance variables plus the 
instantiation of each new cvi : 

(send Ametaclasa ‘new 
:nme ‘Aclass 
:i_v ‘(iv1 . ..ivn) 
:supers 
:methods l’*‘l . . . 
:C”l WI* 

. . . . . . 
:C”, c”,* ) 

Class variables by Example 

Let us return to the Point class, previously defined. Now 
we would like the constant character * to be a class variable 
shared by all the points of a same class. We redefine the 
Point class as before, but metaclass of which (let us call it 
MetaPoint) specifies this common character : 

send Class ‘new 
:name ‘MetaPoint 
:supers ‘(Clam) 
: i-v ‘(char) 
:methods ‘0 1 

(send MetaPoint ‘new 
:name ‘DefaultPoint 
:supers 
: i-v 

ye4 
X 

:methoda '( init (A () (setq x 40 y 12) self) 
z 0 0 4 
2: (A (nx) (setqx nx) self) 
display 0 0 

(format () 
(catenate =-’ x ‘D*’ 
char)) ) 

:char **r ) 

MetaPoint is declared as a subclass of Class (thus it is 
a metaclass). It inherits the name, supers, i-v and meth- 
ods instance variables from Class and adds to them the in- 
stance variable char. Consequently, DefaultPoint specifies 
the associated value of char, i.e. * by using the associated 
keyword. Now we could create such a point : 

? (s&q aqoint (send DefaultPoint ‘new :x 20)) 
= a DefaultPoint 
? (send agoint ‘display) 
= * 

Class methods by Example 

As for class variables, class methods are specified in the 
metaclass as ordinary methods. Suppose we want to define 
a new class method for DefaultPoint to create and initialize 
a new point. We simply define the newinit method of 
MetaPoint (assuming we define also an init method in 
the Point class, or at least in the Object class) : 

send Class ‘new 
:name ‘MetaPoint 
supers 
:i-v :gy 

:methods '( newinit (A 0 
(send (send self ‘new) ‘init))) 

Ch (A 0 char) 
char: (A (newchar) 

fseta char newChar) j 1 

l newinit creates a new instance, (send self ‘new) 
then receives the init message. 

. char gives access to the char variable. We have in- 
troduced this method to show that char is both ac- 
cessible by the DefaultPoint display method and by 
the MetaPoint char method, 

. char : allows the modification of the char class vari- 
able. For instance, the (send DefaultPoint char: 
‘ ‘ @ ’ ’ 1 message provides the new B display for all the 
instances of DefaultPoint. 

4.2 Parametrization of a class 

The DefaultPoint class is now parametrized by its display 
character and the MetaPoint metaclass represents this ab- 
straction. Let us define two new classes, called Point# and 
Point62 with two different display characters. Obviously, 
they are defined as a subclass of DefaultPoint : 

Class 
Grit name wperr I-V methods) 

k 
‘. .\ 

Object MetaPoint 
(kit name supers i-v methods char) 

Point# . ..+ DefaultPoint M*.. . . . Point@ 
(kit x y) (kit x y) (isit x y) 
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Notice that a same metaclass (here MetaPoint) can be 
used to instantiate several classes (Point#, Point@ . . .) : 
there is no one specific metaclass associated to each class. 

? (send MetaPoint ‘new 
:name ‘Point# :supers ‘(DefaultPoint) :char a#. ) 

= Point# 
? (send ‘MetaPoint ‘new 

:name ‘PointQ :supers ‘(DefaultPoint) :char Wn ) 
= Point@ 
? (send (send Point# ‘new :x 1) ‘display) 
=# 
? (send (send Pointa ‘new :x 9) ‘display) 
= 0 

Comparison with SmaIItalk-80 

We have pointed in [5] that the Smalltalk- terminology 
is not homogeneous. Smalltalk class variables are not the 
instance variables of the class defined as an object but a 
dictionary of variables shared between all the instances of 
a same class hierarchy. For example, if the new method is 
redefined to add the newly created instance of a class inside 
a Collection’s class variable, the instances of its subclasses 
will also be memorized. 

Nevertheless, if we use the instance variables of a meta- 
class, we can simulate the “MetaPoint” construction in 
Smalltalk-80. Obviously we need to give an explicit access 
to the char variable and we have to use a new different 
metaclass for each class of Point : 

Object subclass: #DefaultPoint 
instanceVariableNames: ‘x y’ 
clasaVariableNames: ’ 
poolDictionaries: g 
category: ‘Graphic-Primitives’. 

DefaultPoint class instanceVariableNames: ‘char’. 
DefaultPoint class methodsFor: ‘m&a-iv access’ 

initialise Ichart =*#. 

DefaultPoint subclass: #Point@ 
instanceVariableNames: ’ 
classVsriableNames: ’ 
poolDictionaries: D 
category: ‘Graphic-Primitives’. 

Point0 class instanceVariableNames: ‘. 
Point0 class methodsFor: ‘met&v access’ 

initialire tcharc ‘0”. 

The DefaultPoint example illustrates a general knowl- 
edge scheme (as does the Polygon example below). To gen- 
eralize the solution, we have decided to extend the scope 

of the instance variables of a class to each of its instances. 
Unlike Smalltalk-80, our class variables are inherited but 
not shared by the subclasses. 

Each polygon is defined by its location (the first ver- 
tex) and the length of any of its sides. To parametrize the 
number of sides - 4 for a square, 6 for a hexagon, undef for 
a polygon - we use the nSidea class variable. To simplify 
the next figure, the inherited variables are not drawn : 

’ Class 

Object PolygonClass 

Hexagon . . + Polygon d......Square 
0 (locatmn lenght) 0 

ft2 ft2 ft2 
... ... ... ... ... ... ... ... ... 

4.3 Filiation link (Set) : 

To use classes which remember all their instances, we define 
a new metaclass (Set 

I 
, as a subclass of Class with the new 

sons instance variab e pointing the list of instances. We 
just have to redefine the new method in Set to add the 
newly created instance at the end of the sons list : 

send Class ‘new 
:name ‘Set 
:supers ‘(Class) 
5-v ‘( rona) 
:methods ‘( sons 0 0 w -4) 

new (A i-values 
(nconc l onm 

(cons (run-super) 0))) 
mapSO%S 

(x~::P~s) 
(A (ret) (send ret unaryS)) 
(send self ‘sons)) 

UnaryS) 1) 

(send Set ‘new 
:name ‘Point 
:i-v ‘b Y) 
:supers ‘(Object) 
:methods ‘( init (A () (setq x 40 y 12) self) 

display (A () (print (format () . . .)) self) ) 
:SOIlS ‘(hook) ) 

The sons method gives access to the sons class vari- 
able and the mapsons method distributes an unary message 
(without arguments) to all the instances of a particular set. 
The next session shows the behavior of Point defined as an 
instance of Set 

? (progl ‘ok (send Point ‘new :x 10) (send Point ‘new :x 20)) 
= ok 
? (send Point ‘sons) 
= (#(Point 10 nil) #(Point 20 nil)) 
? (send Point ‘mapsons ‘display) 

* 
* 

= display 

This solution provides a uniform extension of the meta- 

class system and seems better than the Loops “class prop- 
erty hook” used by the ListMetaClass definition in [l] 
(P. 36). 
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4.4 MetaPoint as an instance of Set : 

Now we can add a new metaclass level by defining Meta- 
Point as a subclass of Set, allowing DefaultPoint, Point# 
and Point@ to memorize their instances. Since a metaclass 
is a ordinary class, such an extension is easy to repeat and 
the metalinks can be created indefinitely. 

5 Metaclasses are useful 

“With respect to Simula, Smalltalk also abandons static scoping, 

to gain jlezibility in interactive use, and strong typing, allowing 

it to implement system introspection and to introduce the notion 

of meta-classes [6].” 

5.1 Metaclasses provide metatools to build 
open-ended architecture 

“The metaclass determines the form of inheritance used by its 
classes and the representation of the instance of its classes. The 

metaclass mechanism can be used to provide particular forma of 

optimization or to tailor the Common Lisp Object System for 

particular uses (such as the implementation of other languages 
like Flavors, Smalltalk- and Loops))” /3]. 

From an implementor’s point of view, metaclasses are 
very powerful because they provide hooks to extend or mod- 
ify an existing kernel. For example, ObjVlisp uses the 
metaclass facilities to simulate other object-oriented sys- 
tems. Metaclasses may control : 

1. the inheritance strategy (simple, multiple, method 
wrapping [HI). T o implement variations on inheri- 
tance schemes [lQ], we define at the metaclass level 

a method (or an instance variable) parametrizing the 
lookup method used by the send primitive, 

2. the internal representation of objects by using differ- 
ent makeInstance primitives creating lists, vectors, 
hashtables or structures; each metaclass fielding a pri- 
vate new method, 

3. the access to methods by implementing a caching 
technique. We associate with each class a private 
memory (the cache instance variable) memorizing the 
addresses of methods already called, 

4. the access to instance variable values by distinguish- 
ing between private and public variables or by imple- 
menting active-values or demons. 

5.2 Metaclasses remove the boundary be- 
tween users and implementors 

In our empirical studies, metaclasseo were regarded as the most 
significant barrier to learnability by both students and teachers. 
We propose that they be eIiminated. We have explored various 

alternatives to metaclasses, such as the use of prototypes. How- 

ever, for DeltaTalk we simply propose that the language revert to 
the situation in Smalltalk-76. Every class would be instance of 
class Class” [d]. 

Obviously we disagree with the Borning’s conclusion. 
We consider that metaclasses provide an explicit definition 
of the class system. They express the behavior of classes in 
a transparent way. Because they have ability to manipulate 
their own structures, they can implement system introspec- 
tion. Consequently, metaclasses support a circular defini- 
tion of the system reducing the boundary between users. 
and implementors. But, to fully exploit this metalevel, the 
metaclass concept must be simple enough to be understood 
by the user. We believe this is not true in Smalltalk- but 
that the ObjVlisp uniform and reflective architecture has 
reached this goal. 

6 Conclusions 

6.1 Results 

The ObjVlisp model’s primary advantage is uniformity. 
There is now only.one kind of object: a class is an object 
and a metaclass is a true class whose instances are classes. 
This allows a simplification and economy of concepts, which 
are thus more powerful and general. The second property is 
reflection which provides a language completely and uni- 
formly accessible by the user. The system is self-described 
by the explicit definition of the root of the instantiation tree 

(Class) and the root of the inheritance tree (Object). The 
main results are that there is no limitation in the depth 
of the instantiation tree, the metalinks can be created in- 
definitely and class variables are defined at the metaclass 
level. Finally, extensibility permits various applications 
and modeling alternative semantics, for instance Thinglab 
composite objects and partwhole hierarchy or Smalltalk- 
dependencies [ 111. 

6.2 New Improvements 

A first version of this paper was presented at the work- 
shop on Meta-Level Architectures and Reflection organized 
in Alghero [16]. In this new version, the difference between 
instance creation and class creation is explicitly defined at 
the ObjVlisp level through two distincts initialize meth- 
ods, respectively owned by Object and Class. Thus we do 
pot need to add an extra metalevel (the metaclass level of 
Loops or Smalltalk-80) [5] and the ObjVlisp instantiation 
kernel is really minimal. 

6.3 Future work 

We have used the ObjVlisp model to study the instantiation 
mechanism. We plan now to investigate three axes: 

l experimentation in object-oriented methodologies by 
writing relevant examples in ObjVlisp other than those 
provided by the Smalltalk- image, 

l development of an object kernel for EuLisp and IsoLisp. 
This work is very close to the CLOS approach [3] but 
we expect to use the ObjVlisp experience to propose 
a cleaner metaclass level, 

. implementing the ObjVlisp metaclasses architecture 
in Smalltalk- by redefinition of the “kernel classes”. 
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Appendix 

We give two alternatives implementations written in Le 
Lisp representing objects as lists. The first one dynami- 
cally binds the instance variables at the run-time (cf. the 
send form), when the second one pre-compiles the methods 
by using a tree-walker. The smacrolet form replaces each 
instance variable name by its access function (cf. the ref 
form). For instance, below are the definition of x, x: and 
display methods of Point, after their textual expansion: 

(A () (ref ‘x self)) 
P 0 

(format () . . . char)) 
0 (nxl 

(format () . . . (ref ‘char (class-of self)))) 
(A (4 

(aetq x nx) self) (setf (ref ‘x self) nx) self) 

[lo] Goldberg, A., Kay, A., Smalltalk- Instruction Man- 
ual, Research Report SSL 76.6, Xerox PARC, Palo Alto 
CA, USA, March 1976. 
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